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ABSTRACT In the last few years, orthogonal time frequency space (OTFS) modulation has received signif-
icant attention as an alternative to OFDM especially for high mobilty scenarios. In this work, we develop a
delay-Doppler domain embedded pilot based time domain channel estimation for cyclic prefix (CP)-OTFS
in the presence of residual frame timing offset, carrier frequency offset and fractional multiple Doppler. One
of the reasons for time domain processing is that the time domain channel representation is relatively more
sparse as compared to its delay Doppler domain representation in the presence of residual synchronization
errors. We also describe a time domain low complexity linear minimum mean square error (MMSE)
equalization and successive interference cancellation (SIC) receiver for LDPC (low density parity check)
coded CP-OTFS in this work. We further show the impact of residual frame timing offset, carrier frequency
offset and fractionalmultipleDoppler onOTFS symbols. It is seen from the extensiveMonte Carlo simulation
results that the estimation and compensation methods presented here provide necessary resilience properties
to OTFS. We bring out the tolerance of OTFS to such residual synchronization errors. It is further observed
that the SIC is able to improve the performance of the system such that it almost matches that of the ideal
knowledge based MMSE equalization. We also show the performance of RCP (reduced CP)-OTFS when
used with the developed channel estimation and equalization algorithms. A unified signal processing flow
for OTFS and orthogonal frequency division multiplexing (OFDM) is also described in this work to motivate
studies on coexistence between the two as well as to encourage investigations on a seamless transition
between OFDM and OTFS based systems for future adaptive air interface design.

INDEX TERMS Channel estimation, CFO, carrier frequency offset, equalization, ICI, MMSE, OFDM,
orthogonal time frequency space modulation, OTFS, SIC, successive interference cancellation, Doppler.

I. INTRODUCTION
IMT-2020 [1], [2], aka 5G, aims to provide high spectral
efficiency and high reliability in high mobility scenarios,
where the wireless link becomes a highly time varying mul-
tipath channel (TVMC) [3], [4]. The modified avatar of
orthogonal frequency divisionmultiplexing (OFDM), namely
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OFDM numerology [5] is the fundamental physical layer sig-
nalling technique used in 5G-New radio (5G-NR) to address
this operating requirement. OFDM numerology is essentially
variable subcarrier bandwidth [6] along with variable guard
interval [7] as described in [8]. Such modifications not only
improve the immunity of OFDM to inter-carrier interference
(ICI), which is caused by high Doppler in high mobility
conditions and phase noise at high carrier frequencies, but
also allow a smooth transition from 4G (IMT-Advanced [9])
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to 5G with minimal changes. In a recent work by the
authors [10], it is shown that orthogonal time frequency
space (OTFS) [11]–[13] outperforms adaptive OFDM used
in 5G-NR in such high ICI conditions.

In OTFS, symbols from complex constellation are placed
in the delay-Doppler grid. The signal in delay Doppler
domain is converted to frequency-time domain signal by
inverse symplectic finite Fourier transform (ISFFT). This
frequency-time domain signal is then converted to time
domain by applying inverse fast Fourier transform (IFFT)
along the fequency axis for each time bin. The last part
can also be identified as OFDM modulation. In situations
when one cyclic prefix (CP) is added before the entire
block of OFDM symbols then a reduced CP-OTFS, namely
RCP-OTFS [14] signal is generated. Whereas, when a CP
is added before each OFDM symbol [13], then CP-OTFS
signal is created. This work is mainly focused on CP-OTFS,
however a result on RCP-OTFS is also included.

Although OTFS is an orthogonal modulation scheme,
yet when the signal passes through a TVMC, the received
delay-Doppler domain signal encounters inter symbol inter-
ference. To demodulate the interference affected signal,
receiver designs have been proposed in the literature which
include linear equalizers [15], [16] and non-linear equalizers
[17]–[20]. The works [18] and [19] describes a belief propa-
gation receiver for OTFS. In [17] Markov chain Monte Carlo
sampling based on the low-complexity OTFS signal detec-
tion scheme is presented. The work [16] describes localized
search based non-linear receiver for rectangular pulse shaped
OTFS. These receivers have a non-linear signal decoding
structure and result in very high complexity. The work [16]
also presents a linear receiver architecture however it is
limited because it considers ideal pulse shape and hence
is not practical. In [15] a low complexity linear receiver
for rectangular orthogonal pulse shaped OTFS system is
described. Most of the articles mentioned above assume the
availability of ideal channel estimates for demodulation of the
delay-Doppler OTFS data symbols.

Channel estimation being an important element of signal
demodulation, a delay-Doppler domain channel estimation
algorithm is described in [14]. Authors of [17] also presents
a delay-Doppler domain channel estimation. Channel estima-
tion in delay-Doppler-angle dimension for OTFS-MIMO is
shown in [21]. Some initial ideas about time domain channel
estimation is presented in [22]. The channel estimation and
equalization for OTFS, described in the above-cited works,
considers ideal synchronization conditions. To the best of the
authors’ knowledge there is hardly any literature available on
the synchronization aspects of OTFS. In this article we con-
sider the above-mentioned aspects in receiver design. To do
so we first develop system model considering residual syn-
chronization errors which is further used to construct channel
estimation and equalization methods. The contribution in this
article are summarized below.
• We describe the complete system model of CP-OTFS
including the effects of residual frame timing

offset (FTO) and residual carrier frequency offset (CFO)
on CP-OTFS, considering that training sequence [23]
based initial synchronization is already achieved, which
is not available in literature to the best of the authors’
knowledge. We establish that the integer FTO and inte-
ger CFO create a cyclic shift in delay and Doppler
dimensions respectively, thus introducing interference
in the received delay-Doppler signal (Section III). The
interference gets further enhanced with fractional CFO.

• The expression of an equivalent channel matrix in time-
domain, which includes the combined effect of the
TVMC, FTO, and CFO is presented in Section IV.

• We show that the structure of time domain equivalent
channel matrix is invariant to Doppler values. We also
demonstrate that the time domain channel matrix is more
sparse than delay-Doppler domain channel matrix in the
presence of fractional Doppler in Section IV-A. This
makes time domain channel estimation and equalization
more attractive than the delay-Doppler domain process-
ing as in earlier reported works on channel estimation
and equalization.

• We present the method for estimating time domain
equivalent channel matrix in Section V, which is nec-
essary for equalization of received signal. Unlike earlier
methods which describe delay-Doppler domain channel
estimation for OTFS, our channel estimation which uses
energy thresholding and spline based interpolation, and
equalization performed in time domain is invariant to
synchronization errors. The results bring out the toler-
ance of OTFS to such synchronization errors.

• The time-domain channel estimation and equalization
described here not only includes compensation for syn-
chronization errors but also provides an opportunity to
develop a unified representation framework for OTFS
and OFDM, which helps in paving the path for a flex-
ible reconfigurable air interface for future air interface
design.

• A low complexity LMMSE based time-domain chan-
nel equalization as well as a successive interference
cancellation (SIC) algorithm, which can cancel the inter-
ference emanating from the channel as well as syn-
chronization errors, is described in Section VI and VII
respectively.

Notations: We use the following notations throughout the
paper. We consider x, X and x to be vectors, matrices and
scalars respectively. Complex conjugate value of x is given
by x̄ whereas j =

√
−1. We denote the set of integers

between a and b Integers byZ[a b]. For brevity, a mod M is
represented by [a]M . Expectation, Ceil, and Kronecker prod-
uct operation is denoted by E{−}, d−e, and ⊗ respectively.
Matrices 0N×L , IN and WL are zero matrix of size N × L,
identity matrix with order N and L-order normalized inverse
discrete Fourier transform (IDFT) matrix respectively. The
superscripts (−)Tand (−)† denote transpose and conjugate
transpose operators, respectively. The operator diag{x} gen-
erates a diagonal matrix with the diagonal entries of the
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vector x. Circulant matrix is represented by circ{x} whose
first column is x. The operator vec{X} denotes Column-wise
vectorization of matrix (X).

II. SYSTEM MODEL
We consider a CP-OTFS system with M sub-carriers, each
of 1f Hz bandwidth, N symbols of duration Tu = 1

1f
sec. each with TCP sec. long CP. The system has bandwidth
B = M1f Hz. and total frame duration Tf = NT sec., where
T = Tu + TCP.

