
Received November 10, 2020, accepted December 18, 2020, date of publication December 22, 2020,
date of current version January 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3046522

Hybrid Event-Triggered Filtering for
Nonlinear Markov Jump Systems
With Stochastic Cyber-Attacks
WENQIAN XIE 1, YONG ZENG1, KAIBO SHI 2, (Member, IEEE),
XIN WANG 3, AND QIANHUA FU 4
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Information Science and Engineering, Chengdu University, Chengdu 610106, China
3College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
4School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

Corresponding author: Yong Zeng (zengyong99@uestc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61703060, and in part by the Key
Natural Science Foundation of Universities of Anhui Province under Grant KJ2019A0589.

ABSTRACT This paper studies the problem of H∞ filtering for nonlinear Markov jump systems based on
Takagi-Sugeno model. Firstly, we propose a hybrid event-triggered mechanism with an adjustable threshold,
which not only helps to save more limited communication resources, but also excludes Zeno behavior
while preserving the merits of continuous triggering. Secondly, given the threat of cyber-attacks to network
security, a stochastic variable is introduced to describe the considered deception attacks in filter design.
Thirdly, a less restrictive Lyapunov-Krasovskii functional (LKF), which is not required to be continuous and
positive definite in a triggering interval, is constructed to establish sufficient condition on the exponential
mean-square stability for the filtering error system with a weightedH∞ performance. Meanwhile, co-design
of the desired filter and event-triggered mechanism is achieved. Finally, a tunnel diode circuit system is
provided to illustrate the effectiveness and advantage of the obtained results.

INDEX TERMS Markov jump systems, Takagi-Sugeno (T-S) fuzzy systems, adaptive event-triggered
mechanism, H∞ filtering, cyber-attacks.

I. INTRODUCTION
With the rapid development of technologies on com-
puter networks and communication, networked control sys-
tems (NCSs) have attracted much attention in recent decades
[1]–[4]. The signal transmission among system components,
such as plant, sensor, controller, actuator, ect., is conducted
through communication networks. Communication networks
are facing big challenge because of the increasing complexity
of NCSs and ensuing frequent information interaction. How
to develop effective communication protocols for reducing
the communication workload has thus been a hotspot.

Event-triggered communication mechanism (ETCM) is
introduced to save limited communication resources. When
an ETCM is applied in NCSs, it plays an important role
in determining the update of target signal. The signal is
updated only if a predefined condition is violated. Thus, com-
pared with the periodic sampling method, ETCM can greatly
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reduce unnecessary data update. As its efficiency in avoiding
redundant packet transmission, ETCM has been intensively
studied and widely used in the research of control and fil-
tering problem [5]–[12]. For a feasible ETCM, it should
guarantee a positive minimum inter-event time. This is an
essential prerequisite. As stated in [13], if a positiveminimum
inter-event time can not be ensured, an infinite number of
events maybe generated in a finite time interval, which is
so-called Zeno behavior [14] and make the ETCM of no prac-
tical significance. Therefore, sampled-data-based ETCM has
been proposed to exclude the Zeno behavior [15]–[19]. For
example, the authors in [17] proposed a discrete ETCM that
depends on nonuniformly sampled state to investigate the sta-
bilization problem of neural-network-based control systems,
the triggering condition is only verified at some nonuniform
sampling instants. Obviously, a positive minimum inter-event
time is guaranteed by the nonzero lower bound of sampling
interval. To further reduce the number of transmitted data
packets, a periodic sampling data based ETCM, the threshold
of which is adaptively adjustable, was developed in [16] for
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studying the H∞ filtering problem of nonlinear NCSs. Noted
that the ETCM based on sampling avoids Zeno behavior
but does not use all the available information. It is likely to
miss some key measurements if the sampling period has not
been set properly, thereby affect the filtering effect. To take
advantage of the continuous-time measurements and guar-
antee a positive lower bound on the inter-event intervals,
hybrid ETCMs were put forward in [20]–[22] by introducing
a constant waiting time and combining it with continuous
event-triggering condition. Under this mechanism, each time
the target signal is updated, a new round of continuous
evaluation of the event-triggering condition is carried out
after predetermine time. Thus, hybrid ETCM contributes to
transmitting data packetmore accuratelywhile avoiding Zeno
phenomenon.

