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ABSTRACT Reinforcement learning (RL) is an unsupervised learning technique used in many real-time
applications. The essence of RL is a decision-making problem. In RL, the agent constantly interacts with
the environment and selects the next action according to previous feedback in terms of reward. In this
paper, RL trains Software-Defined Wireless Sensor Networks (SDWSNs) controller to optimize the routing
paths. We combine RL and SDN, where RL is applied to the SDN controller to generate the routing tables.
We also propose four different reward functions for optimization of the network performance. RL-based
SDWSN improves network performance by 23% to 30% in terms of lifetime compared with RL-based
routing techniques. RL-based SDWSN performs well because it can intelligently learn the routing path at
the controller. In addition, it has a faster network convergence rate than RL-based WSN.

INDEX TERMS Reinforcement learning, wireless sensor network, SDWSN, RL-based WSN, energy
optimization, routing.

I. INTRODUCTION
The significance of Wireless Sensor Network (WSN) is
increasing day by day because it consists of several tiny
sensors deployed in different fields. Sensor nodes sense the
environment, process the data, and transmit it to the remote
base station (BS). Since the last decades, WSN has attained
the research community’s attention for its advantages such as
ease of deployment, flexibility, scalability, and low cost. It is
widely used in many applications such as health care, traffic
control, structural monitoring, home applications (e.g., smart
home and smart building), and many more [1]–[4]. However,
it also has been used for environment monitoring, disaster
areas, and military applications. For example, sensor nodes
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are dropped through drones due to the harsh environment
for monitoring forest temperature. On the battlefield, sensor
nodes are deployed for the monitoring of military forces and
its vehicle or to track their movement in hostile environ-
ments [5], [6]. These sensor nodes are deployed once time
for a long period. The energy consumption of sensor nodes
becomes a significant issue in WSN because of its small
battery that cannot be recharge due to some dangerous envi-
ronment applications. It has some resource limitations, such
as energy management, communication capability, lowmem-
ory, security, heterogeneity, complexity, etc. Hence, Routing
is an essential means to improve the energy consumption of
WSNs.

Routing is a process of selecting the path for sending data
from the source (sensor node) to the destination (sink/BS).
Some architectures such as Software Defined Networking
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(SDN) can be helpful for optimizing the routing inWSNs [7].
SDN is an emerging architecture with flexibility, dynamics,
and low management cost. It separates the data plane from
the control plane. The data plane contains the network nodes,
while the control plane includes the network controller. SDN
controller can view the underlying network globally, which
controls the whole network efficiently. Because of its flexi-
ble architecture, SDN has been widely used in many mod-
ern networking applications [2], [8]. However, it has some
limitations (i.e., finding the best routing path in real-time
applications); thereby, reducing the network performance.

Reinforcement Learning (RL) can be a promising learning
technique to find the best routing path in real-time applica-
tions. It is a machine learning technique in which a learner
known as an agent selects the actions through interaction
with the environment based on the current state. The agent
takes actions in such a way to maximize the long-term
reward [9]. However, in the traditional routing protocols
[10], [11], the node uses a pre-established routing path for
data transmission. It does not reflect the exact status of the
current network, in which routing tables are established in
advance. In RL-based algorithm, a Q-value is assigned to
each possible action that indicates the goodness of an action.
The agent selects one action according to Q-value during the
learning process. After each round, the agent gets the reward
based on the previous action to update Q-value, as shown
in Figure 1. Over time, the agent learns the network behavior,
changes the routing path according to the network situation,
and gets the optimal path after some iterations in real-time.
Hence RL based algorithms give better performance than
non-RL based routing (traditional) algorithms.

FIGURE 1. RL Model.

As we already put RL into practice in chapter 4 of [12].
However, there are some limitations in RL (i.e., conver-
gence rate, excessive use of control packets for learning
purposes, etc.), which also affect the network performance.
However, the combination of SDN and RL can improve
network performance.

Throughout this paper, we use RL to optimize the routing
in SDWSN. SDN controller acts as an agent to learn from
network behavior (environment) in real-time. SDN controller
learns from a previously received response (reward) and takes
the future actions. It learns how network energy is used for

the selected actions. The RL-based SDWSN architecture is
shown in Figure. 2. The main contributions of this paper are
given below.
• We propose four reward functions for RL-based
SDWSN to improve the network’s lifetime and reduce
the network’s energy consumption.

• Different routing paths are established through spanning
tree protocol (STP) that gives the looping free paths.
Three different types of STPs are used to get the routing
paths: all possible ST, distance-based minimum ST, and
hop-based minimum ST.

• The SDN controller selects the best routing path by
using RL.

• Develop a testbed for an experimental work and analyze
the performance of RL-based SDWSN techniques for
WSN routing purposes.

• The implementation of RL-based SDWSN for WSN
routing is performed on a real-testbed.

• A comparative analysis of RL-based SDWSN experi-
mental work with an RL-based WSN technique on a
real-testbed.

The rest of this paper is structured as follows: In Section II,
the state-of-the-art provides an overview of RL-based
routing in SDWSN. Section III explains the proposed
methodology including the reward functions and algorithms.
In Section IV, the energy consumptionmodel for communica-
tion is explained. Section V provides the detail of testbed used
for experimental work. The graphical results also present
the performance of the proposed reward functions and com-
pare with RL-based WSN routing techniques results. Finally,
the paper is concluded in Section VI.