A. TRANSMITTER
QAMmodulated data symbols, d(k, l) ∈ C, k ∈ Z[0 N − 1],
l ∈ Z[0 M − 1], are arranged over Doppler-delay lattice
3 = {( k

NTu
, l

M1f )}. We assume that E[d(k, l)d̄(k ′, l ′)] =
σ 2
d δ(k − k ′, l − l ′), where δ is Dirac delta func-

tion. Doppler-delay domain data d(k, l) is mapped to
time-frequency domain data X (m, n) on lattice 3⊥ =

{(m1f , nT )}, m ∈ Z[0 M − 1] and n ∈ Z[0 N − 1] by
using inverse symplectic finite Fourier transform (ISFFT).
Following [3], [24], X (m, n) is expressed as,

X (m, n) =
1
√
NM

N−1∑
k=0

M−1∑
l=0

d(k, l)ej2π [
nk
N −

ml
M ]. (1)

X (m, n) is converted to a time domain signal s′(t) through a
Heisenberg transform as,

s′(t) =
1
√
M

N−1∑
n=0

M−1∑
m=0

X (m, n)g(t − nTu)ej2πm1f (t−nTu), (2)

After appending CP to the baseband signal s′(t) we get,

s(t) =
1
√
M

N−1∑
n=0

M−1∑
m=0

X (m, n)g(t − nT )ej2πm1f (t−TCP−nT ),

(3)

where, g(t) is transmitter pulse of duration T . In this work,
we use rectangular pulse i.e. g(t) = 1 if 0 ≤ t ≤
T and g(t) = 0, otherwise. The baseband signal s(t) is
up-converted to the RF carrier frequency fc to obtain the RF
signal sRF (t) = s(t)ej2π fct .

We consider a baseband time varying channel with P paths
having hp complex attenuation, τp delay and νp Doppler
values for the pth path where p ∈ Z[1 P]. The delay-Doppler
channel spreading function is written as,

h(τ, ν) =
P∑
p=1

hpδ(τ − τp)δ(ν − νp). (4)

The delay and Doppler values for pth path is given as
τp =

lp
M1f and νp =

kp
NT where lp and kp are delay and

Doppler bin number on Doppler-delay lattice 3 for pth path.
Let τmax and νmax be the maximum delay and Doppler spread.
Then, channel delay length becomes lτ = dτmaxM1f e
and channel Doppler length becomes kν = dνmaxNT e.

The RF equivalent channel can be given as, hRF (τ, ν) =
h(τ, ν)ej2π fcτ .

The received signal can be written as, rRF (t) =∫ τmax
τ=0

∫ νmax
ν=−νmax

(
hRF (τ, ν)sRF (t − τ )ej2πν(t−τ )

)
dνdτ+vRF (t),

where vRF (t) is Gaussian noise with variance σ 2
v . Therefore,

rRF (t) =
∑P

p=1

(
hpej2π fcτps(t − τp)ej2π fc(t−τp)ej2πνp(t−τp)

)
+

vRF (t). The received signal after downconversion to base
band is r(t) = rRF (t)e−j2π f

′
c t , where f ′c = fc − δfc is the

receiver carrier frequency with offset δfc. The signal r(t) is,

r(t) =
P∑
p=1

hpej2πδfcτps(t − τp)ej2π (δfc+νp)(t−τp). (5)

The signal r(t) sampled at Fs = B = 1/Ts = (M + L)/T ,
where L = dTCPBe is the length of sampled CP and
T = Tu + TCP = (M + L)Ts, becomes,

r(l ′)= r(l ′Ts)

=

P∑
p=1

hpej2πδfcτp
( 1
√
M

N−1∑
n=0

M−1∑
m=0

X (m, n)

g([l ′ −
τp

Ts
− n(M + L)]Ts)e

j2πm1f ([l′−
τp
Ts
−n(M+L)]Ts)

)
ej2π (δfc+νp)(l

′Ts−τp), (6)

where l ′ ∈ Z[0 N (M + L)]. The n′th OTFS symbol with
CP can be collected from the samples of received signal as
r(n′(M + L) + l),∀ l = 0, 1, · · · , (M + L) − 1 and can be
written as,

r(n′(M + L)+ l)

=

P∑
p=1

hpej2πδfcτp

(
1
√
M

N−1∑
n=0

M−1∑
m=0

X (m, n)g([(n′ − n)(M + L)+ l −
τp

Ts
]Ts)

ej2πm1f ([(n
′
−n)(M+L)]Ts)

ej2πm1f ([l−
τp
Ts
]Ts))ej2π (δfc+νp)Ts(n

′(M+L)+l−
τp
Ts
) (7)

We assume that, after initial coarse synchronization,
a residual synchronization error of lo samples from the start-
ing index of CP removed OTFS symbol as shown in Fig.1
exists. We also assume (l0Ts + τmax) ≤ TCP so that no inter-
ference is experienced from the neighbouring OTFS symbols.
The first step towards decoding the signal is to perform dis-
crete Fourier Transform (DFT) on the CP removed samples
of n′th OTFS symbol to obtain the time-frequency data and
can be given as,

FIGURE 1. FFT Window Matching.
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Y (m′, n′)=
1
√
M

M−1∑
kt=0

r(n′(M + L)+ L − l0 + kt )e−j
2πm′kt
M .

(8)

Using (7) we can write,

Y (m′, n′)

=
1
M

P∑
p=1

hpej2πδfcτpej2π (νp+δfc)Ts(L+n
′(M+L)−lo)

e−j2π (νp+δfc)Ts(
τp
Ts
)
N−1∑
n=0

M−1∑
m=0

X (m, n)

e−j2π
m(lo+

τp
Ts
+(n′−n)(M+L))

M

M−1∑
kt=0

(
g([(n′ − n)(M + L)+ L − lo + kt −

τp

Ts
]Ts)

e−j2π
kt (m+(νp+δfc)Ts−m′)

M

)
.

Since, g(t) is a rectangular pulse,

g([(n′ − n)(M + L)+ L − l0 + kt −
τp

Ts
]Ts)

=

 1, if n = n′ & 0 ≤ (L − l0 + kt −
τp

Ts
)Ts ≤ T

0, otherwise
(9)

Then, (9) can be written as,

Y (m′, n′)

=

P∑
p=1

h̃pe
j2πν̃pTs(L+n′(M+L)−

τ̃p
Ts
)

M−1∑
m=0

X (m, n′)e−j2π
mτ̃p
MTs9((m+ ν̃pTs − m′),M ), (10)

where h̃p = hpej2πδfcτp , ν̃p = (νp + δfc), τ̃p = (τp +

l0 Ts), 9(x,M ) , 1
M

∑M−1
kt=0 e

−j 2πkt xM . When x ∈ Z,
9(x,M ) = δ([x]M ). The time-frequency signal is trans-
formed to delay-Doppler domain using symplectic finite
Fourier transform (SFFT) as,

y(k ′, l ′) =
1
√
NM

N−1∑
n′=0

M−1∑
m′=0

Y (m′, n′)e−j2π [
n′k′
N −

m′l′
M ], (11)

which can be simplified to (as shown in appendix C)

y(k ′, l ′)

=

P∑
p=1

h̃pej2πν̃pTsL
N−1∑
k=0

M−1∑
l=0

d(k, l)

9(k − k ′ +
ν̃p

1ν
,N )9(l − l ′ +

τ̃p

1τ
,M )ej2π

ν̃p(l′−
τ̃p
1τ

)
1ν(M+L)N ,

(12)

where 1ν = 1
(M+L)NTs

and 1τ = Ts = 1
B are Doppler and

delay resolution at the receiver. Let τ̃p = l̃p1τ and ν̃p =

k̃p1ν H⇒ ν̃pTs =
k̃p

(M+L)N , where l̃p, k̃p ∈ R, then (12) can
be written as,

y(k ′, l ′)

=

P∑
p=1

{
h̃pe

j2π
k̃pL

(M+L)N

N−1∑
k=0

M−1∑
l=0

d(k, l)

9(k − k ′ + k̃p,N )9(l − l ′ + l̃p,M )ej2π
k̃p(l′− ˜lp)
(M+L)N

}
(13)

III. EFFECTS OF RESIDUAL SYNCHRONIZATION ERRORS
In this section, we describe the effects of residual FTO and
CFO errors in the receiver. From (12), it may be noted that
y(k ′, l ′) experiences ISI in both delay andDoppler dimension.