It is well known that nonlinearity is a common feature
of many practical systems. Due to the great capacity in
approximating nonlinear systems by a set of linear systems
via IF-THEN rules, T-S fuzzy model has been widely applied
in the study of nonlinear systems [23]–[26]. In addition, unex-
pected changes may happen in the plant structure because
of the existence of component failures and the other abrupt
phenomena. Tomodel such situation appropriately and obtain
more applicable results, Markov jump parameters have been
intensively considered [27]–[31]. Moreover, as one of the
fundamental issues in the field of control, filtering problem
has always been concerned [32]–[35]. Especially, given that
unreliable links, which could significantly degrade the perfor-
mance of NCSs, exist in communication channels inevitably,
a large number of results of filter design under the influence
of various network-induced factors have been reported in the
literature [36]–[40]. To mention a few, in [36], the reliable
L2 − L∞ asynchronous filtering problem was studied for
the T-S fuzzy Markov jump system with sensor failures.
By designing an event-based filter, the distributed filter-
ing problem over wireless sensor networks with stochastic
measurement fading was addressed in [39]. Recently, owing
to the openness of communication channel, cyber-attacks
have become the major threat to network security [41]–[43].
Filtering problems considering the impact of different
cyber-attacks have thus drawn increasing attention [44]–[46].
However, to the authors’ knowledge, no results are available
in the literature on the hybrid and adaptive ETCM-based fil-
tering for nonlinear Makov jump systems with cyber-attacks,
which is the motivation of this paper.

Inspired by the above discussion, this paper focuses on
addressing the H∞ filtering problem for nonlinear Markov
jump systems based on T-S fuzzymodel. There are threemain
contributions:

1) To save more limited communication resources,
a hybrid ETCM with an adjustable threshold is pro-
posed. This mechanism can not only preserve the mer-
its of continuous triggering, but also exclude Zeno
behavior.

2) Considering the threat of cyber-attacks to network
security, a stochastic variable is introduced to

describe the considered deception attacks in filter
design.

3) The constructed LKF is neither continuous nor positive
definite in a triggering interval, less conservative result
is thus expected to be obtained.

Notations: The notations used throughout this paper are
fairly standard. sym{M} = M +MT . col{·} denotes a column
vector. diag{·} denotes a diagonal matrix. λmax(M ) (λmin(M ))
denotes the maximum (minimum) eigenvalue of matrix M .
I and 0 denote the identity matrix and zero matrix with
appropriate dimensions, respectively. In, 0n and 0n×m denote
n×n identity matrix, n×n zero matrix and n×m zero matrix,
respectively. Notation ‖ ·‖ denotes the Euclidean norm. Pr{·}
denotes the occurrence probability of a event. E{·} denotes
the mathematical expectation. Matrices, if their dimensions
are not explicitly stated, are assumed to have compatible
dimensions.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
Consider the following nonlinear Markov jump system
modeled by a T-S fuzzy system.

Plant rule i: IF ϑ1(t) is θi1, ϑ2(t) is θi2, · · · , and ϑr (t) is θir ,
THEN 

ẋ(t) = Ai(v(t))x(t)+ Bi(v(t))ω(t)
y(t) = Ci(v(t))x(t)
z(t) = Ei(v(t))x(t)+ Fi(v(t))ω(t)

(1)

where θi` (i ∈ N = {1, 2, · · · ,N }, ` ∈ {1, 2, · · · , r})
is the fuzzy sets with N IF-THEN rules, and ϑ`(t) is the
premise variable. x(t) ∈ Rdx , y(t) ∈ Rdy , z(t) ∈ Rdz and
ω(t) ∈ Rdω are the state vector, the measurement output,
the signal to be estimated and the disturbance belonging to
L2[0,∞), respectively. Ai(v(t)), Bi(v(t)), Ci(v(t)), Ei(v(t))
and Fi(v(t)) are known matrices with compatible dimensions.
{v(t), t ≥ 0} is a right-continuous Markovian chain on a
complete probability space (�,F , {F}t≥0,P). It takes values
in M = {1, 2, · · · ,M} with generator 5 = (πpq)M×M
(p, q ∈M) given by

Pr{v(t +1t) = q|v(t) = p}

=

{
πpq1t + o(1t), q 6= p
1+ πpp1t + o(1t), q = p

where 1t > 0, lim
1t→0

o(1t)
1t = 0. M is the number of mode.