II. RELATED WORK
SDN has been used in many applications (i.e., routing, secu-
rity, multimedia, etc.) because of the decoupling of the con-
trol plane from the data plane. SDN controller can improve
the network performance from a global perspective, includ-
ing network lifetime, jitter, transmission delay, load bal-
ancing, video quality, and bandwidth. However, sometimes,
the SDN controller cannot manage the network efficiently.
Machine Learning (ML) techniques can be implemented
on the SDN controller to manage the network resources
efficiently. In literature, some authors use a combination
of SDN and RL to improve network performance. Here’s
a summary of some of them. In [13], an energy-efficient
SDWSN cognitive prototype was developed for environ-
mental monitoring applications. The proposed prototype is
based on RL to process the information on the control plane.
It improves the self-adaptability and energy efficiency of
SDWSN by an interaction between agents and environments
that enhance intelligence in policymaking. It manages the
complex data fusion centrally through the SDN controller,
where the low-complexity computation is performed on a
data plane. This prototype takes into account the constrains of
WSNs, where the low energy consumption and high compu-
tational capability are required. An irregular cellular learning
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FIGURE 2. RL-based SDWSN architecture.

automaton (ICLA)-based algorithm in [14] has proposed,
which examines self-protection issues with minimal energy
consumption. It also schedules the sensors correctly into
either an active or idle state. The network’s sensing graph
determines the minimum number of nodes through a Self-
Protection Learning Automaton (SPLA) algorithm to secure
the nodes. On average, it performs 50 % better than the
maximum independent set and minimally connected domi-
nant set algorithms despite having twice the energy consump-
tion. There are still some issues that need to be addressed,
While some solutions work well to reduce the delivery
delay or expand the network. We are curious about such a
routing protocol that takes into account both network lifetime
and transmission delay. RL method is an effective method
to solve this problem. The authors in [15] explored the less
congested paths in the SDNnetwork that were focussed on the
Q-learning approach. Compared with Dijkstra and Extended
Dijkstra, this method gets better results when the size of the
transmitted data is increased.

Routing optimization is one of the significant traffic engi-
neering control issues. Deep Reinforcement Learning (DQL)
in [16] was used to reduce the transmission delay by opti-
mizing the routing. The DQL agent characterizes the ways
for all source-destination pairs at the network controller by
communicating with the network environment. DRL net-
work uses traffic matrix as the state represented by the
bandwidth request between each source-destination pair, and
the mean of end-to-end delays as the reward. It should be

noted that the network factors (such as link quality, nodes’
queue size, etc.) do not take into account because the scheme
only considers the traffic matrix. The actor-critical approach
is leveraged by DQL agents to solve the routing problem
by automatically adjusting routing configurations to current
traffic conditions. The routing results will be optimized by
considering the other conditions. For testing the performance,
OMNet++ discrete even simulator [17] is used. Simula-
tion results show that DQL agents in a single phase can
generate a near-optimal routing configuration. The proposed
approach is attractive because the traditional optimization-
based approaches involve many steps in generating a new
configuration. A machine learning-based framework name as
‘‘DROM’’ for SDN is proposed in [18] to optimized routing,
and improves network performance in terms of delay and
throughput. The authors in [19] proposed an RL technique in
Ubuntu Net Alliance’s, the regional network for Southern and
Eastern African National Research and Education Networks
(NRENs), for SDN-based traffic engineering. This configu-
ration needs to limit the use of different paths for contiguous
data frames that may be addressed with large packet bucket
sizes, and reduces the number of contiguous packets to solve
a high jitter’s key problem. The performance of the reward
function is determined based on distance, the available link
capacity, and the number of flows at the next hop. Q-Learning
approach implementation involves two tables, such as a local
Q-value table for each network node and a global aggregation
table managed by the network controller. QoS measurements
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are performed by each switch at its next neighbors to transfer
them to the controller. The controller uses active measure-
ment data and interface-level statistics to update Q-values that
depend on the calculation of reward values. The probabilistic
selection of the forwarding link chooses the optimal path
at each switch based on Q-values. Using Mininet emulator,
the Q-learning approach distributes the traffic across links
of multiple forwarding to maximize the throughput and to
reduce the latency. Owing to the increase in Internet traffic,
the latest developments in traffic engineering provide a range
of strategies to solve network problems. Dynamic path plan-
ning is important in traffic engineering such as load balanc-
ing, traffic control, and a firewall. Therefore, a learning-based
network path planning approach in [20] has presented for effi-
cient traffic engineering under forwarding constraints. In the
path planning problem, a sequence-to-sequence (Seq2Seq)
model is used to learn implicit paths based on empirical
network traffic data. Beam search is tailored that adapts the
primary nodes sequence characteristics to improve the model
efficiency, and provides the path connectivity. Mininet emu-
lator environment was used to validate the derived model’s
effectiveness. It also trains and evaluates the model by lever-
aging the traffic data collected by both a real-world GEANT
and a grid network topology. Experiment results show a high
testing accuracy.