A. INTEGER DELAY AND INTEGER DOPPLER VALUES
When l̃p and k̃p are integers, then (12) simplifies as,

y(k ′, l ′) =
P∑
p=1

(
hpej2πδfcτpe

j2πν′pTsL

d(k ′ − kp, l ′ − lp)e
j2π

ν′p(l
′
−
τ ′i
1τ

)

1ν′(M+L)N

)
(14)

If we consider an AWGN scenario, then integer time and
frequency errors result in a cyclic shift in delay and Doppler
direction respectively thus cyclically shifting the origin of
delay-Doppler grid to (lo,

δfc
1ν

). It can also be observed
that, (14) resembles the received delay-Doppler signal as
described in equation (24) of [3]. Thus the effect of syn-
chronization error can be considered as a part of the channel
itself, with modified channel taps h̃p = hpej2πδfcτp , τ̃p =
τp + l0Ts & ν̃p = νp + δfc. Thus, it may be conjectured that
channel equalization with appropriate channel coefficients
may be able to equalize the effects of TVMC and residual
synchronization errors.

B. INTEGER DELAY AND FRACTIONAL DOPPLER VALUES
By observing the the summation terms on the running vari-
ables l and k in (13) we can infer the following. If any
Doppler or delay value of the modified channel is fractional,
i.e, k̃p or l̃p /∈ Z, then every symbol experiences interference
in Doppler or delay dimension accordingly. The interfer-
ence in the Doppler axis is observed frequently because the
Doppler values of channel are not usually resolved to integer
values. The residual synchronization error, δfc, can lead to
a modified fractional Doppler value even though the actual
channel Doppler values (kp) are integers since k̃p = kp+

δfc
1ν

.
Fractional delay values are not observed since the sampling
of the received signal in time domain approximates the effect
of fractional channel delay to the nearest integer time bin [3].
Thus l̃p ∈ Z H⇒ (l − l ′ + l̃p) ∈ Z ∀ l ′ ∈ [0 N − 1] H⇒
9(l − l ′ + l̃p,M ) = δ([l − l ′ + l̃p]M ). Therefore (13)
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becomes,

y(k ′, l ′) =
P∑
p=1

{
h̃pe

j2π
k̃pL

(M+L)N

N−1∑
k=0

d(k, [l ′ − l̃p]M )

9(k − k ′ + k̃p,N )ej2π
k̃p(l′− ˜lp)
(M+L)N

}
(15)

In (15), each received symbol experiences interference from
all other symbols in Doppler dimension. In the sections that
follow, we describe the construction of the equivalent channel
matrix, its estimation and compensation of the effects of
synchronization errors described here.

IV. EQUIVALENT CHANNEL MATRIX FOR OTFS
INCLUDING SYNCHRONIZATION ERRORS
In this section, we derive the expression of equivalent channel
matrix in time domain, which includes the effect of residual
synchronization errors and time varying channel. For this,
we establish the equivalent system model in matrix-vector
form for CP-OTFS. Symbols d(k, l) are arranged in M × N
matrix as,

D=


d(0, 0) d(1, 0) · · · d(N − 1, 0)
d(0, 1) d(1, 1) · · · d(N − 1, 1)
...

...
. . .

...

d(0,M − 1) d(1,M − 1) · · · d(N − 1,M − 1)

.
(16)

Delay-Doppler to frequency-time domain conversion (after
the ISFFT) is done following X = W†

MDWN , where,
X = {X (m, n) | ∀m ∈ Z[0 M − 1] & n ∈ Z[0 N − 1]}, such
that frequency is alongm and time is along n. Frequency-time
domain to time domain signal is obtained using OFDMmod-
ulation, as S =WMX = DWN , where S = [s0 s1 · · · sN−1]
is concatenation of OTFS symbol vectors si,∀ i ∈ [0 N − 1].
The pulse shaped samples of the signal is written as,
SPS = GTWMX. GT is the pulse shaping matrix [25]. Since
g(t) is rectangular, we have GT = IM .
The CP appended signal is given as, SCP = BCPSPS =

BCPGTWMX = BCPGTDWN , where BCP =[
0L×M−L IL

IM

]
is operator for appending CP. Thus,

the transmit signal can be given as, sCP = vec{SCP} =
vec{BCPGTDWN }. Using the identity vec{AK×LBL×M } =
(IM ⊗ A)vec{B} = (B ⊗ IM )vec{A}, sCP = (IN ⊗
(BCPGT ))vec{DWN } = (IN ⊗ BCP)(WT

N ⊗ IM )vec{D} =
(IN ⊗ BCP)(WN ⊗ IM )d. Therefore,

sCP = ACPd, (17)

where d = vec{D} is data vector, ACP = (IN ⊗ BCP)A and
A =WN ⊗ IM . We also introduce the transmit signal vector
s = vec{S} without CP added and can be given as s = Ad
by putting BCP = IM in (17). At the receiver, the noiseless

received signal in discrete form [3] can be written as,

rCP(l) =
P∑
p=1

hpsCP(l − lp)e
j2π

(l−lp)kp
(M+L)N , (18)

where l ∈ Z[0 ((M + L)N − 1)]. We collect the samples
rCP(q(M+L)+ l) ∀ l ∈ Z[0 M+L−1] to obtain qth OTFS
symbol vector rqCP with CP. Then the CP removed vector rq
can be given as,

rq = RCPr
q
CP, where RCP =

[
0M×L IM

]
. (19)

Therefore,

rq(l) = rCP(q(M + L)+ L + l), l ∈ [0 M − 1]. (20)

With the introduction of CFO at the receiver, the samples of
qth received OTFS symbol rfq(l) is

rfq(l) = rCP(q(M + L)+ L + l)e
j2π k0(q(M+L)+L+l)

N (M+L) , (21)

where k0 =
δfc
1ν

. With residual time synchronization error of
lo samples,

r̃q(l) = rfq(l − lo)

From (18), (20) and (21),

r̃q(l)

= ej2π
k0(q(M+L)+L+l−lo)

N (M+L)

P∑
p=1

hpej2π
kpq
N

ej2π
(L+l−lo−lp)kp

(M+L)N sCP(q(M + L)+ L + l − lo − lp). (22)

We assume lo + lτ < L. Therefore,

r̃q(l) =
P∑
p=1

hpe
j2π

lpk0
(M+L)N ej2π

(kp+k0)q
N ej2π

(L+l−lo−lp)(kp+k0)
(M+L)N

sq([l − lp − lo]M ). (23)

Then,

r̃q =


r̃q(0)
r̃q(1)
...

r̃q(M − 1)


=

P∑
p=1

hpe
j2π

lpk0
(M+L)N5lp+lo1kp+k0

ej2π
(kp+k0)(L−lp−lo)

(M+L)N ej2π
kp+k0
N qsq, (24)

where5 = circ{[0 1 0 · · · 0]TM×1} is a circulant delay matrix

and 1 = diag{[1 ej2π
1

(M+L)N · · · ej2π
M−1

(M+L)N ]T} is a diagonal
Doppler matrix. Let, l̃p = lp + lo, k̃p = kp + k0 and h̃p =

hpe
j2π

lpk0
(M+L)N . When we include noise,

r̃q = H̃qsq + vq, (25)
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where vq is M length Gaussian noise vector with elemental
variance σ 2

v and

H̃q =

P∑
p=1

h̃p5l̃p1k̃pej2π
k̃p(L−l̃p)
(M+L)N ej2π

k̃p
N q. (26)

The above can be modified as,

H̃q =

l̃τ∑
l=0

5l
∑
k∈ ˜kνl

diag{ ˜hl,ke
j2π k(L−l)

(M+L)N

ej2π
k
N q[1 ej2π

k
(M+L)N · · · ej2π

(M−1)k
(M+L)N ]T}, (27)

where l̃τ = lτ + l0 is maximum excess delay bin value of
channel. We let kνl be the set of Doppler indices for the lth
channel tap such thatP =

∑lτ
l=0 kνl . Then ˜kνl = {(k+k0)| k ∈

kνl } and

˜hl,k =

{
h̃p, if l̃p = l and k̃p = k
0, otherwise.

Therefore, the concatenation of CP removed vectors can be
given as,

r̃ =


r̃0
r̃1
...

r̃N−1

 =


H̃0

H̃1
. . .