πpq ≥ 0 (q 6= p) is the transition rate from mode p at time t
to mode q at time t +1t , and πpp = −

∑M
q=1,q6=p πpq.

Through the singleton fuzzifier, product inference and the
center average defuzzifier, the T-S fuzzy system (1) with
v(t) = p is inferred as

ẋ(t) =
N∑
i=1

λi(ϑ(t))
(
Aipx(t)+ Bipω(t)

)
y(t) =

N∑
i=1

λi(ϑ(t))
(
Cipx(t)

)
z(t) =

N∑
i=1

λi(ϑ(t))
(
Eipx(t)+ Fipω(t)

)
(2)
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where ϑ(t) = col{ϑ1(t), ϑ2(t), · · · , ϑr (t)}, λi(ϑ(t)) denotes
the normalized membership function satisfying λi(ϑ(t)) =∏r

`=1 θi`(ϑ`(t))∑N
i=1

∏r
`=1 θi`(ϑ`(t))

≥ 0 and
∑N

i=1 λi(ϑ(t)) = 1. θi`(ϑ`(t)) is

the grade of membership of ϑ`(t) in θi`. In the following,
λi(ϑ(t)) is written as λi for brevity.

In order to save the limited communication resources,
we adopt an event generator to determine whether the current
measurement output y(t) should be transmit or not. ik is
denoted as the last trigger instant, then the next trigger instant
ik+1 is determined by

ik+1 = min{t ≥ sk |(y(t)− y(ik ))T9(y(t)− y(ik ))

> ψ(ik )yT (ik )9y(ik )} (3)

where 9 > 0 is a weighting matrix to be determined,
ψ(ik ) = ψ1(1 + ψ2 exp(−‖y(ik )‖)) is a dynamically
adjustable threshold with constants ψ1, ψ2 ∈ [0, 1). sk =
ik + τ where τ > 0 is silent time.
Remark 1: It is worth noting that ETCM (3) is a new

hybrid and adaptive event-triggered mechanism. On the one
hand, after each time the measurement output y(t) has been
updated, event generator comes to a halt for τ time and then
continuously evaluates the triggering condition in (3). Unlike
the sampled-data-based ETCM, hybrid ETCM is based on
continuous-time measurements. Thus, this kind of ETCM
contributes to transmitting data packet more accurately while
excluding Zeno behavior. On the other hand, threshold ψ(ik )
is adaptively adjustable. For example, if ‖y(ik+1)‖ > ‖y(ik )‖,
ψ(ik+1) < ψ(ik ) can be derived, i.e., in this case, ETCM
(3) adopts smaller ψ(ik+1) to set a high communication
frequency for transmitting as many valuable measurement
output signals as possible. And if ‖y(ik+1)‖ < ‖y(ik )‖,
ψ(ik+1) > ψ(ik ) can be derived, i.e., larger ψ(ik+1) is
adopted to set a low communication frequency for reducing
the communication burden.
Remark 2: When ψ1 = ψ2 = 0, ψ(ik ) ≡ 0, ETCM

(3) reduces to the periodic sampling mechanism with period
τ . When ψ1 6= 0 and ψ2 = 0, ψ(ik ) = ψ1, ETCM
(3) reduces to the hybrid event-triggered mechanism with
static threshold. Thus, compared with the event-triggered
mechanism proposed in [20], [21], ETCM (3) is more
general.

Additionally, due to the openness of communication chan-
nels, it is vulnerable to cyber-attacks, and cyber-attacks are
the major threat to network security. Thus, the influence
of deception attacks is considered in the transmission of
measurement output y(t). When the network is subject to
deception attacks, the transmitted signal is fully substituted
by the attack signal f (y(t)). Considering that the successful
cyber-attacks occur randomly because of the protection of
hardware or software, ect, a stochastic variable β(t), which
is Bernoulli distributed and takes value in the set {0, 1},
is introduced, and Pr{β(t) = 1} = β, where β denotes the
probability that deception attacks does not occur.