The next-generation network paradigm has immense
advantages over traditional networks because it simpli-
fies the management layer, especially by adopting SDN.
Still, enabling QoS provision poses challenges, particularly
for multimedia based applications. LearnQoS, introduced
by [21], is an RL-based system that uses Q-learning to opti-
mize QoS specifications for policy-based network manage-
ment (PBNM) in multimedia-based SDNs. The RL model
is defined using three elements, such as state, action, and
reward. The traffic matrix represents the state, and the agent
is taken into account by four different actions: doing noth-
ing, reducing the data rate, increasing the data rate, and
rerouting. Rewards, by contrast, are based on service level
agreements (SLAs). Experimental results show that despite
the network overhead introduced by LearnQoS, QoS per-
formance is significantly improved compared to the default
multimedia based SDN. In [22],the authors proposed a dis-
tributed SDN-based RL routing. Though the routing protocol
was implemented in an SDN topology and operated in a dis-
tributed manner. RL algorithm was tested by adding it to the
OSPF routing protocol. They compared it with the traditional
OSPF routing protocol and achieved better QoS delays and
jitter. An approach to routing based on the RL algorithm has
been proposed in [23]. The optimization was implemented in
a multi-layer hierarchical SDN architecture. The distributed
hierarchical control plane architecture reduces the signaling
delay in SDN by designing three different levels of con-
trollers; the super, domain/master, and slave controllers.

Each controller has its specific responsibility group that
minimizes the load of super controllers. The slave controllers
provided read-only access to the data plane and received port

messages from them. Also, the slave controllers carried out
basic control functions, including traffic entry, flow control,
and so on. The flow set-up requests were received by domain
controllers to install the flow rules on switches. To achieve
the optimal routing solutions, a QAR algorithm with QoS-
based was implemented in the super controller with a global
network’s view and controlled full network functions. The
propose algorithm had been implemented and tested in a real
Sprint GIP network. Compared with existing learning solu-
tions, the proposed approaches gave quick convergence. Also,
in [18], a Deep Reinforcement Learning (DRL) approach
called DDPG is introduced to identify the optimum routing
solutions. The optimization process described in the paper
is DROM, and experimental results show that the algorithm
has high convergence and efficiency. In SDN, link quality
requirements for service are not considered. A routing algo-
rithm is proposed by the combination of RL and neural net-
works for SDN [24]. In RL, the agents continuously explore
the surrounding environment without any prior environment.
After a certain training cycle, the agent becomes able to
choose the right action, but it needs manual design to train
the Q-matrix for the convergence to corresponding features.
Due to defects of artificial design in Q-learning, the Q-matrix
is replaced by neural networks with the processing power
for massive data. The proposed algorithm aims to select the
best link among many optional links to improve the network
QoS. After each round, the algorithm gets the reward against
each selected link. The link performance is divided into three
levels (when link QoS performance is 0-30%, 31-60%, and
61-100%, reward R is 50,100 and 150, respectively). The
link performance level is used in reward function and selects
the next action according to previously selected link perfor-
mance. The SDN network performance can be improved by
resolving the SDN controller’s scalability issue on the control
plane. In [25], the author proposed an RL-based algorithm
called Q-placement that speeds up the network convergence
rate and guaranteed performance. It reduces the average accu-
mulated service cost for the end-user by investigating the ser-
vice placement problem on SDN switches. The performance
of a Q-Learning algorithm equipped with the SDN controller
has investigated in [26] to determine the adapt video quality
and to re-route traffic for layered adaptive streaming.

Some researchers use traffic shaping approaches to restrict
each client’s allocated bandwidth and to force them to request
a minimum bit rate. Markov Decision Method (MDP) has
been used for system modeling. The experimental results
have shown that theMDP based proposedmodel performance
is better than the greedy-based and shortest routing path. The
researchers in [27] have proposed MIND to learn the prob-
ability distribution of selecting the top-k best path through
Reproducing Kernel Hilbert Space (REPS-RKHS) that is
more suitable for real-world issues such as routing. MIND
predicts the spatial-temporal traffic information or network
conditions, where the policy generation module is designed
by optimal routing policies that learn from data based on RL.
In distributed SDN, the problem of controller synchronization
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as aMarkovDecision Process (MDP)was investigated in [28]
with a limited synchronization budget to determine the rules
that support the benefits of controller synchronization over
time. An RL-based algorithm uses the deep neural network
(DNN) to represent its value function, called the Deep-Q
(DQ) Scheduler, which provides nearly twofold performance
improvement compared to the state-of-the-art SDN controller
synchronization solutions. However, some authors [29] use
the RL for autonomous cyber defense in SDN and also use
RL to resolve the synchronization issues of multiple con-
trollers [30], [31]. Several AI techniques used in the SDN
context have been introduced in [32], including different
security and placement issues. The research focuses on three
main AI sub-fields: ML, Meta Heuristics, and Fuzzy infer-
ence systems. Therefore, we explored their various imple-
mentation areas and future use, and the changes made in
the SDN paradigm using AI-based technologies. Significant
efforts were made in [33] on Artificial Intelligence (AI)
to enhance the routing and security capabilities in SDN.
AI and ML give rise to systems performance because they
are capable of operating themselves. Investigating the AI
algorithms in SDN may lead to better network management,
security, or routing in SDWSN, and promote more reliable
networks. The benefits of using these AI in SDWSN have
been considered to solve the challenges faced by WSN and
improve their performance.

III. METHODOLOGY
In this section, the proposed methodology is described in
detail. RL and SDN are combined to find the best routing
path in real-time applications. The combination of SDN and
RL provides an optimized routing path.

In RL-based SDWSN, the data plane is separated from the
control plane. The control plane contains the controller that
generates the control traffic and collects the data packets from
data plane devices. The control traffic consists of the routing
path followed by the nodes (SDN data plane devices) to send
the data packets to the controller/sink.