H̃N−1


︸ ︷︷ ︸

H


s0
s1
...

sN−1


︸ ︷︷ ︸

s

+v,

(28)

which can be written as, r̃ = Hs + v = HAd + v, v
being MN length concatenated white Gaussian noise vector.
Equation (25) suggests that the effect of synchronization
errors can be considered as part of time domain channel
matrix. Equation (26) shows that the structure of the channel
matrix is invariant to the introduction of synchronization
errors which is an added advantage as the number of elements
in the matrix does not change with residual synchronization
errors and hence the sparsity of the matrix is unaltered.
Next, we propose an estimation algorithm to estimate this
equivalent channel matrix, however we first give a short
justification for chooseing time domain channel estimation
over delay-Doppler domain processing.

A. OTFS CHANNEL MATRICES
Delay-Doppler channel matrixHDD and time domain channel
matrix H are related as [25], HDD = A†HA. Using the
definition of A = WN ⊗ IM , HDD can be simplified as a
block matrix with blocks of size M × M and can be written

as, HDD =

 H0,0
dd · · · H(N−1),0

dd
...

. . .
...

H0,(N−1)
dd · · · H(N−1),(N−1)

dd

, whose (l, k)th

block can be given as, Hl,k
dd =

∑N−1
q=0 w̄q,lwq,kH̃q, where,

wl,k = ej2π
lk
N .

Finally, using the definition of H̃q in (29), Hl,k
dd can be

further simplified as,

Hl,k
dd =



∑P

p=1
h̃p5l̃p1k̃pej2π

k̃p(L−l̃p)
(M+L)N δ([k − l + k̃p]N ),

for k̃p ∈ Z∑P

p=1
h̃p5l̃p1k̃pej2π

k̃p(L−l̃p)
(M+L)N 9(k − l + k̃p,N ),

for k̃p /∈ Z

We can infer the following from the above equation. When
channel Doppler values are resolved in integer Doppler bins,
each row ofHDD contains Pmatrices where l−k = k̃p, ∀p =
1, · · · ,Pwhich results inNPNe number of non-zero elements
in HDD. However, when fractional Doppler is observed,
the delay-Doppler channel matrix HDD contains N 2Ne num-
ber of elements. Thus, structure of channel matrix varies with
the nature of channel Doppler values which is not observed in
time domain channel matrix. Therefore, H is at least P times
and at max N times sparse thanHDD. Therefore, equalization
with H will result in lower complexity than equalization
with HDD.

V. ESTIMATION OF EQUIVALENT CHANNEL MATRIX
In this section, we propose an algorithm to estimate the equiv-
alent channel matrix specified in (27). From (27), we can
write,

H̃q =

l̃τ∑
l=0

5lHq,l , where, (29)

Hq,l = diag{[h(q(M + L)+ L, l) h(q(M + L)+ L + 1, l)

· · · h(q(M + L)+M + L − 1, l)]T}, (30)

where,

h(n,m) =
∑
k∈k̃νm

hm,ke
j2π k0m

N (M+L) ej2π
k(n−m)
N (M+L) , (31)

∀ n ∈ [0 N (M + L)− 1],m ∈ [0 l̃τ ].

A. PILOT STRUCTURE IN DELAY-DOPPLER DOMAIN
We extend on the pilot structure described for OTFS
in [14]. The pilot is a 2-dimensional (2D) impulse in
delay-Doppler domain i.e. d(k, l) =

√
PPLT δ(k−Kp, l−Lp),

∀k ∈ [0 N − 1], l ∈ [Lp − L Lp + L − 1], where PPLT =
Np = 2NL is the pilot power. At the receiver, the received
delay-Doppler signal corresponding to pilot signal, with syn-
chronization error is,

y(k ′, l ′) =
P∑
p=1

{
h̃pe

j2π
k̃pL

(M+L)N

N−1∑
k=0

√
PPLT δ(k − Kp,

[l ′ − Lp − l̃p]M )9(k − k ′ + k̃p,N )ej2π
k̃p(l′− ˜lp)
(M+L)N

}
(32)

From the above, one may infer that the transmitted 2D
impulse pilot, after going through the channel, spreads over
the entire Doppler axis while the spread in delay is limited
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to (Lp + l̃τ ) starting from Lp. We collect received signal
y(k ′, l ′), ∀k ∈ [0 N − 1], l ∈ [Lp Lp + L − 1] for
channel estimation. This part of the received signal contains
the response of the channel to the 2D-delay-Doppler impulse
pilot signal, which is not-interfered by data symbols. This is
because we have assumed that L ≥ lτ + lo − 1.

B. CHANNEL ESTIMATION
Here we describe theorems necessary to obtain the time
domain channel estimates from the received time domain sig-
nal. Theorem 1 relates the time domain channel coefficients
and the received delay-Doppler signal y(k ′, l ′). Theorem 2
establishes the relationship between the estimates of time
domain channel coefficients and the received time domain
signal rCP(l).
Theorem 1: The intermittent time-domain channel coeffi-

cients are directly proportional to the N point IDFT values
obtained from pilot section of received delay-Doppler grid,

i.e, h(α(M+L)+L+Lp+l, l) = e−j2π
αKp
N

(∑N−1
k ′=0 y(k

′,Lp+

l)ej2π
αk′
N

)
,∀ α ∈ Z[0 N − 1], l ∈ Z[0 l̃τ − 1].

Proof is given in Appendix A.
Theorem 2: The intermittent time-domain channel coeffi-

cients are directly proportional to the samples of received

signal, i.e, ĥ(α(M + L) + Lp + l, l) = e−j2π
αKp
N rCP(α(M +

L)+ L + Lp + l), α ∈ [0 N − 1]
Proof is given in Appendix B.
From the above theorem, we see that the estimate of chan-

nel coefficients at time instances (α(M +L)+Lp+ l)Ts, α ∈
[0 N − 1] for lth channel tap can directly be obtained
from R(l, k) = rk (l), as in Algorithm 1, without going
through the FFT-ISFFT path to reach delay-Doppler domain
as described in [14]. This creates the opportunity for esti-
mating time domain channel coefficients from delay-Doppler
domain embedded pilot. Using the estimated channel coef-
ficients we obtain the values at time instances nTs, n ∈
Z[0 N (M+L)−1] for each channel tap through interpolation.
Since the coefficients to estimate (30) resembles a signal
comprising sum of sinusoids, we considered the polynomial
interpolation techniques (spline [26]) in this work. In other
words,

h(n, l) = spline_interpolate
(
[h(Lp + l, l)

h(M + L + Lp + l, l)

· · · h((N − 1)(M + L)+ Lp + l, l)]T ,

· · · [0 M + L(N − 1)(M + L)]T ,

[0 1 2 · · · (N )(M + L)− 1]T
)
, (33)

∀ l ∈ [0 lτ − 1], where spline_interpolate (using ‘interpl1’
inbuilt function in Matlab R©), returns the interpolated signal
at points u when y is the part of signal known at points x.
Algorithm 1 describes how channel estimates for the entire
time duration are generated from the received signal as well

as how to estimate qth channel matrices Ĥq,i &
ˆ̃Hq, which are

described in (30) & (29) respectively.

Algorithm 1 Esitmation of H̃q

1: Given : The received signal r(l)

2: Output : ˆ̃Hq
3: R(l, k) = rk (l)
4: for l ′ = 0 : L do
5: γ = 0
6: for k = 0 : N − 1 do
7: γ = γ + ‖R(Lp + l ′, k)‖2

8: end for
9: if γ > 3σ 2

n then
10: l = [l l ′]
11: ĥ(n(M +L)+L+Lp+ l ′, l ′) = 1

√
PPLT

R(Lp+ l ′, n)

12: ĥ(n, l ′) = spline_interpolate({ĥ(n(M + L) + L +
Lp+ l ′, l ′) | n ∈ [0 N − 1]}, [L+ Lp+ l ′ : M + L :
N (M + L)], [0 : N (M + L)− 1])

13: end if
14: end for
15: for q = 0 : N − 1 do
16: Ĥq = 0M×M
17: for i ∈ l do
18: Ĥq,i = diag{{ĥ(q(M+L)+L+l ′, i)|l ′ ∈ [0 M−1]}}

19:
ˆ̃Hq =

ˆ̃Hq +5
iĤq,i

t,τ
20: end for
21: end for

FIGURE 2. Time domain CP-OTFS frame.