Therefore, under the influence of event-triggered mecha-
nism and stochastic deception attacks, the actualmeasurement

output transmitted to the filter is presented as

ŷ(t) = β(t)y(ik )+ (1− β(t))f (y(t)), t ∈ [ik , ik+1) (4)

Remark 3: In (4), when β(t) = 1, the actual measurement
output transmitted to the filter is y(ik ), in other words, there is
no cyber-attack occurring in the transmission of signal. When
β(t) = 0, ŷ(t) = f (y(t)), which means that the network
is subject to deception attack, malicious signal f (y(t)) fully
substitute the measurement output.

The following full-order filter is designed for system (2).
˙̂x(t) =

N∑
j=1

λj(ϑ(t))
(̂
Ajp̂x(t)+ B̂jp̂y(t)

)
ẑ(t) =

N∑
j=1

λj(ϑ(t))
(
Êjp̂x(t)

)
, t ∈ [ik , ik+1)

(5)

where x̂(t) and ẑ(t) are the estimation of x(t) and z(t), respec-
tively. Âjp, B̂jp and Êjp are the filter gains to be determined.

By introducing

α(t) =

{
1, t ∈ [ik , sk );
0, t ∈ [sk , ik+1),

τ (t) = t − ik ≤ τ, t ∈ [ik , sk ),

e(t) = y(ik )− y(t), t ∈ [sk , ik+1),

y(ik ) can be rewritten as

y(ik ) = α(t)y(t − τ (t))+ (1− α(t))(e(t)+ y(t)) (6)

Furthermore, denoting x̃(t) = col{x(t), x̂(t)}, z̃(t) = z(t)−
ẑ(t), we can obtain the following filtering error system based
on (2), (4), (5) and (6).

˙̃x(t) =Aijpλ̃x(t)+ βg(α(t), x̃(t), x̃(t − τ (t)), e(t))

+ (1− β)Cjpλf (y(t))+Dipλω(t)

+ (β(t)− β)g(α(t), x̃(t), x̃(t − τ (t)), e(t))

− (β(t)− β)Cjpλf (y(t))
z̃(t) = Eijpλ̃x(t)+ Fipλω(t), t ∈ [ik , ik+1)

(7)

where g(α(t), x̃(t), x̃(t − τ (t)), e(t)) = α(t)Bijpλ̃x(t − τ (t))+
(1− α(t))(Bijpλ̃x(t)+ Cjpλe(t)) and

Aijpλ =

N∑
i=1

N∑
j=1

λiλjAijp, Aijp =

[
Aip 0
0 Âjp

]

Bijpλ =
N∑
i=1

N∑
j=1

λiλjBijp, Bijp =
[

0 0
B̂jpCip 0

]

Eijpλ =
N∑
i=1

N∑
j=1

λiλjEijp, Eijp =
[
Ei −Êj

]
Cjpλ =

N∑
j=1

λjCjp, Cjp =
[

0
B̂jp

]

Dipλ =

N∑
i=1

λiDip, Dip =

[
Bip
0

]
, Fipλ =

N∑
i=1

λiFip.
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Before developing the main results, the following
assumption and definitions are needed.
Assumption 1: The attack signal function f (y(t)) =

col{f1(y1(t)), f2(y2(t)), · · · , fdy (ydy (t))} is assumed to be
nonlinear and satisfy the following condition for any
scalar ς 6= 0,

`−i ≤
fi(ς )
ς
≤ `+i , (i = 1, 2, · · · , dy) (8)

where `−i and `+i are known constants. In addition, we denote
`i = max{|`−i |, |`

+

i |} and L = diag{`1, `2, · · · , `dy}.
Remark 4: Different from the existing assumptions on

deception attack function in [42], [44], the constants `−i ,
`+i in (8) can be positive, negative and zero, which means
that this type of deception attack function contains Lipschitz
bounded function as its special case. Thus, the deception
attack function considered here is more general.
Definition 1: The filtering error system (7) is said to be

exponentially mean-square stable with ω(t) ≡ 0 if there exist
positive scalars a and b such that

E{‖̃x(t)‖2} ≤ ae−btE{‖̃x(0)‖2}.