Initially, the SDN controller finds all the possible combina-
tions of routing paths (also known as routing tables) through
the Spanning Tree Protocol (STP) that prevents the network
cycling problems. After finding all possible routing paths,
the controller selects one RT from all possible paths and
broadcasts it to the nodes, obtaining nodes’ status data after
each round. To choose the best path, Q-learning is introduced
into the SDN controller that learns the path in real-time.
In the learning process, the RL agent selects an action from
the set of actions and receives a reward after interacting with
the environment. Through a learning process, the selection of
optimal action policy is developed.

In the proposed methodology, the SDN controller act as
an agent, selecting as an optimized RT (action) from a set
of routing paths and sending it to the underlying network.
After each learning round, the controller receives the reward
in terms of loss estimated path lifetime (EPLT), and since the
loss cannot be positive, the maximum reward can be zero.

When the reward is received, the controller observes how
much energy was consumed in the last round of selected
RT. The detail of the proposed reward functions is given in
subsection 1 to 4.

A. REWARD
A reward in RL is part of the environmental feedback. When
an agent interacts with the environment, he can observe the
state changes and reward signals through his actions if there
is a change. The agent uses this reward signal (which can
be positive for good actions and negative for bad actions) to
conclude how to behave in a state. The design of the reward
function is a very challenging task because it highly impacts
on network performance.

In this paper, four reward functions are proposed for the
optimization of network lifetime. In the proposed reward
function, the first reward function finds to global reward;
the second reward function gives the average reward. While
the third and fourth reward functions provide the global
weighted reward and average global weighted reward, respec-
tively. The detail of each reward function is given below:

1) REWARD FUNCTION 1 (RF-1)
The global reward function is the concept of the estimated
lifetime of the sum of all paths of nodes. The objective of
the learner (agent) is to choose an action (selects one routing
path from the routing list) after each round that minimizes
the global path loss. Let there is N number of nodes, where
each node estimate the remaining lifetime and send it to the
controller after each round through selected forwarder. The
intelligent controller receives a total reward ‘R’ after taking
action is given as:

LossEPLTGlobla =

N∑
i=0

(EPLTi − ENLTi) (1)

N is the total number of nodes in the network, where the
EPLT and ENLT are estimated path lifetime and estimated
node lifetime, respectively.

2) REWARD FUNCTION 2 (RF-2)
It gives the average loss of the network and provides better
results as compared to RF-1 because of the average of all
received loss from all the network nodes.

LossEPLTAverage =
1
N

N∑
i=0

(EPLTi − ENLTi) (2)

3) REWARD FUNCTION 3 (RF-3)
Any weighted parameter can improve the network per-
formance. In the third reward function, we include the
Distance_to_Sink parameter to see the impact on EPLT loss.
Here the combined reward is taken into account with the
weighted parameter (Distance_to_Sink) of each node. The
mathematical expression of global reward in the form of
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EPLT loss is as follows:

LossEPLTGlobalWeighbt =

N∑
i=0

(EPLTi − ENLTi) ∗
1

Dis.ToSinki
(3)

Dis._to_Sink is the distance from node i to sink, and N
is the total number of nodes in the network. EPLT and
ENLT are estimated path lifetime and estimated node life-
time, respectively.

4) REWARD FUNCTION 4 (RF-4)
It gives the average weight loss of the network and provides
the better result as compared to RF-3 because of the average
of all received loss from all the network nodes.

LossEPLTAverageWeight =
1
N

N∑
i=0

(EPLTi − ENLTi) ∗
1

Dis.ToSinki

(4)

B. Q-VALUE
The initial Q-value is considered as the worst case where
all the nodes die without sending any data, and it changes
according to the reward function. R is the reward that comes
from four different reward functions based on the selection
reward function, as described in section 3.1. The reward is in
the form of an EPLT loss; that is why, the maximum reward
will be zero because the loss cannot be positive.

Q(j) = (1− α) ∗ Q(j)+ α ∗ γ ∗ R(j) (5)

α, γ , and R is the learning rate, discount factor and reward,
respectively.

Initially, Q-value of RF-1, RF-2,RF-3, and RF-4 can be get
from Eq. 6, 7 8, 9.

Q(j) = −
N∑
i=0

(ENLTi) (6)

Q(j) = −
1
N

N∑
i=0

(ENLTi) (7)

Q(j) = −
N∑
i=0

(ENLTi) ∗
1

Dis.ToSinki
(8)

Q(j) = −
1
N

N∑
i=0

(ENLTi) ∗
1

Dis.ToSinki
(9)

The network controller learns from each round and follows
a best spanning tree path, giving the minimum loss and
optimal Q-value. The minimum EPLT loss means that the
network follows the best routing path.

C. ALGORITHM DETAIL
The RL-based SDWSN experiments follow the procedure
given in section V-A. The experimental work is based on two
different planes: control plane and data plane. The control
plane includes the intelligent SDN controller that also used as
a sink to collect the data from data plane, as shown in Figure 3.

First, the SDN controller generates the routing table (RT)
through the STP. It selects an RT from the RT list to broadcast
it. After each round, the controller also collects the node
status data. SDN controller calculates the reward by selected
reward function (RF1 to RF4), and computes the Q-Value
after each learning round and selects the next RT according to
received reward. For the initially Q-value, we have considered
the worst-case scenario when all nodes die without sending
data and use the globalEPLT loss as Q-Value. After the initial
round, the SDN controller uses the status data (node data) to
calculate the Q-value.