C. TIME DOMAIN INTERPRETATION OF THE CHANNEL
ESTIMATION
The frame structure used in delay-Doppler domain turns out
to be a impulse train in the time domain modulated by sinu-
soid superimposed without interfering with the equivalent
time domain data as shown in Fig.2 and is given as,

s(n) = sp(n)+ sd (n). (34)

Symbols sd (n) and sp(n) are the corresponding time domain
equivalent signal of the the delay-Doppler data and pilot.
Since pilot is a 2-D discrete impulse at location (Kp,Lp),

sp(n)=

√
PPLT
N

ej2π
Kpn

N (M+L)

N−1∑
α=0

δ(n− (α(M + L)+ L + Lp))

(35)

Using (18), (31), (34) and (35), the received signal is,

r(n)

=

lτ−1∑
l=0

h(n, l)(

√
PPLT
N

ej2π
Kp(n−l)
N (M+L)

N−1∑
α=0
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δ(n− l − (α(M + L)+ L + Lp)))+
lτ−1∑
l=0

h(n, l)sd (n− l)

which can be simplified as,

r(n) =

√
PPLT
N

N−1∑
α=0

h(n, n− (α(M + L)+ L + Lp))

× ej2π
Kp(α(M+L)+L+Lp)

N (M+L) +

lτ−1∑
l=0

h(n, l)sd (n− l).

With length of CP being greater than τmax ,

r(α(M + L)+ L + Lp + l) =

√
PPLT
N

× h(α(M + L)+ Lp + l, l)e
j2π

Kp(α(M+L)+L+Lp)
N (M+L) .

which implies that the result as obtained using theorem 2.
From this time domain interpretation one can visualize the
time domain frame as pilots embedded in each symbol.
After such a pilot passes through a channel, one can obtain
the channel impulse response directly. This can be interpo-
lated to obtain the channel coefficients at all time instants
as described earlier. In the next section we propose a low
complexity LMMSE equalization technique, which uses the
estimated equivalent channel matrix, to compensate for the
channel induced distortions and residual synchronization
errors.

VI. LMMSE EQUALIZATION
In this section, we explain a low complexity LMMSE
receiver for CP-OTFS based on [15]. The LMMSE equal-
ization of r in (28) results in estimated data vector d̂
given as,

d̂ = (HA)†[(HA)(HA)† + σ 2v
σ 2d
I]−1r. (36)

When g(t) is rectangular, A becomes unitary. Thus (36) can
be written as,

d̂ = A†

Heq︷ ︸︸ ︷
H†[HH†

+
σ 2v
σ 2d
I]−1 r︸ ︷︷ ︸

rce=Heqr

. (37)

Thus LMMSE equalization can be performed as a two stage
equalizer. In the first stage, LMMSE channel equalization
is performed to obtain rce = Heqr. Second stage is a
OTFS matched filter receiver to obtain d̂ = A†rce. The
direct implementation of rce = Heqr requires inversion of

9 = HH†
+

σ 2v
σ 2d
I and multiplication of H†, which needs

O(M3N 3) complex multiplications (CMs). Thus, it is desired
to reduce the complexity of rce = Heqr. It is evident
from (28), that H matrix is a block diagonal matrix with
blocks H̃q of size M ×M . This leads to 9 = HH†

+
σ 2v
σ 2d
I =

diag{90, 91, · · · 9N−1}, which is a block diagonal matrix

with blocks9q of sizeM×M . It is well known that the inverse
of a block diagonal matrix is also a block diagonal matrix.
In addition to that, the inverse of a block diagonal matrix can
be computed using the inverse of individual blocks. Similar
to the decomposition of r into rq(s), rce can also be written
as rce = [rTce,0 r

T
ce,1 · · · r

T
ce,N−1]

T, where rce,q = [rce(q(M +
L)+L) rce(q(M+L)+L+1) · · · rce(q(M+L)+(M+L)−1)]T

is the qth, q ∈ [0 N − 1] channel equalized vector. Thus we
can write,

rce,q = H̃†
q[H̃qH̃†

q +
σ 2v
σ 2d
I]−1rq, q ∈ Z[0 N − 1], (38)

which can be computed using inversion and multiplication
of M ×M matrices. The required complexity is of O(NM3).
Generally, the value of M is in the order of 100’s. Although
the above simplifications significantly reduce complexity,
yet LMMSE processing remains a computational burden.
We investigate the structure of9q involved in channel equal-
ization described earlier, in order to reduce the complexity
further.

A. STRUCTURE OF 9Q = [H̃QH̃†
Q +

σ2
v
σ2

d
I]

Using (26), H̃qH̃
†
q can be expressed as,

H̃qH̃†
q

=

( P∑
p=1

h̃pe
j2π

k̃p(L−l̃p)
(M+L)N 1k̃p5l̃pej2π

k̃p
N q
)

( P∑
s=1

¯̃hse
−j2π k̃s(L−l̃s)

(M+L)N5−l̃s1−k̃sej2π
k̃s
N (−q)

)
(39)

Since 5 is a circulant matrix, it can be verified that
5lp = W1−lpW†. Therefore, H̃qH̃

†
q =

∑P
p=1
p=s
|h̃p|2I +∑P

p=1
∑P

s=1
p 6=s

cp,s5lp−ls1kp−ksej2πq
kp−ks
N , where cp,s =

h̃p
¯̃hse

j2π
−k̃p l̃p+k̃s l̃s
(M+L)N ej2π

L(k̃p−k̃s)
(M+L)N . Thus, we can write

9q=

P∑
p=1
p=s

(|h̃p|2 +
σ 2v
σ 2d
)I+

P∑
p=1

P∑
s=1

p 6=s

cp,s5l̃p−l̃s1k̃p−k̃sej2πq
k̃p−k̃s
N .

(40)

From this, it can be concluded that the maximum shift of
diagonal elements in 1 can be ±(l̃τ − 1). Additionally, due
to the cyclic nature of the shift, 9q is quasi-banded with
bandwidth of 2l̃τ−1. As l̃τ � M ,9q is also sparse for typical
wireless channel. Structure of 9q is similar to the channel
matrix of RCP OTFS as described in equation (13) specified
in [15]. Thus 9−1q can be computed using LU factorization
of 9q in a similar way as described in Sec. III B of [15],
i.e. 9q = LqUq.
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B. COMPUTATION OF d̂
After LU decomposition of 9q, rce,q is simplified to,

rce,q = H̃†
q

r(2)q︷ ︸︸ ︷
U−1q L−1q rq︸ ︷︷ ︸

r(1)q

.

As Lq is a quasi-banded lower triangular matrix, r(1)q =

L−1q rq can be computed using low complexity forward substi-
tution as explained inAlgorithm 2 in [15]. Algorithm 3 of [15]
can be used to evalaute r(2)q = U−1q r(1)q . Using the definition

of Hq, rce,q = H̃†
qr

(2)
q can be written as,

rce,q =
P∑
p=1

h̄p1−kp 5−lpr(2)q︸ ︷︷ ︸
circular shift

. To compute rce,q, r
(2)
q is first circularly shifted by ‘−lp’

and then multiplied by h̄pdiag{1−kp} using point-to-point
multiplication for each path p. All vectors obtained above are
summed to obtain rce,q. Then, {rce,q}N−1q=0 are concatenated to

obtain rce. Finally, d̂ = A†rce can be implemented using M
number of N -point FFTs (Sec. III-C, [15]).

C. COMPUTATION COMPLEXITY
With some effort it can be shown that the number of CMs
required to implement our proposed LMMSE algorithm is
MN
2 log2 N +MN [2 l2τ +2 P2 kν +9lτ −Pkν −3]+N [ 23 l

3
τ +

2 lτ + P]. The order of complexity achieved through our
receiver is MN log(MN ), which is significantly lower than
the direct implementation, which is of the order of M3N 3.
Our proposed receiver requires around 107x lower CMs than
the direct implementation following (36), if we consider a
typical OTFS system with 1f = 15 KHz, fc = 4 GHz,
N = 128, M = 512, speed of 500 kmph and the extended
vehicular A (EVA) 3GPP channel model [27] with P = 9 and
τmax = 2.51 µ sec.
It is worthwhile to note that we can also implement

LMMSE receiver for OFDM [15] using the methods devised
in the last section. The only difference between the receiver
for OFDM and OTFS is the length of FFT used. For OTFS,
we need M numbers of N-point FFTS whereas for OFDM
we require N numbers of M-point FFTs. Thus, OTFS has
complexity of O(MN log2(N))and OFDM has complexity of
O(MN log2 (M)). In a typical OTFS settings, M > N, thus
OFDM receiver has more computational burden than OTFS
receiver.