Definition 2: For given positive scalars ρ and γ , the filter-
ing error system (7) is said to be exponentially mean-square
stable with a weighted H∞ performance γ if system (7) is
exponentially mean-square stable and under the zero initial
condition, the following inequality holds for any non-zero
ω(t) ∈ L2[0,∞),

E
{∫
∞

0
e−ρ s̃zT (s)̃z(s)ds

}
≤ γ 2

∫
∞

0
ωT (s)ω(s)ds.

III. MAIN RESULTS
In this section, the exponential mean-square stability analysis
for system (7) is conducted firstly, sufficient condition under
which system (7) is exponentially mean-square stable and
satisfies a weightedH∞ performance γ is presented in Theo-
rem 1. Then, based on the proposed condition in Theorem 1,
a filter design method is provided in Theorem 2. For conve-
nience, we firstly define the following block entry matrices:

Ii = [02dx ,(i−1)2dx , I2dx , 02dx ,(5−i)2dx+dy+dω ]

(i = 1, 2, · · · , 5)

Is1 = [0dx ,(s−1)2dx , Idx , 0dx , 0dx ,(5−s)2dx+dy+dω ]

Is2 = [0dx ,(s−1)2dx , 0dx , Idx , 0dx ,(5−s)2dx+dy+dω ]

(s = 1, 2, 3)

I6 = [0dy,10dx , Idy , 0dy,dω ], I7 = [0dω,10dx , 0dω,dy , Idω ]

J1 = [I2dx , 02dx ,2dx+2dy+dω ]

J2 = [02dx , I2dx , 02dx ,2dy+dω ]

J11 = [Idx , 0dx ,3dx+2dy+dω ]

J12 = [0dx , Idx , 0dx ,2dx+2dy+dω ]

J21 = [0dx ,2dx , Idx , 0dx ,dx+2dy+dω ]

J22 = [0dx ,3dx , Idx , 0dx ,2dy+dω ]

J3 = [0dy,4dx , Idy , 0dy,dy+dω ]

J4 = [0dy,4dx+dy , Idy , 0dy,dω ], J5 = [0dω,4dx+2dy , Idω ],

and the other notations are defined as
$1(t) = τ (t )̃x(t), $2(t) = τ (t) ˙̃x(t)

η1(t) = col {̃x(t), x̃(t − τ (t))}

η2(t) = col {̃x(t), ˙̃x(t), x̃(t − τ (t)),$1(t),$2(t)}

η3(t) = col {̃x(t), ˙̃x(t), x̃(t − τ (t)),$1(t),$2(t), f (y(t)),

ω(t)}

η4(t) = col {̃x(t), ˙̃x(t), e(t), f (y(t)), ω(t)}

Cip = [Cip, 02dx ], J (t) = z̃T (t )̃z(t)− γ 2ωT (t)ω(t).

Theorem 1: For given scalars τ , ψ1, ψ2, ρ, µ ≥ 1 satisfy-
ing lnµ − ρτ < 0, system (7) is exponentially mean-square
stable with a weighted H∞ performance γ if there exist posi-
tive definite matrices9,Pp, Sm,Q, positive definite diagonal
matrix V = diag{v1, v2, · · · , vdy}, arbitrary matrices R, H,
G, K1 and K2, such that ∀i, j ∈ N (j > i), p,m ∈ M,
the following inequalities hold:[

Uiip(0) V T
iip

∗ −I

]
< 0 (9)Uiip(τ ) V T

iip
√
τW T

∗ −I 0
∗ ∗ −eρτQ

 < 0 (10)

Uijp(0)+Ujip(0) V T
ijp V T

jip
∗ −I 0
∗ ∗ −I

 < 0 (11)


Uijp(τ )+Ujip(τ ) V T

ijp V T
jip

√
2τW T

∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −eρτQ

 < 0 (12)

[
Miim N T

iim
∗ −I

]
< 0 (13)Mijm +Mjim N T

ijm N T
jim

∗ −I 0
∗ ∗ −I

 < 0 (14)