After each round, if the controller observes that any node
runs out of battery, it excludes the node from RT and then
recalculates the routing paths through the STP /Minimum
Spanning Tree (MST) function. It follows the same procedure
until the last node dies. On the other side, the data plane
contains the sensor nodes that receive the tunable parameters
and RT from the SDN controller. It follows the same path
for sending the data packet up to the destination (controller).
The node also receives the data packet from a neighboring
node. Then the receiving node checks the receiving address
of the packet, and if the current/receiver node is the forwarder
of a received data packet, it checks the destination address
and puts the data packet into a transmission queue; otherwise,
it will discard it.

D. ALGORITHM
1) ALGORITHM FOR SDN CONTROLLER

1) Assign the IP and broadcast the address to an SDN
controller after its initialization.

2) Find all the routing paths by STP (all possi-
ble STs [34]), Distance-based MST (using MST
Function), Hop-based MST (using MST Function)
according to selected spanning tree protocol and then
put them into the routing path list.

3) Initially the Path Estimate Lifetime (PELT) would be
zero.

4) SDN controller selects one routing RT from the routing
path list and broadcasts it.

5) SDN controller receives the status data that includes the
NELT of each node at the end of the round. It observes
the EPLT and sees how much energy has been con-
sumed in the current round for the selected RT.

6) Estimate the path lifetime.
7) Calculate the reward by selected reward functions

(RF1 to RF4), compute the Q-Value after each learning
round, and select the next RT according to received
reward. However, for the initially Q-value, we con-
sidered the worst-scenario where all nodes die with-
out sending data, and used the global EPLT loss as
Q-Value.

8) At the end of each round, the SDN controller excludes
the node fromRT, which dies in the last round, and then
STP recalculates the routing paths according to Step 2.

9) Repeat Step 4 to 8 until the last node dies.
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FIGURE 3. Flow chart of RL based SDWSN working.

2) ALGORITHM FOR NODE
1) Assign the IP and broadcast address to a node after its

initialization.
2) Get the desired parameters set by an SDN controller.
3) Assign the received parameters setting to the corre-

sponding parameter.
4) Receive the routing path from the SDN controller.
5) Calculate the initial value of the average Control

Receiving (CT-Rx) load.
6) Estimate the initial value of Avg DTx-Rx load.

7) Calculate the Average Transmitted and Received (Avg
DTx-Rx) data of each round.

8) Estimate the residual battery capacity (BC).
9) Estimate the node lifetime.

10) Establish the Rx and Tx queue of control and data
packets.

11) Check the neighbors status. Also, call the CBR Data
Packet function to transmit the data packet of a
node.

12) Check the node battery is sufficient or not.
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13) If the battery is sufficient, the received control (Ctl) and
data (DT) packets are queued according to the packet
type. Handle the received data (Forward/Drop) and
control packets (Store) based on the received packet
status.

3) MINIMUM SPANNING TREE (MST) FUNCTION
1) Sort all the edges in the non-decreasing order of their

weight.
2) Pick the smallest edge.
3) Check either it forms a cycle or not using Cycle

Detection Function.
4) If the cycle is not formed then include this edge into

MST; otherwise, discard it.
5) Repeat Step 2 to 4 until there are (Vertices-1) edges in

the spanning tree.

4) CYCLE DETECTION FUNCTION
1) For each edge, make subsets using both vertices of the

edge.
2) If both vertices are in the same subset then a cycle is

found; otherwise, no cycle has found.

IV. ENERGY MODEL
In wireless communication, each sensor node consumes a
certain amount of energy to transmit and receive the packets.
RL-based SDWSN experimental work uses the energy con-
sumption model to calculate the energy consumption of each
node after each leaning period and also estimates the remain-
ing node lifetime [12]. Each node’s energy consumption
depends on the total transmitted and received data during each
round.

In each learning period, the node consumption is calculated
based on total transmitted and received data. The node con-
sumption and remaining lifetime are calculated as following:

tCtlTx = DCtlAvgTx ∗ 8/Rb (10)

tCtlTx is the control bits transmission time,where the DCtlAvgTx
and Rb represent the control average transmitted data and bit
rate (bps) of node, respectively.

ICtlTx = tCtlTx ∗ (P
max
Tx /Vout/1000) (11)

ICtlTx represents the current used for control bits transmission
during the learning period, where the PmaxTx and Vout indicate
the maximum power used for transmission and transceiver
output voltage, respectively. Here the power is taken in mW.

tdataTx = DdataAvgTx ∗ 8/Rb (12)

tdataTx denotes the data bits transmission time, where theDdataAvgTx
and Rb represent the average transmitted data and bit rate
(bps) of node, respectively.

Idatatx = tdataTx ∗ (PTx/Vout )/1000 (13)

IdataTx represents the current used for data transmission dur-
ing the learning period, where the PTx is the power used

for transmission that depends on selected neighbor (current
forwarder) distance, and Vout denotes the transceiver output
voltage.

tCtlRx = DCtlAvgRx ∗ 8/Rb (14)

tdataRx = DdataAvgRx ∗ 8/Rb (15)

tRx = tCtlRx + t
data
Rx (16)

tCtlRx ,D
Ctl
AvgRx , D

data
AvgRx , and t

data
Rx are the control bits receiving

time, the average received control data, the average received
data, and data bits receiving time, respectively. The tRx is
the total receiving time of control and data traffic during the
learning period.