VII. LDPC CODED LMMSE-SIC RECIEVER
We present the successive interference cancellation receiver
for LDPC coded OTFS which uses the estimated channel
coefficients instead of ideal channel coefficients [28]. In this
description rinti contains the interfering signal for the ith

iteration, where 1 ≤ i ≤ NSIC . The initial value is set as

rint1 = 0. In the ith iteration, interference is cancelled using,

ri = r− rinti . (41)

It is required that ri be equalized as,

d̂(i) = A†H†[HH†
+

σ 2v
σ 2d
I]−1ri. (42)

Soft demapper output of d̂(i) are given to the LDPC [29]
decoder to estimate the message bits b̂i. The indices of
correct blocks after ith iteration are stored indexc(i) with
indexc(1) = 0. Instead using the entire message, only the
incorrectly decoded code blocks of the previous iteration are
considered for decoding. The following is done accordingly
d̂(i)[indexinc] = ˜̃di, where indexinc contains the indices of
incorrect code words. The log-likelihood ratios(LLRs) of ˜̃di

are calculated as,

LLR(bjη|
˜̃di(η)) ≈ (min

sεS0j

||
˜̃di − s||2

σ2(η, η)
)− (min

sεS1j

||
˜̃di − s||2

σ2(η, η)
) (43)

where ˜̃di(η) is the ηth element of ˜̃di mapped from the bits
b0η b1η · · · b

J−1
η , J is the number of bits per symbol and

σ2(η, η) is the element of σ2 = σ 2
n (HmmseH

†
mmse), where

Hmmse = A†H†[HH†
+

σ 2v
σ 2d
I]−1. S0j and S1j represent the

constellation symbol sets where the bit bjη = 0 and bjη = 1
respectively for j = 0, 1, · · · , J−1. These LLRs are given as
input to the LDPC decoder, which is based on the Min-Sum
algorithm [30].

To generate the interference pattern rinti+1, only the correctly
decoded d̂i are used following,

rinti+1 = HAd̃i. (44)

It may be noted that since we use correctly decoded code
blocks for generation of interference pattern, error propaga-
tion is minimized unlike other SIC schemes which operates
at uncoded symbol level.
Stopping Criteria: The SIC receiver is considered to iterate

at most NSIC times. Additional stopping criteria are with
respect to improvement over iterations, i.e. iterations will stop
if impfac = N i

e − N i−1
e ≤ η1, where η1 is improvement

tolerance constant and N i
e is the number of blocks in error

after ith iteration. We also stop the SIC iterations if errfac =
N i
e ≤ η2, where η2 is error threshold value, i.e. number of

error blocks are very low already.

VIII. UNIFIED FRAMEWORK FOR ORTHOGONAL
MULTICARRIER SYSTEMS
In this section, we describe a generalized framework for
orthogonal waveforms. Modulation techniques following this
framework will be able to take advantage of the chan-
nel estimation and equalization algorithms proposed earlier.
Let D be the data matrix of size (M )× N . Then the transmit
signal which can be of the form

Sd = {BDC} = Avec{D}, (45)
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FIGURE 3. Schematic block diagram representing signal flow of our
proposed code word level SIC receiver.

Algorithm 2 SIC Receiver
1: Given : r, H, η1 and η2
2: Output : b̂
3: Initialize : impfac = 10η1 errfac = 10η2, indexc1 = 0

4: rint1 = 0 and d̃1 = 0

5: Compute 9 = [HH†
+

σ 2v
σ 2d
I]

6: Compute LU = 9
7: while (i ≤ NSIC && impfac ≥ η1 && errfac ≥ η2) do
8: ri = r− rinti
9: d̂(i) = A†H†U−1L−1ri

10: d̂(i)[indexinc(i)] = ˜̃di

11: [b̂i, indexinc(i)] = LDPCdecoder (
˜̃d(i))

12: d̃i+1 = QAMmod (b̂i)
13: d̃i+1[indexinc(i)] = 0
14: rinti+1 = HAd̃i+1
15: impfac = N i

e − N
i−1
e

16: errfac = N i
e

17: end while
18: b̂ = b̂NSIC

where B and C are modulation specific matrices. A in (36)
can be computed using A = (C⊗ I)(I⊗B). We define Sp as
the constant pilot matrix of size 2L × N as

Sp =

 0L×N
[1 1 · · · 1]1×N

0L−1×N

 . (46)

The combined time domain matrix with N symbols each

containingM samples can be given as, S =
[
Sp
Sd

]
.We append

CP as described before, i.e. SCP = BCPS. Then, the transmit
vector can be given as s = vec{SCP}. This transmit vector will
resemble the time domain frame illustrated in Fig. 2. Hence,
the same time domain channel estimation and low complexity
LMMSE equalization proposed can be used to equalize the
combined effects of channel and residual synchronization
errors.

CP-OTFS presented in this work can be fitted in this
framework when one sets B = IM and C = WN in
above equations. Similarly, when B = WM and C = IN ,
the above system becomes an OFDM system with no differ-
ence in the equalization techniques at the receiver. Hence, this
generalized description of system can pave the way to realize

a flexible communication system which can change its wave-
formwith changing nature of channel, for e.g., the transceiver
pair can use OFDM in lowmobility scenarios while switching
to OTFS under high speed scenario.

IX. RESULTS
In this section, we present the performance of low density par-
ity check (LDPC) coded CP-OTFS system with time domain
channel estimation and equalization in presence of residual
FTO and CFO errors. Since we present a unified model for
constructing OFDM signal as well as OTFS signal, therefore
we also present the performance of an equivalent OFDM
system. We also present the performance of the developed
time domain channel estimation when used with RCP-OFTS,
however without residual synchronization errors. The simu-
lation parameters used are mentioned in Table 1. For each
channel delay tap value, Doppler is generated using Jake’s
formula, νp = νmax cos(θp), where θp is uniformly dis-
tributed over [−π π ]. CP length is chosen longer than τmax of
the TVMC.

TABLE 1. Simulation parameters.

The curves labeled ‘Ideal’ represent the performance of
LMMSE equalization with ideal channel estimate with-
out any residual synchronization error. The legend ‘mmse’
indicates the performance of LMMSE equalizer while using
estimated channel coefficeints, similary ‘sic’ indicates per-
formance of SIC receiver with estimated channel coefficients.
The numeral following these key words indicates the number
of Doppler taps per delay tap (‘Dpt’) used in evaluation. The
legend ‘synch’ indicates situations where l0 = 2 and k0 = 20.
In case of ‘synch’ estimated channel coefficients are used
in LMMSE equalization and ‘sic’. Normalized CFO error
k0 =

δfc
1ν
= 20 results in δfc = k01ν = 2.33 KHz.

A. BLOCK ERROR RATE (BLER) PERFORMANCE
We begin with the BLER performance of CP-OTFS system
using Figure 4. Let us first consider the ‘Ideal’ performance.
It is observed that as ‘Dpt’ increases, the performance of
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the system improves. At BLER of 10−1, the difference in
performance is nearly 4 dB. At BLER of 10−2, the SNR gain
is approximately 6 dB. At higher reliability the gain increases
further. This gain in performance with increasing value of Dpt
can be attributed to Doppler diversity. This diversity is due
to increase in the number of independent channel paths with
increasing value of Dpt. It also indicates that the LMMSE
receiver is able to extract this diversity from the received
signal.

FIGURE 4. BLER Vs SNR (dB) for CP-OTFS with 16-QAM, ldpc code word
length 648, code rate =

2
3 at 500 kmph.

Next, we consider the performance of CP-OTFS with the
proposed channel estimation algorithm but without residual
synchronization error. The degradation in performance in
‘mmse’ from ‘Ideal’ is limited to approximately 1 dB for all
considered Dpt. Whereas for ‘sic’ the performance loss from
‘Ideal’ is negligible.

Now we turn our attention to the performance of CP-OTFS
system with synchronization errors (legend marked with
‘synch’) while using the estimation and compensation tech-
niques described above. In case of ‘mmse’, it can be seen that
for 1 Dpt, the degradation in performance when compared
to no synchronizatin error is nearly 0.5 dB, which is about
1.5 dB for 3 Dpt.Whereas, in case of ‘sic’ it may be noted that
the performance is not much deviated from ‘Ideal’ untill error
floor starts to appear at higher SNRs. It may also be noted that
CP-OTFS is fully immune to residual synchronization error.

After having discussed the performance of CP-OTFS with
16-QAM, which captures the impact of phase modulation as
well as amplitude modulation we include the performance of
the proposed algorithms for a higher order QAM, namely 64-
QAM. The BLER vs SNR of 64-QAM is presented in Fig. 5.
It can be seen that at a BLER of 10−1, the additional SNR
required, over 16-QAM, is about 7 dB. Whereas, it is around
10 dB at BLER of 10−3 and below. A very interesting obser-
vation that can be made for higher order QAM is that the SIC
performance improves significantly over single stageMMSE.
Such results are supported in [28], [31].

