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ABSTRACT Crude oil is a vital and valuable commodity in the energy industry. In order to maintain
continuous, stable, and reasonably priced supplies, oil producers need cheaper exploration and extraction
techniques. Permeability is one of the formation parameters that is a key interest to petroleum engineers in
determining the economic worth and yield of crude deposits, yet permeability prediction remains a difficult
problem. Many approaches have been applied to solving this important issue. Soft computing has been
deployed to predict permeability. In this paper, we present an extensive review of the existing research that
has been conducted on applications of soft computing for permeability prediction. This paper finds out that
traditional approaches for permeability prediction are still relevant in the oil and gas industry. Soft computing
methods in particular are worthy of addition to this interesting area. This extensive review is intended to
be an entry point for further exploration of other approaches that have received little or no attention from

researchers.

INDEX TERMS Permeability prediction, soft computing models, oil and gas.

I. INTRODUCTION

Crude oil is central to the world economy by meeting the
energy demand and it is the engine room of most economies.
Players in the oil market need cheaper extraction methods
and techniques to maintain a reasonable price and stability
of the world economy. Permeability is one of the formation
parameters that is pivotal to petroleum engineers because it
is essential in determining the economic worth and yield of
crude deposits. Permeability is a measure to determine the
ability of fluid to flow through materials [1]. It is funda-
mental in reservoir management, in the choice of optimal
drainage port, and in perforation. Formations permeability
are usually measured from the core sample and well logging
in the laboratories which are often tedious and expensive.
Researchers have agreed that permeability prediction is a
complex problem in oil industries [1]-[3]. The difficult and
dynamic nature of the problem has aroused the interest of
researchers over the years. The cost of direct measurement
has led researchers to show interest in other ways of pre-
dicting this vital parameter. One of the methods that have
been harnessed is soft computing applications in predicting
permeability. The successes of soft computing techniques in
other application areas have led to its popularity in oil and gas
exploration.
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We classify all the methods for predicting permeability
as shown in Fig. 1. In this paper, we are concentrating on
soft computing techniques. This study is intended to be the
starting point for any researcher that is delving into the appli-
cation of artificial intelligence techniques in permeability
prediction. We conduct a systematic and in-depth analysis
of the methods available in the literature by exposing their
strengths and weaknesses. The remaining part of this paper
is organized as follows. Section II presents an overview of
soft computing models. In Section III, the formation studied
in literature and data availability are discussed. Section IV
presents statistical quality measures that are employed in the
literature for the performance evaluation of proposed models.
Section V classifies all the works in the literature on the
applications of computational intelligence into single and
hybrid models while Section VI concludes the paper.

Il. OVERVIEW OF SOFT COMPUTING MODELS

Soft computing, artificial intelligence, computational intelli-
gence, and machine learning are used interchangeably in the
literature. Though, there are subtle differences between some
of them, for the sake of readers from diverse research disci-
plines. We live it at that. For the sake of consistency, through-
out this paper, we will be using soft computing techniques.
Soft computing is an aspect of computing that attempts to
learn from data and adjust itself with experience where nec-
essary. There are several soft computing techniques available
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Soft models.

FIGURE 1. Classification of permeability predictions methods.

in the literature. Some of them are nature-inspired such as
genetic algorithm, cuckoo search, ant colony, particle swarm
optimization, and so on while others mimic the human neural
system like artificial neural networks. Others are purely math-
ematical models such as extreme learning machines, support
vector machines, etc. The learning process for all the algo-
rithms are usually classified as supervised, unsupervised, and
semi-supervised or reinforcement learning. In this section,
we will provide an overview of the soft computing models/
techniques that are mostly applied for permeability prediction
in the literature.

A. ARTIFICIAL NEURAL NETWORK

Artificial Neural Network (ANN) is a mathematical model
designed to emulate the human brain. It attempts to mimic
the biological neural system of using neurons and nodes to
process information [4]. A neural network is a black box
universal approximator that can approximate difficult and
complex functions. Its details working are like human rea-
soning with the ability to learn and adapt from data provided
to it. ANN is made up of four major components; information
is processed with the aid of neurons. Each link connects one
or more neurons. Every link between neurons is associated
with adjustable weight and an activation function is applied
to its input to regulate its outputs. There are no strict rules on
the number of hidden layers. It is usually based on trial and
error [5]. Structurally, the basic ANN is made up of an input
layer, an output layer and in between these two layers are one
or more hidden layers as shown in Fig. 2. The operations of
ANN involve training, validation, and testing. The network
can be trained with data, which means finding an appropriate
relationship between the inputs and outputs after adjusting
weight and biases. The ““reasonable’ relationship depends on
the predefined error threshold.