IRx = tRx ∗ (PRx/Vin)/1000 (17)

IRx denotes the current used for receiving control and data
traffic during the learning period, where PRx represents the
power used for receiving control and data traffic during
the learning period, and Vin indicates the transceiver input
voltage.

tidle = tLp − tCtlTx − t
data
Tx − tRx (18)

tidle is an idle time during the learning period, which is getting
from subtracting the control and data traffic transmission
time period, including total reception time from the learning
period. While tLP indicates the learning period.

Iidle = tidle ∗ (Pidle/Vidle)/1000 (19)

Pidle andVidle are the power and voltage used during idle time,
respectively where the Iidle is the current used during idle time
period.

I = ICtlTx + I
data
Tx + IRx + Iidle (20)

I is the total used current during transmission, reception, and
idle periods.

Iproc = tLp ∗ (Pproc/Vsystem)/1000 (21)

Iproc and Pproc indicate the current and power used during
processing, respectively. Assume that the processing energy
consumption per time unit is constant.

ERBC = (1− SDF) ∗ ERBC − I − Iproc (22)

ERBC and SDF is the estimate residual battery capacity and
self-discharge factor, respectively.

NELT = ERBC ∗ tLp/I (23)

NELT denotes the node estimate lifetime. It is calculated
through estimate residual battery capacity, learning period,
and total used current
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FIGURE 4. Graph used for RL-based SDWSN experimental work.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP AND PLATFORM
We have performed our experiments on the real-testbed using
Python 3.0. Raspberry Pi 3 has used that is low power
and low-cost device with small size single-board computer.
In the experiments, the ad-hoc network is developed by using
802.11ac wireless LAN. Each node is connected to its neigh-
boring node through the wireless LAN. In our experimental
scenario, we used fourteen nodes, all in the same location, and
logical distances are used to place the graph instead of real
deployment. The graph used for experimental work is shown
in Figure 4. During experimental work, the energy consump-
tion is calculated through simulation because Raspberry Pi
could not directly measure the remaining battery capacity
of nodes. The energy consumption model has explained in
section 5. The simulation parameters are the same as those
used for the experimental work based on RL, as given in
section 6.2.

B. EVALUATION METRICS
In this paper, we consider two metrics for results evaluation,
as describe below:

1) NETWORK LIFETIME (LT)
It is a time duration until the last node (the sink is not
reachable) dies.

2) CONVERGENT RATE
The rate at which the convergent sequence of a network
approaches to its limit.

C. RESULTS AND DISCUSSION
We conducted experiments to evaluate the performance of
RL-based SDWSN and compare it with RL-based routing
techniques. In the graphical representation, we use some
general labels for the depiction of each combination curve

instead of a full technique name because RL-based routing
techniques names are too long. We try to write some tech-
niques names in the graphical representation as well, which
is possible. Each combination detail is given below:

1-1 → All accept - Epsilon greedy selection.
1-2 → All accept - Adaptive e-greedy selection.
1-3 → All accept - e-multicriteria selection.
1-4 → All accept - Adaptive e-multicriteria selection.
2-1 → Distance based accepts - Epsilon greedy selection.
2-2 → Distance based accepts - Adaptive e-greedy

selection.
2-3 → Distance based accepts - e-multicriteria selection.
2-4 → Distance based accepts - Adaptive e-multicriteria

selection.
3-1 → Quality-conserving-aware accept - Epsilon greedy

selection.
3-2 → Quality-conserving-aware accept - Adaptive

e-greedy selection.
3-3 → Quality-conserving-aware accept - e-multicriteria

selection.
3-4 → Quality-conserving-aware accept - Adaptive

e-multicriteria selection.
4-1 → Load balancing-aware accept - Epsilon greedy

selection.
4-2 → Load balancing-aware accept - Adaptive e-greedy

selection.
4-3 → Load balancing-aware accept - e-multicriteria

selection.
4-4 → Load balancing-aware accept - Adaptive

e-multicriteria selection.
Each combination is composed of a request handling

method (that handles the control packets) and neighbor selec-
tion method, which selects the next forwarder for sending
data packets. In request handling methods, three differ-
ent methods were proposed [12] that include ‘‘Distance-
Based Accept’’, ‘‘Quality-Conserving-Aware Accept,’’ and
‘‘Load-Balance-Aware accept’’. One traditional method,
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TABLE 1. Experimental constant parameters.

TABLE 2. Experimental variable parameters.

‘‘All accept’’ is also presented. However, in the neighbor
selection side, three different methods are also proposed that
include ‘‘Adaptive epsilon greedy selection’’, ‘‘multicrite-
ria epsilon greedy selection,’’ and ‘‘Adaptive multicriteria
epsilon greedy selection’’. One traditional method, ‘‘Epsilon
greedy selection’’ is also explained.

The first request handling methods is based on distance.
It limits the number of forwarders to reduce energy con-
sumption. Each node tries to build a path through that node,
which is closest to a sink, and mathematical detail is given
in [12]. In the quality conserving aware handling request,
the degradation of QoS is considered before accepting the
neighboring node request. The acceptance probability of new
requesting nodes depends on the effect on their acceptance
on the path estimation lifetime (PELT) of already accepted
neighbors. The mathematical work is explained in [12].
However, the last request handling method is ‘‘Load balance
aware accept’’. In this technique, each node accepts the neigh-
boring request according to its load, leading to an increase in
the network lifetime and PDR. A node with fewer follow-
ers and higher nodes estimate lifetime (NELT) compared to
their neighbors is more likely to provide higher PELT to the
requesting node and should be a high probability of accepting
the neighboring request. The complete detail is given in [12].