FIGURE 5. BLER Vs SNR for 64-QAM with ldpc code word length 648,
code rate =

2
3 at 500 kmph.

From the above it can be said that the proposed channel
estimation algorithm along with the SIC receiver can be
highly recommended for CP-OTFS systems.

We present additional results related to larger code block
length, lower mobility and lower code rate in Appendix D for
the sake of completeness.

Considering that RCP-OTFS is more spectrally efficient
than CP-OTFS, we intend to examine the performance of the
proposed time domain channel estimation for RCP-OTFS as
well through Fig. 6. We have extending the above desribed
algorithms for RCP-OTFS by cosidering the CP length to
be zero for all except the first CP, which is drawn from the
entire OTFS block. Due to brevity we do not provide the
details which are all but similar to what has been described
in the above sections however without effects of residual syn-
chronization errors. Since RCP-OTFS with residual synchro-
nization errors require development of dedicated algorithims,
which is beyond the scope of this work, we present results
with only channel estimation without residual synchroniza-
tion errors.

FIGURE 6. BLER Vs SNR (dB) for RCP-OTFS with 16-QAM, ldpc code word
length 648, code rate =

2
3 at 500 kmph.
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Upto BLER of 10−2 we can see there is not much dif-
ference in performance between CP-OTFS and RCP-OTFS.
Although RCP-OTFS is expected to encounter a large amount
of interference owing to lack of CP between the OFDM
symbols, however the pilot structure as explained above helps
to reduce inter-OFDM-symbol interference. At higher SNR
RCP-OTFS is found to perform slightly better than CP-OTFS.
This can be attributed to improved channel estimation owing
to higher rate of pilot sampling due to lesser time interval
between the pilot sample points. It is also noted that with
3 Doppler taps per delay tap the performance of RCP-OTFS
is slightly better than CP-OTFS. The most significant point
to be noted here is that the developed channel estimation
can be translated to RCP-OTFS, however without ‘synch’
errors.

Now we present the performance of OFDM system, which
is described in Section VIII, in Fig. 7. The very first obser-
vation one can make is that SIC does not provide any
notable improvement in performance. The reason being that
in OFDM systems, the QAM symbols are carried on each
sub-carrier whereas in OTFS they are spread over the entire
time-frequency space. Another quick observation reveals that
with Dpt of 3, the performance is better by nearly 5 dB over
the scenario of 1 Dpt. Now let us compare OFDM against
CP-OTFS. We first consider that ‘Ideal, ‘mmse’ and ‘sic’
cases without residual synchronization errors. When Dpt 1
scenario is taken, we find that OFDM is poorer by nearly 3 dB
at BLER of 10−1. The gap increases to nearly 5 dB at BLER
of 10−2 and it continutes to increase further as SNR increases.
This clearly indicates the superiority of OTFS over OFDM
by virtue of its diversity gain. If we consider the case of
3 Dpt, we again find that at low SNR, CP-OTFS is better than
OFDM by nearly 3 dB. The difference is about 7 dB at BLER
of 10−2, again indicating higher diversity gain obtained by
OTFS over OFDM.When we turn our attention to the ‘synch’
cases, we find that OFDM is severly limited, which is not
a new finding. In comparison we find the CP-OTFS has
significant resilience to such large residual synchronization
error although not completely immune to it.

From the above discussions, it can be said that the
proposed algorithms can provide sufficient resilience to
OTFS against synchronization errors while compensating
for TVMC and thus makes OTFS a potential transmission
technology candidate for use especially in high mobility
scenarios.

Having exposed the most important performance metrics
of OTFS under TVMC and residual synchronization errors,
we now take a look at the mean square error (MSE) of the
channel estimates for the strongest tap against varying SNR
for different Dpt as shown in Fig. 8. It can be observed that
the MSE increases with Dpt. Thus, one can infer that the
channel coefficients obtained from the interpolation based
channel estimation deviate from actual channel coefficients
as Dpt increases. Although MSE for Dpt of 3 is worse than
that for Dpt of 1, the BLER performance of Dpt 3 is better.
This can be attributed to the improved diversity experienced

FIGURE 7. BLER Vs SNR for CP-OFDM with 16-QAM, ldpc code word
length 648, code rate =

2
3 at 500 kmph.

due larger number of independent paths available. Further,
the MSE values are small enough so as not to affect the
performance significantly. One of the reasons is that the pilot
being an impulse in delay-Doppler as well as in time domain
enjoys significantly higher SNR than the data part of the
signal.

FIGURE 8. MSE of channel estimates for CP-OTFS.

It can also be observed that MSE saturates even when SNR
increases. This indicates that the proposed estimation and
compensation methods are effective only in the mid-SNR
region. One may wonder that the saturation in MSE should
be observed in the BLER curves as well. This is indeed true,
however, the saturation in BLER starts to appear below the
level of 10−3.

B. LIMIT OF CFO TOLERANCE
Since we are concerned about the effect of residual synchro-
nization errors, of which the CFO has more significant effect
on the received signal, we present the BLER performance of
CP-OTFS against normalized CFO ( δfc

1ν
) in Fig.9. For Dpt
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FIGURE 9. BLER Vs Normalized CFO for CP-OTFS with 16-QAM, ldpc code
word length 648, code rate =

2
3 at 500 kmph.

FIGURE 10. MSE of channel estimates with varying CFO.

FIGURE 11. BLER Vs SNR for 16-QAM with ldpc code word length 648,
code rate =

1
2 at 500 kmph.

of 1, we consider SNR of 20 dB, whereas for Dpt of 3, we use
SNR of 14 dB.

It can be observed that BLER does not increase notably
untill normalized CFO reaches a value of 20, beyond which it
grows exponentially. This increase in BLER can be attributed
to increase in MSE with CFO observed in Fig.10, which
shows the MSE of channel estimates for the strongest tap.

FIGURE 12. BLER Vs SNR for 16-QAM with ldpc code word length 1944,
code rate =

2
3 at 500 kmph.

FIGURE 13. BLER Vs SNR for 16-QAM with ldpc code word length 648,
code rate =

2
3 at 100 kmph.

The increase in MSE is due to an increasing mismatch
between the estimates of channel coefficients obtained using
the proposed method and the actual value of channel coef-
ficients. An increase in CFO, which has a similar effect as
increase in Doppler, results in a higher rate of channel fluctua-
tions. An increase in the frequency of time-domain pilots may
help in improving the situation but it has its associated penalty
in terms of spectral efficiency loss, the detailed analysis of
which is beyond the scope of this work.

Therefore it may be said that, with a limited allowable
SNR degradation from the ideal performance, our proposed
channel estimation method can compensate normalized CFO
value up to 20. However, it may also be stated that beyond
such values the performance of CP-OTFS degrades at sig-
nificantly. A normalized CFO value of 20 leads to an offset
value of δfc = 201ν = 2.33 kHz which is 15% of the
sub-carrier bandwidth and is 0.4 ppm of carrier frequency.
This value can be considered as a significantly high limit
of residual frequency error, which can be addressed by the
methods described in this work. It is important tomention that
the performance is evaluated considering channel conditions
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where the maximum Doppler frequency is 2.76kHz, which is
additive in nature with CFO as discussed in Section III. This
results in a significantly high value of equivalent maximum
Doppler of 5.09 kHz.

X. CONCLUSION
We have started by describing the system model of a rect-
angular pulse shaped CP-OTFS system with residual frame
timing offset and residual carrier frequency offset errors.
We exposed that integer time and frequency errors result
in a cyclic shift in delay and Doppler dimensions. We also
show that fractional Doppler or delay causes interference in
Doppler or delay dimension respectively. Since we found that
the effect of synchronization errors can be considered as a
part of the channel itself, however with modified channel
taps, we developed a time domain channel estimation method
for delay Doppler domain embedded pilot based CP-OTFS
system to estimate the effective channel matrix. It is brought
out that the time domain processing offers lower complex-
ity owing to higher sparsity compared the delay Doppler
domain channel under the presence of residual synchroniza-
tion errors.