There are many training algorithms for ANN [6]. Back-
propagation (BP) is used to train ANN by adjusting weight
and learn from the data. Backpropagation is a supervised
learning algorithm where a set of data is provided against
a set of outputs. During training, in every iteration, it tries
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FIGURE 2. Structure of feedforward neural networks.

to minimize the error by adjusting weight biases. There are
three training termination criteria; They are: (a) if the gradient
performance falls below a predefined threshold (b) prede-
fined error limit is reached and (c) if the maximum iter-
ations are reached [7]. ANN can handle many problems.
It can process nonlinear problems independent of the initial
assumption. However, it has its drawbacks. ANN is restrictive
and can get stuck in local minima. To address some of these
challenges faced by the basic neural network which is a
Feedforward Neural Network (FFNN) that gives multi-layer
perceptron or backpropagation learning algorithms. There are
many modifications and extensions to ANN such as Convo-
lutional Neural Network (CNN), Recurrent Neural Network
(RNN), Deep Learning Network (DLN), Radial Basis Neural
Network (RBNN), Higher-order Networks, Probabilistic Net-
works, Fuzzy Neural Networks (FNN), Wavelength Neural
Networks (WNN), and Generalized Regression Neural Net-
work (GRNN) [8]. RBNN is similar in structure to FFNN, that
is, it has input, hidden and output layer. However, the hidden
layer of RBNN is made up of a radial basis function. Its input
bypasses the weight computation at the input layer and goes
directly to the hidden layer with activation of radially sym-
metric basis function. RBNN has a high learning speed and
local approximation [9]. RNN is more structurally complex
compared to RBNN and FFNN. In RNN, there are intermedi-
ate inputs connected directly to the input at the hidden layer
as can be seen from Fig. 3. In the use of GRNN, investigating
the structure and iterative training is not necessary as in
backpropagation [8].

B. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a
neuro-fuzzy technique that combines the neural network and
the fuzzy inference system. The relational structure of the
artificial neural networks and its learning ability is fused
with the decision-making mechanism of fuzzy logic. The
neural network is highly adaptable while fuzzy logic handles
imprecision and uncertainty of the system. The disadvantages
of black-box nature and indeterminable weight of artificial
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FIGURE 3. Structure of recurrent neural networks.
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FIGURE 4. Flowchart of cuckoo search algorithm.

neural network is eliminated by the structure of ANFIS in the
fuzzy inference system. Detailed descriptions of the ANFIS
model can be found in [10].

C. CUCKOO SEARCH ALGORITHM

Cuckoo Search Algorithm (CSA) is inspired by the lifestyle
and behavior of a bird species called cuckoo. Due to the
peculiar reproductive behavior of laying their eggs in another
bird’s nest. Cuckoo can detect new next and its egg, even
when mixed with the host’s bird’s eggs. Some host birds
might retaliate by either rejecting the cuckoo eggs or move to
anew location to build a new nest. For simplicity, each egg in
a nest represents a solution and each cuckoo egg represents
a new one [11]. The cuckoo search procedure is presented
below and its flowchart is shown in Fig. 4.

« Each cuckoo lays one egg at a time and puts it in a
randomly chosen nest.

o The best nest with a high-quality egg is carried over to
the next generation.

o The number of available host nest is constant and a host
has the probability P, € [0, 1] of discovering an alien
egg.

« Consequently, the host bird can either throw away the
cuckoo egg or move to a new location to build a new nest.
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D. EXTREME LEARNING MACHINE

Extreme Learning Machine (ELM) is a learning algorithm
for a single hidden layer feedforward neural network (SLFN)
with N hidden neurons and N < N , where N is the number
of training samples. The learning process as proposed in [12],
and is described as follows:

With N training samples (x;, t;), where x; = [xi1, Xi2, . . .,
xinlf € R"and t; = [, tia, - - ., tim]* € R™. Hence, a stan-
dard SLFN with N hidden neurons and activation function
g(x) is defined as:

N
> Bigwixi+b) =0, j=12....N, 1)

i=1
where w; = [wi1, win, ..., win]? is the connecting weight
vector between the i neuron and the input neuron and g; =
[Bit, Bizs - - -, ,Bim]T is the connecting weight vector between
the " hidden neuron and the output neuron. b; is the threshold
of i hidden neurons. w;.X; is the inner product of w; and x;.

The standard SLFN with N hidden neurons and activation
function g(x) is_to approximate these N samples with zero

error that is Z;VZI llo; — t;jll = O, there exist B;, w;, and b;
such that:

N

Z,Big(wi~xj+bi):t‘, j=1,2,...,N. )

i=1

The above equation can be re-written as

HB =T, (3
where
H(Wl,..._,WN,bl,...,bN,Xl,...,XN)
gwi.xy +by)...g(wy.X1 + by)
- : L@
| gW1.XNy +b1)...g(Wy Xy + by) NxN
Bl
B=|": ; Q)
—’3§ Nxm
_tlT
T=|: . (6)
lT
L'N N xm

As proposed in [13], H is called the hidden layer output
matrix of the neural network; the i" column of H is the i
hidden neuron’s output vector.