However in neighbor selection methods, the adaptive
epsilon greedy used dynamic epsilon and optimal conver-
gence factor. Optimal convergence factor ( Qcf ) calculates
the ratio between the highest Q-value to the highest node
lifetime. Qcf goes to increase with the passage of time and
when it is equal to 1, then an optimal path is found. When
the Qcf factor is close to 1, then the search may stay in local
minimum. A random search is used to discover a better route
which is close to optimal (that depends on required accuracy)
route. If 1 − Qcf is less than the required accuracy then

the near-to-optimal route is found that requires the future
changes. The mathematical detail is given in [12]. The sec-
ond method for neighboring node selection was Multicriteria
epsilon greedy selection. This method operates with three
different scenarios.
• A random selection among an epsilon ∈ fraction of all
candidates.

• Greedy selection among a 1 − ∈2 fraction of candidates
with the product (QP ) of highest Q-value (Qhighest ), and
Path Estimate LifeTime (PELT).

• Greedy selection among a 1 − ∈2 fraction of candidate
with the highest composed matric value of three param-
eters (i.e., Node estimate lifetimeNELT , distance to sink
(D_To_Sink), and number of hops (H_To_Sink)).

Three parameters NELT , D_To_Sink , and H_To_Sink ,
are used for the selection of forwarder, which is called
weight-based selection. In weight-based selection,W_NELT
is the weight of a lifetime of the neighbor node. The higher
W_NELT can support to forward the additional data traffic.
W_Dist is the weight of the euclidian distance of neighbor to
the sink. The lower W_Dist neighbor node can save energy
because of low distance and has more chances to choose
that path. W_Hops is the weight of hop counts to sink. The
lowerW_Hops can also save the energy and likely to choose
that path. A detailed explanation is given in [12]. However,
the last neighbor selection method is adaptive multicriteria
epsilon greedy selection. In this technique, dynamic epsilon
is used for neighbor selection instead of the fixed epsilon
that the RL agent use for exploration. The whole detail is
given in [12].

In our paper, the experimental results are analyzed using
different metrics and compared with RL-based techniques for
WSN (all techniques are explained above), as described in the
following subsections.
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FIGURE 5. Comparison of RL-based SDWSN and RL-based WSN routing.

1) COMPARISON OF RL-BASED ROUTING FOR SDWSN AND
RL-BASED DIFFERENT TECHNIQUES FOR WSN
Firstly, we compared the RL-based WSN routing perfor-
mance with RL-based SDWSN routing, as shown in Figure 5.
From graphical representation, it can be seen that the perfor-
mance of RL-based SDWSN routing is better than RL-based
WSN routing. In RL-based WSN routing, each node learns
the routing path through the information of neighboring
nodes. Each node shares the control information with its
neighboring nodes and selects a forwarding node to send
the data packets to the controller/sink. It takes a long time
to learn the path. However, in RL-based SDWSN routing,
the controller has information of the whole network. In the
beginning, the controller generates a list of all possible rout-
ing paths (routing tables) through STP, and the controller
selects a routing table from the list to get a reward in the form
of PELT loss. Four reward functions are used for RL-based
SDWSN experiments, namely RF-1, RF-2, RF-3, and RF-4.
In Figure 5,the graphical representation shows that RF-4
based SDWSN experiments have the longest lifetime because
it calculates the average weighted EPLT loss. The weighted
parameter used in the reward function is the distance of each
node to sink, which helps to make the reward function more
efficient as compared to RF-1 and RF-2. However, the accu-
mulative loss is taken in RF-3 and RF-4 is the average loss
that gives higher Q-value.

2) COMPARISON OF RL-BASED ROUTING FOR SDWSN WITH
DISTANCE-BASED MSTs AND DIFFERENT TECHNIQUES OF RL
In this scenario, the Distance-based Minimum Spanning
Trees (MSTs) are used as routing tables in RL-based
SDWSN routing. The graphical representation shows that
the RL-based SDWSN routing with Distance-Based MSTs
outperforms. Here the distance-based MST gives the low-
cost routing path in terms of the shortest distance. MST
provides few routing paths. It means that after a few epochs,
the controller learns the optimal path in a short time and
uses the shortest distance for sending the data packets, con-
suming less energy. As a result, it improves the network

FIGURE 6. Comparison of distance-based MST-SDWSN and RL-based WSN
network routing.

performance in terms of lifetime. It has shown from Figure 6
that the RL-based SDWSN experiment (named as distance-
based MST-SDWSNRF-1, 2, 3, and 4) gives better perfor-
mance as compared to RL-basedWSN techniques because of
shortest distance, low control traffic, and quick routing path
established by centralized control.

FIGURE 7. Comparison of hop-based MST-SDWSN and RL-based WSN
network routing.

3) COMPARISON OF RL-BASED ROUTING FOR SDWSN WITH
HOP-BASED MSTs AND DIFFERENT TECHNIQUES OF RL
In this section, the controller finds the routing paths through
hop-based MST and compares the performance of RL-based
SDWSN with RL-based WSN techniques as shown in
Figure 7. The experimental results shows that RL-based
SDWSN outperforms. In RL-based SDWSN, the routing path
is found through hop-based MST. It gives the routing paths
list that has a minimum number of hops from each node to
the sink/controller.