Using the estimates of the effective channel matrix, we pre-
sented a low complexity LMMSE receiver as well as a SIC
based receiver for LDPC coded CP-OTFS system. It is seen
that CP-OTFS has significantly large tolerance to residual
CFO, however it is not completely immune to it. It is found
that the maximum SNR loss at BLER 10−2 is around 1 dB in
the absence of residual synchronization errors when LMMSE
is used, however the loss is negligible when SIC is used.
It is also shown that the described compensation methods
show promise to compensate for residual CFO of up to 15%
of subcarrier bandwidth or 0.4 ppm of carrier frequency
with a loss in SNR up to 1.5 dB at BLER 10−2 in case
of LMMSE. However it is found that SIC can bring the
performance close to LMMSE with ideal channel estimates.
It is also seen that iterative SIC gives massive gains especially
for higher order QAM modulations. We have verified that
the presented channel estimation and compensation methods
can be translated to RCP-OTFS as well. We have shown
that OTFS with practical channel estimation in presence
of residual synchronization errors significantly outperforms
OFDM (by 3 - 7 dB) especially when such errors are high as
encountered in high ICI conditions. With the above, it can be
stated that the proposed time domain channel estimation and
LMMSE based SIC receiver for LDPC coded CP-OTFS can
enable OTFS for use as potential air interface in high mobility
conditions.

Considering that OFDM with frequency-domain adaptive
modulation and coding is known for providing high spec-
tral efficiency especially in low mobility conditions and that
OTFS provides much superior reliability in high mobility
conditions, the unified framework for representing both mod-
ulations depicted in this work can help pave the path for a
flexible and reconfigurable future air interface.

APPENDIX A
PROOF OF THEOREM 1

Proof: y(k ′,Lp+l ′) =
∑l̃τ

l=0 δ(l
′
−l)

∑
k∈kνi

{
h̃l,k9(Kp−

k ′ + kp,N )ej2π
kp(L+l′+Lp−l)

(M+L)N

}
. At lth tap, i.e when l = l ′,

y(k ′,Lp + l) =
∑

k∈kνl

{
h̃l,ke

j2π
k(Lp+L)
(M+L)N 9(Kp − k ′ + k,N )

}
.

When IFFT of (M+L)N point is applied and it can be
shown that,

N−1∑
k ′=0

y(k ′,Lp + l)e
j2π nk′

N (M+L)

=

∑
k∈kνl

{
h̃l,ke

j2π
k(Lp+L)
(M+L)N (

1
N

N−1∑
kt=0

ej2π
kt (Kp+k)

N

N−1∑
k ′=0

ej2π
k′(n−kt (M+L))

N (M+L) )
}

=



∑
k∈kνl

{
h̃l,ke

j2π
k(Lp+L)
(M+L)N (ej2π

n(Kp+k)
N (M+L) )

}
, n = α(M + L)∑N−1

kt=0
ej2π

kt (Kp)
N 9((

n
(M + L)

− kt ),N )
∑

k∈kνl{
h̃l,ke

j2π
k(Lp+L)
(M+L)N

}
ej2π

kt (k)
N , otherwise.

From (31), h(n,m) =
h(n+ Lp + L + l, l)e

j2π
n(Kp)

N (M+L) , n = α(M + L)∑N−1

kt=0
ej2π

kt (Kp)
N 9((

n
(M + L)

− kt ),N )

h(kt (M + L)+ Lp + L + l, l), otherwise.

Hence, h(α(M + L)+ L + Lp + l, l) =

e−j2π
αKp
N

( N−1∑
k ′=0

y(k ′,Lp + l)ej2π
αk′
N

)

APPENDIX B
PROOF OF THEOREM 2

Proof: We know, ĥ(α(M + L) + Lp + l, l) =

e−j2π
αKp
N

(∑N−1
k ′=0 y(k

′,Lp + l)ej2π
αk′
N

)
. Also, as explained

in the [10], the time domain signal can be viewed as the
interleaved OFDM, in which an N-point FFT is taken along
the Doppler axis and then interleaved to get the time domain
signal. If this is applied to the received delay-Doppler sig-
nal y(k ′, l ′), then the signal without CP can be given as,

r(α(M ) + l ′) =
(∑N−1

k ′=0 y(k
′, l ′)ej2π

αk′
N

)
. Due to addition

of CP, r(α(M + L) + L + l ′) =
(∑N−1

k ′=0 y(k
′, l ′)ej2π

αk′
N

)
.

Therefore, ĥ(α(M +L)+Lp+ l, l) = e−j2π
αKp
N r(α(M +L)+

L + Lp + l).
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APPENDIX C
PROOF:DELAY-DOPPLER INPUT-OUTPUT RELATION

y(k ′, l ′) =
1
√
NM

N−1∑
n′=0

M−1∑
m′=0

Y (n′,m′)e−j2π [
n′k′
N −

m′l′
M ]

Using (1) and (10), with some effort it can be simplified as,

y(k ′, l ′) =
1
NM

P∑
p=1

h̃pe
j2πν̃pTs(L−

τ̃p
Ts
)

N−1∑
k=0

M−1∑
l=0

d(k, l)
M−1∑
m=0

M−1∑
m′=0

e−j2π
mτ̃p
MTs ej2π

m′l′
MTs (47)

9(m+ ν̃pTs − m′,M )
N−1∑
n′=0

ej2π
n′(ν̃pTsN (M+L)+k−k′)

N . By substituting,

9(m+ ν̃pTs − m′,M ) = 1
M

∑M−1
kt=0 e

−j2π
kt (m+ν̃pTs−m′)

M , we can
write,

y(k ′, l ′)

=
1

NM2

P∑
p=1

h̃pe
j2πν̃pTs(L−

τ̃p
Ts
)

N−1∑
k=0

M−1∑
l=0

d(k, l)
( N−1∑
n′=0

ej2π
n′(ν̃pTsN (M+L)+k−k′)

N

)
(48)

M−1∑
kt=0

e−j2πkt (ν̃pTs)
M−1∑
m=0

e−j2π
m
M (kt−l−

τ̃p
Ts
)
M−1∑
m′=0

ej2π
m′(l′−kt )

M

Since (l ′ − kt ) ∈ Z, we substitute ej2π
m′(l′−kt )

M = Mδ[(l ′ −

kt )M ], 1
N

∑N−1
n′=0 e

j2π
n′(ν̃pTsN (M+L)+k−k′)

N = 9(ν̃pTsN (M + L)+

k − k ′,N ) and 1
M

∑M−1
m=0 e

−j2π m
M (kt−l−

τ̃p
Ts
)

= 9(kt − l −
τ̃p
Ts
,M ), therefore we get,

y(k ′, l ′) =
1
M

P∑
p=1

h̃pe
j2πν̃pTs(L−

τ̃p
Ts
)
N−1∑
k=0

M−1∑
l=0

d(k, l)

9(ν̃pTsN (M + L)+ k − k ′,N )
M−1∑
kt=0

e−j2πkt (ν̃pTs)

9(kt − l −
τ̃p

Ts
,M )

(
Mδ[(l ′ − kt )M ]

)
. (49)

Using 1τ = 1
B = Ts 1ν = 1

N (M+L)Ts
and l ′ = kt ,

y(k ′, l ′)

=

P∑
p=1

h̃pej2πν̃pTs(L)
N−1∑
k=0

M−1∑
l=0

d(k, l)9(
ν̃p

1ν

+ k − k ′,N )9(l +
τ̃p

1τ
− l ′,M )e−j2π (l

′
−
τ̃p
1τ

)(
ν̃p

1νN (M+L) )

APPENDIX D
ADDITIONAL RESULTS
In this section we present additional results pertaining to the
effect of lower code rate, larger code word length, and lower
mobility conditions on 16-QAM based CP-OTFS system.
We begin with the performance of rate code 1

2 in Fig. 11.
We compare it against the result shown in Fig. 4, which is for
code rate 2

3 . At a BLER of 10−1, it can be observed that
code rate 1

2 provides approximately 3 dB improvement
over code rate 2

3 . A gain of around 4 dB is found at lower
BLER values.

The effect of larger code block length is shown in Fig. 12.
By comparing against Fig. 4 it can be seen that at BLER
of 10−1 there is only little gain, however the gain is around
1 dB near BLER of 10−3 and it increases further at lower
BLER values. Thus the gain with higher code block length
is observed with more intensity at lower BLER / higher SNR
regions.

The performance at lower mobility, i.e., at 100 kmph is
shown in Fig. 13. Again we take Fig. 4 as reference for
comparison. It can be observed that there is no note worthy
difference. Such observation is also reported in [3].
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