E. FUNCTIONAL NETWORKS

Functional Networks (FN) is an extension of the neural net-
works for efficient generalization and a combination of both
domain and data. In FN, there is no weight associated with
links and it can select the best function by learning from the
data and attempt to minimize MSE. The learning process in
FN involves both parametric and structural. Parametric is the
estimation of the neural function while structural is based on
the topology of the network [14].
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FIGURE 5. A general functional network structure.
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FIGURE 6. Triangular membership function for type I fuzzy.

FN has the following components (a) input layer, an out-
put layer, and one or several layers of processing unit.
(b) None, one or several layers of intermediate units that store
intermediate results as shown in Fig. 5.

Generally, n layer FN model is as follows:

Y =FyF,—1,...,Fi(X), 7

where ¥ € R represents output of the system, X € R”
represents input to F1, Fa, ..., Fp.

F. FUZZY LOGIC
Type I fuzzy set was introduced in [15]. It is used to model
uncertain processes such as temperature and pressure. The
membership function U,(x) is chosen based on individual
experience from [0 1]. A simple example of a triangular
membership function for type I fuzzy is shown in Fig. 6.
Expert experience is always needed. Type I fuzzy set mem-
bership function is crisp. It has been applied in several appli-
cations such as data mining, time series modeling, reservoir
characterization, and permeability prediction.

Despite the successes of type I, there are limitations to the
level of uncertainties that can be modeled by type 1. Hence,
type II is an extension of type I. The membership function
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FIGURE 7. Gaussian membership function.
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FIGURE 8. Type Il fuzzy logic system.

U, (x) in type Il is itself fuzzy. A special case of type II fuzzy
logic is called interval type II which is widely used. The mem-
bership function in interval type Il is an interval. For example,
consider the Gaussian membership function in Fig. 7. Interval
U«(5) = [0.7, 1]. Type II is bounded above and below by
two type I fuzzy sets. They are called Upper Membership
Function (UMF) and Lower Membership Function (LMF)
and the shaded area is called the footprint of uncertainty.
The membership function can be constructed from surveys
or using an optimization algorithm [16]. Type II fuzzy logic
system is shown in Fig. 8. The fuzzifier maps the crisp input
into the fuzzy set. The rules are of the form: R : if x is fll
and xp is le and ... xp isﬁ then y is G'. Note that it is not
a necessary condition for all the antecedent/consequent to be
type IL. If either one antecedent or consequent is type II, hence
it all becomes a type II. The inference engine combines rules
and gives the mapping from input type II fuzzy to output type
II fuzzy set. The defuzzifier produces an extension principle
to produce the type I defuzzification method. This process is
called type reduction.

G. SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a statistical learning model
developed in [17]. SVM is a supervised learning model that
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can receive input data and output function that can be used to
predict the features of future data [18]. It constructs nonlinear
decision functions by training a classifier to perform a linear
separation in a high-dimensional space which is nonlinearly
related to the input space. SVM has been applied in solving
several problems such as classification, regression, function
approximation, text categorization, pattern recognition. The
ability of SVM to overcome getting stuck in local maxima and
ease of generalization makes it a model of choice for many
applications. Given samples, the SVM model is formulated
as a minimization of Vapnik’s e-insensitive loss function with
the target value (y) as:

ly —f (e = max{0, [y — f(x) — €l}. ®)
To estimate a linear regression
J(x) = (w.x) + b, ©))

where x is the input vector, w is the weight, and b is the bias
term. The objective is to minimize

m
S +C Y =, (10)
i=1
To ensure that the margin € is maximized and error of
classification is minimized, C is introduced as a trade-off
parameter. Considering the set of constraints, the problem can
be formulated as an optimization problem as:

N
minimize %||w||2+C§§i+$i/, (11)
subject to: y; —w! x — b < & + €, (12)
wlx+b—yi <&+e, (13)
&5, %20 (14)

According to the constraints (11) and (12), if the error is
less than € will not enter the objective function and does not
require positive &; or ’;‘i/ [19]. SVM basis function could be
polynomial, radial basis function, and sigmoid function.

H. GENETIC ALGORITHM

Genetic Algorithm (GA) is an evolutionary search algorithm
that attempts to mimic Charles Darwin’s theory of survival of
the fittest in biology. GA is used to solve optimization prob-
lems. It uses three standard processes of selection, crossover,
and mutation. Since it is a search problem, the optimal solu-
tion is always our objective. The algorithm is summarized
in Fig. 9. We start off by randomly selecting an initial popula-
tion that is likely to have the optimal solution. The population
evolves with time as an individual and as a group. During
selection, the best performing chromosomes are selected and
the weaker ones dropped. The process continues iteratively
until an optimal solution is reached.

I. GENETIC PROGRAMMING

Genetic Programming (GP) is an example of an evolution-
ary algorithm inspired by biological evolution. It is used to
discover solutions to problems humans do not know how to
solve directly. GP implements algorithms that use random
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FIGURE 10. Particle swarm optimization algorithm flowchart.

mutation, crossover, fitness function, and multiple genera-
tions of evolution to resolve a user-defined task [20]. It carries
out the continuous improvement of an initial random popula-
tion of programs. These improvements are made possible by
stochastic variations of programs and selections. Solutions
are reached according to predefined criteria for judging an
acceptable solution [21].

J. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is inspired by the
social behavior and movement dynamics of fish, birds,
and insects. It is a stochastic search method suitable for
continuous-variable problems. PSO has several advantages
such as an efficient global search algorithm, simple imple-
mentation, and very few algorithm parameters. However, one
of its drawbacks is a weak local search [22]. The PSO algo-
rithm is described as follows and the flowchart is as shown
in Fig. 10:
1) Create a population of particles (agents) uniformly dis-
tributed over x.
2) Evaluate each particle’s position according to the object
function.
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TABLE 1. Statistical properties of the Middle Eastern well data

Predictors Meaning Mean Standard Deviation Min Max
MSFL Microspherically focused log 1.1762 0.4575 0.5377 2.4368
NPHI Neutron porosity log 0.1371 0.0517 0.0300 0.2611
PHIT Porosity log 0.1529 0.0679 0.0335 0.2909
RHOB Density log 2.4371 0.1419 2.1810 2.6682
SWT Water saturation 0.1703 0.1783 0.0400 1.0000
CALI Caliper 8.4105 0.1038 8.1558 8.4891

CT Conductivity 0.0495 0.0305 0.0001 0.1121
DRHO Density correction log 0.0570 0.0277 0.0030 0.1298
GR Gamma ray log 14.7926 3.9779 6.0399  31.0351
RT Deep resistivity 1.3108 3.3131 0.0089 10.0000
k Core permeability 59.6300 163.2500 0.0150  966.8900

3) Ifthe particle current position is better than the previous
position, then update.

4) Determine the best particle based on its previous
position. Update the particle velocity using

VI = V! 4 o UT (P — X]) + 92U (b} — X)),
(15)

where Vit+1 is velocity, be is the best-remembered
individual particle position, gb? is the best-remembered
swarm position, Xlt‘|rl = Xl’ + V;‘H, @1, @y are cog-
nitive and social parameter, and Uj, U, are random
numbers between 0 and 1.

5) Move to step 2 until stopping criteria are satisfied.

Ill. FORMATION STUDIED AND DATA AVAILABILITY

The reservoir formations data used in literature are mostly
obtained from carbonate reservoirs in the Middle Eastern
region, Iran (Mansouri, Sarawak, Kangan, South Pars), and
a few other formations from other countries such as the Hassi
field in Algeria, Western Sichuan Basin and Mesozoic strata
Gaoqing in China, and Washakie Basin in the USA. Others
are the North sea and Ula field in Norway and Venture gas
field in offshore Canada. The datasets named the Middle
East with the highest number of the published papers consist
of a total of 356 observations from well logging with core
permeability measurements. The statistical descriptions of
the predictors and the corresponding core permeability are
given in Table 1. Most times, the predictors are of different
units, the majority of the researchers normalized their data to
the range of [0,1] while the permeability output was mostly
expressed in the logarithmic scale. The data sets were divided
randomly into 70% for the training of the models and 30% for
testing in most of the studies.

IV. PERFORMANCE EVALUATION METHODS

In this section, we present statistical quality measures that are
employed in the literature for the performance evaluation of
proposed models.

1) Correlation Coefficient (r): The correlation coeffi-
cient r measures the strength and the direction of a
linear relationship between two variables. Strong pos-
itive linear relationships have values of r closer to 1.
If x and y have a strong positive linear correlation, r
is close to +1. An r value of exactly +1 indicates a
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2)

3)

perfect positive fit. Positive values indicate a relation-
ship between x and y variables such that as values for x
increases, values for y also increase. Negative correla-
tion: If x and y have a strong negative linear correlation,
r is close to -1. An r value of exactly -1 indicates a
perfect negative fit. Negative values indicate a relation-
ship between x and y such that as values for x increase,
values for y decrease. No correlation: If there is no
linear correlation or a weak linear correlation, 7 is close
to 0. A value near zero means that there is a random,
nonlinear relationship between the two variables. Note
that r is a dimensionless quantity; that is, it does not
depend on the units employed. A perfect correlation of
+1 occurs only when the data points all lie exactly on
a straight line. A correlation greater than 0.8 is gen-
erally described as strong, whereas a correlation less
than 0.5 is generally described as weak. These values
can vary based upon the type of data being examined.
A study utilizing medical data may require a stronger
correlation than a study using social experiment data.

X0 = 5a)p — )
JE 00— 522 X0 — 5P

where y, and y, are the actual and predicted values
and J, and J, are the mean of the actual and predicted
values.

Root Mean Square Error (RMSE): RMSE is the
standard deviation of the residuals (prediction errors).
These deviations are called residuals when the calcu-
lations are performed over the data sample that was
used for estimation and are called errors (or prediction
errors) when computed out-of-sample. Residuals are a
measure of how far from the regression line data points
are; RMSE is a measure of how spread out these resid-
uals are. In other words, it tells you how concentrated
the data is around the line of best fit.