Form the list of routing paths, the RL agent selects the
best routing table based on the received reward that is in the
form of EPLT loss. Hop-based MST gives a better routing
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path because each node follows a path with a minimum
number of hops. In results, the processing energy consump-
tion of relaying nodes has reduced that leads to enhance
the network performance in terms of lifetime. The graphical
results show that RL-based SDWSN experiments (named
as SDWSNRF-1, 2, 3, and 4) give better performance as
compared to RL-based WSN techniques due to less control
traffic exchange and quick routing path established by SDN
controller management and balanced network.

4) COMPARISON OF DISTANCE-BASED AND HOP
BASED MSTs FOR SDWSN
For generating MSTs, two factors are used: the first is a dis-
tance, and the second is the number of hops. SDN controller
selects an MST (that used as a routing table) from the MSTs
list and broadcasts it to all nodes. It has been observed from
the graphical representation that the performance of hop-
based MSTs SDWSN gives better performance as compared
to distance-based MSTs SDWSN in terms of the network,
as shown in Figure 8 because the hop-basedMST balances the
network nodes energy more efficiently. Each node (hop) also
reduces the processing energy consumption due to the min-
imum number of hops from source to destination. Besides,
the load on the relaying node becomes a balance that leads to
enhanced network lifetime. Hence hop-based MSTs SDWSN
improves the network lifetime by 3% compared to distance-
based MSTs SDWSN.

FIGURE 8. Comparison of distance-based MST-SDWSN and hop based
MST-SDWSN network routing.

5) COMPARISON OF RL-BASED SDWSN AND DIFFERENT RL
TECHNIQUES PERFORMANCE WITH DIFFERENT DATA RATES
In this section, we consider the data rate as a comparison
parameter to observe the network lifetime. In the RL-based
SDWSN experiment, data rates of 100 and 1000 bytes are
used to analyze the data effect on network lifetime and
compared with RL-based different techniques using the data
rate of 100 bytes. From the graphical representation, we can
see that the network performance of RL-based SDWSN is
higher than that of RL-based different techniques at data

FIGURE 9. Network performance comparison with 100 and 1000 bytes
data rate.

FIGURE 10. Comparison of RL-based techniques for WSN and RL-based
SDWSN network convergence rate.

rates of 100 and 1000 bytes, as shown in Figure 9. Even
the performance of RL-based SDWSN with the data rate
of 1000 bytes is better than RL-based different techniques
with a data rate of 100 bytes in terms of network lifetime
because the centralized controller in SDWSN observes the
network globally. In SDWSN, the SDN controller is also
intelligent and learns from previous actions and selects the
best path/RT. In SDWSN, the control traffic is also reduced as
compared to RL-based different techniques, where each node
learns the routing path to select the next forwarder through the
information of neighboring nodes. The RL-based SDWSN
reduces the network’s energy consumption and improves the
network lifetime due to the low control traffic.

6) CONVERGENCE RATE COMPARISON OF RL-BASED
TECHNIQUES FOR WSN AND RL-SDWSN
In this section, the convergence rate is compared between
RL-based techniques for WSN and RL-based SDWSN.
RL-based SDWSN can quickly establish the routing paths
due to the centralized controller, which manages the network
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topology and sends the routing table to all the underlying
network. However, in the RL-based network, each node finds
the forwarder node locally and makes several attempts to find
the best forwarder, resulting in the performance degradation
of the convergence rate.

The experimental results are shown in Figure 10. It is
seen that the RL-based SDWSN converges faster than the
RL-based techniques for WSN, which needs more itera-
tions for the convergence. Since SDWSN takes the routing
decisions through the centralized SDN controller that takes
actions based on the intelligent SDN controller. From the
graphical representation, it can be seen that the SDWSN-RF4
has a faster convergence rate among all the proposed tech-
niques, and the worst is the combination of 1-1, which is the
RL-based WSN technique.

VI. CONCLUSION
Routing plays an important role in WSNs energy optimiza-
tion. Traditional routing protocols are not developed to meet
the specific WSN requirements. Therefore, the combination
of both SDN and RL can be a promising solution to enhance
network performance. In this paper, SDN controller uses RL
to learn network behavior and takes action based on the
previous reward. SDN controller generates the routing table
obtained from the spanning tree protocol (STP). STP makes
a list of routing paths (also known as RT) in three ways as
shown in the given graph G: the first is used to generate
all possible routing paths, the second generates the MST
(as a routing path) through distance, and the third one is
used to generate MST according to the number of hops. SDN
controller selects one RT from the list and broadcasts it to all
nodes where each node follows the RT and sends the node sta-
tus data to the controller. To optimize the routing in SDWSN,
RL is used that learns from the previous actions. Against each
action, the controller receives the reward in terms of EPLT
loss. Four different reward functions are proposed. The agent
calculates the reward through the selected reward function
and selects the next action (RT selection from the list). To get
the reward,EPLT andENLT are used. In the proposed reward
functions, the first one gives the global EPLT loss. The sec-
ond reward function determines the average loss of theEPLT ,
and the third reward function uses the weighted parameter
(i.e., the distance of each node to sink) in global. Though,
the average loss of EPLT is determined by a fourth reward
function.

In SDWSN, the controller controls the whole network. Due
to centralized control, each node does not need to share its
control data with its neighboring nodes. Each node receives
the control data (RT) from the controller to globally view the
whole network and provides an efficient routing solution by
learning network behavior through Q-learning. These results
are compared with RL-based WSN techniques results. The
experimental results show that RL-based SDWSN outper-
forms in terms of network lifetime and improving 23% to
30% as compared to RL-based WSN. It gives a fast network
convergence rate as compared to RL-based WSN.
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