1 N
_Z(yk _)A)k)z’
N k=1

where y; and Jy, are the actual and predicted values and
N is the number of data samples.

Mean Absolute Percentage Error (MAPE): The
MAPE measures the size of the error in percentage terms.

, (16)

RMSE = (17)
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It is calculated as the average of the unsigned percent-
age error. The MAPE is scale-sensitive and not suitable
for low-volume data. Notice that because actual is in the
denominator of the equation, the MAPE is undefined
when actual demand is zero. Furthermore, when the
actual value is not zero, but quite small, the MAPE
will often take on extreme values. This scale sensitivity
of MAPE makes it unsuitable as an error measure for
low-volume data.
N
MAPE = N2|yk—yk|*1oo, (18)
k=1
where y; and y; are the actual and predicted values and
N is the number of data samples.
4) Mean Absolute Error (MAE):

N
1 .
Mw:ﬁZWF%L (19)

where y; and yy, are the actual and predicted values and
N is the number of data samples.
5) Mean Square Error (MSE):

A
MSE =3 1222 100, (20)
=

where y; and jy, are the actual and predicted values and
N is the number of data samples.
6) Average Absolute Percentage Relative Error (E,):

N
1 A N2
&=ﬁ;m—m, 1)

where y; and jy, are the actual and predicted values and
N is the number of data samples.

7) Standard Deviation (SD): SD is a measure that is used
to quantify the amount of variation or dispersion of a set
of data values from the mean.

>3
= DOk = I (22)
Nk:l

where y is the actual value, y is the mean value, and N
is the number of data samples.

V. APPLICATIONS OF SOFT COMPUTING FOR
PERMEABILITY PREDICTION

As the quest for effective permeability prediction techniques
continues, soft computing techniques were harnessed as it
proofs to be able to handle complex problems. In this section,
we provide a detailed analysis of the works in the literature.

A. SINGLE MODEL APPLICATION

Single model applications are the type of applications that
uses only one soft computing technique in their applications.
All techniques have their limitations, soft computing is not
an exception. Though with a lot of successes is solving lin-
ear, nonlinear, and complex problems such as classification,
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regression, prediction there are drawbacks. For example, one
of the widely used neural networks is multilayer perception.
It could easily get stuck in local minima, it is slow in training,
determining the optimal architecture using trial and error is
difficult.

In this section, we present works that use only a single
model for the prediction of permeability. As stated earlier, tra-
ditionally there are many methods for estimating permeability
indirectly from rock properties acquired from well log mea-
surements. In [2], it is shown that permeability is correlated
to the pore (micro-scale) model, pore characteristics, and sta-
tistical (percolation and fractal techniques). Singh [23] com-
bined the estimates from well logs and core data using buckle
methods to estimate permeability. Early work on the applica-
tion of soft computing techniques for permeability prediction
shows that is promising. It is inexpensive, non-interruption
of production, and the speedy result of the investigation.
Soft computing model applications have expanded over the
years. According to [3], the initial well-known models for
permeability prediction are ANN, fuzzy logic (FL), and
neuro-fuzzy. Each of these models has its strength and weak-
nesses. Mohaghegh et al. [24] proposed multivariate regres-
sion analysis as a useful tool for permeability correlation.
Furthermore, in [24], the authors proposed a virtual measure-
ment using ANN. Due to the poor structural design of ANN,
GRNN was used to design the optimal architecture and used
backpropagation for the prediction. GRNN reaches a stable
state in a short time but lacks generalization ability while
ANN generalizes better i.e., it can predict new data reason-
ably. Their result shows that ANN performed reasonably well
in prediction permeability of well log it was not used to.

Huang et al. [25] used ANN to model the relationship
between the spatial position and permeability of six wells in
the Venture gas field in offshore Canada. Helle er al. [26]
used ANN to predict the porosity and permeability directly
from well logs using data from the North sea formation.
Singh [27] used a conventional log in FFNN and back-
propagation to estimate permeability. Ben-Awuah and Pad-
manabhan [28] developed ANN model using facies instead
of conventional logs. The authors used porosity as input
data to the model and permeability as the target output.
The correlation coefficient raised to 99%. In [29], Abdideh
expressed the relationship between porosity and permeability
with linear regression. The author created ANN model by
dividing the dataset into different well zones. The correlation
coefficient of each zone ranges from 0.73 to 0.85. Due to
complex architecture design and slow training encountered
with ANN, Saljooghi and Hezarkhani [30] combined wavelet
theory and ANN to form a wave network (wavenet). The
authors applied different wavelet as the activation function
to the ANN. Though, wavelet parameters such as dilation
and translation were kept constant. The wavenet outperform
ANN with R? of 92 compared to 89. In [31], Mohebbi et al.
noted that the distinct feature of high pressure, heterogeneity
in the Iran oil field inhibits the performance of other studies
using ANN. They modified their work by zoning the reservoir
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geological characteristic before applying ANN. The estima-
tion of permeability from porosity, specific surface area, and
irreducible water saturation was proposed in [32], while the
authors in [33] examined the relationship between porosity,
permeability, and depth. Depth and porosity were passed as
input to the ANN to predict permeability. The researchers in
[34] estimate a log derived permeability using ANN.

Researchers in [35] opined that generally, permeability
prediction is a complex problem. The problem becomes more
challenging in a tight sand formation with strong heterogene-
ity. This is the case of middle Jurassic Shaximiao formation
in Western Sichuan Basin China studied by the authors. They
investigated porosity using single linear regression (SLR)
and permeability with multiple linear regression (MLR),
multi-layer perceptron (MLP), and support vector regression
(SVR) with multiple inputs using porosity and well logs.
The result of their investigation indicated that MLR per-
formed better than SLR while MLP and SVR outperformed
SLR and MLR. The result of this work affirmed the asser-
tion that though standard statistical models are still invalu-
able to petroleum engineers soft computing techniques have
improved prediction accuracy. Hamada and Elshafei [36]
combined well logs with nuclear magnetic resonance (NMR)
for predicting gas-sand permeability using ANN. The per-
meability is derived from the empirical relationship between
NMR porosity and mean value of T2 time. This model was
tested with the combination of data from two wells from the
Middle Eastern reservoir formation. The achieved correla-
tion coefficient of 0.978 and 0.961 for training and testing
respectively are very close to values obtained from core logs.
Elkatatny et al. [37] proposed a reduction in the number of
inputs to ANN for permeability prediction. They used three
logs namely; neutron porosity, bulk density, and resistivity as
inputs to the ANN to predict permeability. In addition, they
proposed a term called the mobility index from studying the
interrelationship among the logs. The mobility index shows
a high correlation with permeability values from the core.
Their results were compared to that of ANFIS and SVM.
The researchers in [38] used data from Mesavarde tight gas
sandstone in Washakie Basin in the USA to predict perme-
ability with the aid of MLP, SVM, and CANFIS (coactive
neuro-fuzzy inference system).

In [39], the authors proposed that in order to overcome the
slow training, high computational cost, and getting stuck in
local minima associated with MLP, there is a need for a mod-
ification in the structure of ANN. According to the authors,
the human brain is modular and massively parallel. These
two features make them work independently. This modular-
ity concept can be applied to MLP to improve its perfor-
mance. The authors used a modular neural network (MNN)
in permeability prediction in Persian gulf Iranian offshore,
a formation with high heterogeneity. Different inputs were
selected for different indicators in the formation. Spectral
gamma-ray was used for the shale region, electricity resis-
tivity and water saturation were considered for the permeable
region while total and secondary porosity were also applied.
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Different architectures of MNN were examined and the result
shows that MNN reduced training time and CPU time as well
as improving performance. Bagheripour [40] proposed the
formation of a committee neural network for permeability
prediction. First, the overlapping of data was removed using
principal component analysis (PCA). Three committees were
formed with MLP, RBF, and GRNN. The output from each
member of the committee was fed as input into the committee
neural network. The results show the committee performed
better than the individual member. Furthermore, Irani and
Nasimi [41] proposed an improvement to ANN by using
GA to select optimal values for the weights and biases. The
GA is used for its global search capability to overcome the
weakness of ANN that usually gets stuck in local minima.
The results of the optimized ANN with GA are better than
the prediction without weight optimization. Aifa ez al. [42]
developed a nonlinear regression by using fuzzy logic to
select the best input to the ANN model. Fuzzy logic was
used to calibrate the permeability and prediction model with
linear regression and backpropagation was constructed and
compared. Olatunji et al. [43] applied ELM to build a model
by assuming a nonlinear relationship of permeability with
other rock properties using Middle Eastern well data. The
ELM surpasses ANN and SVM in terms of speed of training,
RMSE, and coefficient correlation. An extension of ANN,
functional networks [44] was used in [45] for permeabil-
ity prediction. FN allows neurons to be multivariate, multi-
argument, and different learning function [44]. The authors
used the least square (LS) method to estimate the activation
functions for the network. The activation function can be
based on the least square, steepest descent, and mini-max.
The authors compared their results to that obtained from NN,
linear, and nonlinear regression and fuzzy inference systems.
FN performed better than ANN and ANFIS.

Alfaouri et al. [15] observed that most of the earlier work
on permeability prediction was done on sandy reservoirs.
They applied FL on the carbonate reservoir by modifying
the defuzzification part of the fuzzy logic system. Fuzzy
C-means was used for rock type clustering in [46]. Then
ANN was applied to verify the result of the model. In [47],
the authors proposed the use of FL for permeability pre-
diction. The authors used ANFIS to learn the rules from
the data, thereafter, applied the least square method and
backpropagation gradient descent to train the fuzzy inference
system (FIS). Rules were extracted using grid partitioning.
Grid partitioning though easy to use, it may give rise to
rules explosion. Subtractive clustering was used to generate
input data clusters. Wang et al. [48] posited that permeability
in tight and heterogeneous sand is more challenging. They
proposed the idea of feature engineering for the optimiza-
tion of FL. This involves the application of the Student-
Newman-Keuls method to the sample before applying it to
FL. They compared the results to an ordinary regression
model without feature engineering. The optimized model
performed better. In [49], the author maintained that different
litho-facies exhibit different features. Also, log porosity may
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TABLE 2. Summary of published papers by techniques and data sources

References Technique Source of data
[25] ANN + Multiple Linear Regression + Multiple Nonlinear Regression Venture Gas Field Offshore Canada
[29] ANN + Regression Analysis Southwest Iranian Oil Field
[28] ANN Sarawak Foreland Basin
[30] ANN + Wavelet Theory Not disclosed
[45] FN Middle Eastern Oil Well
[43] ELM Middle Eastern Oil Well
[42] ANN + FL Hassi Oil Field Algeria
[51] SVM South Pars Field Iran
[24] ANN + GRNN Gramy Greek Field in Western Virginia
[27] ANN Uinta Basin
[52] ANN Iranian Oil Field
[34] ANN Abu Dhabi
[32] ANN Unknown
[33] ANN Asman Oil Field in Southern Iran
[26] ANN North Sea
[35] ANN, MLP, MLR, SVR Middle Jurassic Shaximiao, Western Sichuan Basin China
[36] ANN Middle Eastern Oil Well
[39] ANN Persian Gulf Iranian Offshore
[37] ANN Middle Eastern Oil Well
[40] MLP, RBF, GRNN Kangan and Dallan Formation (South Pars Field Iran)
[41] Evolving ANN + GA Mansuri Bangestan (Ahwaz) Iran
[38] MLP + SVM + CANFIS Mesaverde Tight Gas, Washakie Basin, USA
[15] FL Sarvak and Asmari Formation (Iran)
[46] Fuzzy c-means + ANN Kangan Iran (Offshore Gas Field)
[47] FL Middle Eastern Oil Well
[48] FL Mesozoic Strata Gaoqing
[49] FL North Sea and Ula Field South West of Norway
[50] T2FL Middle Eastern Oil Well

be associated with permeability but some are more likely than
others. They assigned a data bin to each litho-type for FL
to learn rules from. Furthermore, a comparison of FL with
other methods utilized was made. That ANN needs the right
conditions and architecture to perform well. Least square
regression (LSR) cannot predict extreme values but FL. can
while FL cannot predict any value outside the data point,
in this case, LSR helps out. Olatunji ez al. [50] expressed that
the level of uncertainties in real life is higher than the one that
might be handled by type I fuzzy logic (T1FL). The authors
proposed the use of type II fuzzy logic (T2FL) to handle the
high uncertainties in real life well data. Table 2 summarizes
the published papers by techniques and data sources. Table 3
summarizes the published papers by comparison to other
techniques.

B. MULTI MODELS APPLICATION

This section discusses works that include multiple models.
In literature, some referred to the combination of multiple
models as hybrid while others called it ensemble. Hybrid
computational intelligence is defined as an effective com-
bination of intelligence techniques that perform superior or
in a competitive manner compared to the single technique
[43]. The ensemble on the other hand involves learning and
integration of multiple models in order to improve the final
prediction. Ensemble methods help to reduce the chance of
error while increasing the overall reliability and confidence
of the model [53]. Different combination approaches are as
shown in Figs. 11 and 12. Improving soft computing capa-
bility through a combination of models has gained popularity
lately [43], [54], [55]. In Fig. 11, models were created from
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FIGURE 11. Ensembles with single data multiple models.

the overall dataset. Thereafter, each model contributes to the
prediction. Several methods abound in the literature for model
switching or selection. On the other hand, in Fig. 12, the data
is segmented or clustered. Model clusters are then created
for each cluster, then they are combined to give the final
prediction.

In [54], the authors asserted that determining the structure
of ANN is a difficult problem, to overcome this weakness,
there is a need for an optimization algorithm. The authors pro-
posed multi-gene genetic programming (MGGP) a variant of
GP to obtain the optimal structure of ANN. Although, GP rep-
resents a problem with a tree structure. The work combined
the selection ability of GP and the estimation power of regres-
sion. There is always a tradeoff between the complexity and
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TABLE 3. Summary of published papers by comparison to other techniques

References Technique Comparison
[45] FN Linear and Nonlinear Regression, ANN and ANFIS
[43] ELM SVM, ANN
[42] SVM GRNN
[51] SVM ANN
[35] ANN, MLP, MLR, SVR MLR Vs SLR, MLP Vs SVR
[41] Evolving ANN + GA Unoptimized ANN + GA
[38] MLP + SVM + CANFIS MLP, SVM, CANFIS

TABLE 4. Summary of published papers using hybrid techniques

References Technique Source

[54] MGGP + ANN + ANFIS Iran Oil Reserve

[64] T2FL + ELM Middle Eastern Oil Well

[43] T2FL + SBLLM Middle Eastern Oil Well

[56] PSO + SVM Middle Eastern Oil Well

[55] LS-FN + T2FL North American and Middle Eastern Oil Well
[61] FN + SVM + T2FL Middle Eastern Oil Well

[62] FN + SVM + T2FL Seismic Properties + Middle Eastern Oil Well
[58] GA + PSO + ANN Mansouri Oil Field Iran

[59] GA-BP, PSO-BP Mansouri Oil Field Iran

Maltpe data se Multiple classifiers

o
e
Original

Combined

Classifiers

o o)

FIGURE 12. Ensembles with multiple data multiple classifiers.

success of the algorithm. The proposed model was applied to
a porous media and compared to another model with ANN,
ANFIS, and GP only. Similarly, to improve the generalization
of ELM, Olatunji et al. [43] introduced T2FL to handle
uncertainties. As ELM is fast, with better generalization, and
avoid local minima, the combined model is used to predict
permeability in the Middle Eastern reservoir. A comparison
with results obtained from T2FL, ELM, SVM, and ANN as a
single model applied to the same data show that the multiple
models performed better. In [55], the researchers opined that
T2FL is complex and performed poorly with small data. They
proposed the hybrid of least square functional and T2FL and
their model was tested with North American and Middle
Eastern reservoirs. But the researchers in [56] used PSO to
select optimal hyperparameters for SVM (PSO-SVM) and
applied them to the same data. It shows that PSO-based
SVM outperformed the ordinary SVM. In related research,
the authors in [57] posited that FIS performed poorly with-
out optimization. They combined FL, LS-SVM, and GA
to form two distinctive models made up of GA-FL and
GA-LS-SVM. The authors achieved a correlation coefficient
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of 0.96 and 0.97 for both models, respectively. Furthermore,
Ahmadi er al. [58] stated that despite the successes of GA
as an optimization algorithm. It is computationally expensive
in a large scale optimization problems. The authors proposed
the combination of GA and PSO for the benefit of both to
optimized ANN for permeability prediction. A similar model
was proposed in [59], where GA and PSO were used to
optimized BP to generate GA-BP and PSO-BP, respectively.
The new hybrids combined the local search ability of BP
with the global search abilities of GA and PSO for effective
permeability prediction.

Anifowose and Abdulraheem [60] proposed two hybrids
from SVM, FN, and FL. The data were divided using strati-
fied sampling methods and processed using the least square
fitting algorithm. The two hybrids are FN-T2FL-SVM and
FN-SVM-T2FL. The difference is in the pattern of model
combination during training and testing. Earlier in [61],
the authors used the same approaches in [60] by using FN
to select the best predictor variables. Both Anifowose and
Abdulraheem [60] and Helmy et al. [61] were applied to
well logs. However, in [62], the authors deviated a bit by
integrating five seismic properties and six oil well logs and
applied the same hybrids in [60], [61]. Olatunji et al. [43]
combined T2FL and sensitivity based linear learning method
(SBLLM) [63]. The T2FL was used to handle uncertainties
and cleaning of data and rule extraction, thereafter, SBLLM is
used for prediction. Table 4 summarizes the published papers
using hybrid techniques.

VI. CONCLUSION

This paper presents a comprehensive review of the available
research in the literature on the application of soft computing
in solving the permeability prediction problem in the oil and
gas industry. The formations studied in the literature were
mostly from the Middle East specifically oil fields in Saudi
Arabia and Iran. Others are few oil fields from Algeria, Abu
Dhabi, China, Canada, and Norway. It is observed that there
is limited data available for research in this area. This is
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unconnected with the fact that oil companies keep their data
close to their chest.

Traditional methods of permeability prediction based on
empirical models and theoretical equations as well as models
based on porosity and facies are still useful to petroleum engi-
neers. Moreover, soft computing methods are worthy of addi-
tion to the solution of permeability prediction. In addition,
the cost and time-consuming nature of other approaches such
as well logging make soft computing methods to be appealing
to oil and gas companies. Although there are no approaches
without limitation, soft computing is not an exception. Tradi-
tional methods are used as a baseline for measurement with
other approaches.

Early works in soft computing techniques focus mainly on
ANN and FL, later SVM but recently, there are many research
efforts that harnessed optimization techniques to comple-
ment ANN in weight selection to improve the performance
of ANN. Furthermore, optimization algorithms have been
used to improve the performance of SVM through optimal
parameter selection.

Ensembles and hybrid computational techniques have
received tremendous attention from researchers. This is evi-
dent from the number of recent publications on the use of
hybrid soft computing models for the prediction of perme-
ability. Nonetheless, more work needs to be done on the
standardization of the methods for ensemble integration.

This review provides a comprehensive work in the applica-
tion of soft computing in permeability prediction. The work
serves as an entry point for researchers wanting to delve into
this area and reference points for practitioners in oil and gas
exploration.
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