Sm ≤ Pp, Pp ≤ µSm (15)

where Uijp(τ (t)) = U 1
ijp + Uip(τ (t)), Vijp = EijpI1 + FipI7,

W = G[IT1 , I
T
3 ]

T and Mijm = M 1
ijm + Mim, Nijm =

EijmJ1 + FimJ5 with
U 1
ijp

= sym{(IT1 K
T
1 + IT2 K

T
2 )(−I2 +AijpI1 + βBijpI3

+(1− β)CjpI6 +DipI7)}
Uip(τ (t))

= (τ − τ (t))IT2 QI2 + sym{[IT1 , I
T
2 , I

T
3 , I

T
4 , I

T
5 ]

×H[IT4 − τ (t)I
T
1 , I

T
5 − τ (t)I

T
2 ]

T
} +

M∑
q=1

πpqIT1 PqI1

+(τ − τ (t))sym{[IT2 , I
T
1 + IT5 ]R[IT1 , I

T
3 , I

T
4 ]

T
+ [IT1

−IT3 , I
T
4 ]R[IT2 , 0, I

T
1 + IT5 ]

T
+ ρ[IT1 − IT3 , I

T
4 ]R[IT1 ,

IT3 , I
T
4 ]

T
} + sym{IT1 PpI2 + e

−ρτ [IT1 , I
T
3 ]G

T (I1 − I3)
−[IT1 −I

T
3 , I

T
4 ]R[IT1 , I

T
3 , I

T
4 ]

T
}+ρIT1 PpI1−γ

2IT7 I7
−IT6 VI6 + C T

ipL
TVLCip
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M 1
ijm

= sym{(J T
1 KT

1 + J T
2 KT

2 )(−J2 + (Aijm + βBijm)
×J1 + βCjmJ3 + (1− β)CjmJ4 +DimJ5)}

Mim

= sym{J T
1 SmJ2} +

N∑
n=1

πmnJ T
1 SnJ1 + ρJ T

1 SmJ1

−γ 2J T
5 J5 − J T

3 9J3 − J T
4 VJ4 + J T

1 C T
imL

TVLCimJ1

+ψ1(J3 + CimJ1)T9(J3 + CimJ1).

Proof: Consider the following LKF for system (7):

V (t, v(t)) =
{
V1(t, v(t)), t ∈ [ik , sk )
V2(t, v(t)), t ∈ [sk , ik+1)

(16)

where V1(t, v(t)) = x̃T (t)P(v(t))̃x(t) + W1(t) + W2(t) and
V2(t, v(t)) = x̃T (t)S(v(t))̃x(t) with

W1(t) = (τ − τ (t))
∫ t

t−τ (t)
eρ(s−t) ˙̃xT (s)Q ˙̃x(s)ds

W2(t) = 2(τ − τ (t))

×

[
x̃(t)− x̃(t − τ (t))

$1(t)

]T
R

 x̃(t)
x̃(t − τ (t))
$1(t)


Firstly, we can easily check that W1(ik ) = W1(s

−

k ) =
W2(ik ) = W2(s

−

k ) = 0. Therefore, the relationship between
V1(t, v(t) and V2(t, v(t)) can be derived from (15) as

V2(sk , v(sk )) ≤ V1(s
−

k , v(s
−

k )) (17)

V1(ik , v(ik )) ≤ µV2(i
−

k , v(i
−

k )) (18)

Secondly, when t ∈ [ik , sk ), we denote v(t) = p. Then,
from α(t) = 1 and (7), E{ ˙̃x(t)} = Aijpλ̃x(t) + βBijpλ̃x(t −
τ (t))+ (1− β)Cjpλf (y(t))+Dipλω(t) can be obtained, and it
holds that

L V1(t, v(t))+ ρV1(t, v(t))+ J (t)

= 2̃xT (t)Pp ˙̃x(t)+
M∑
q=1

πpq̃xT (t)Pq̃x(t)+ ρx̃T (t)Pp̃x(t)

+(τ − τ (t)) ˙̃xT (t)Q ˙̃x(t)−
∫ t

t−τ (t)
eρ(s−t) ˙̃xT (s)Q ˙̃x(s)ds

−2
[
x̃(t)− x̃(ik )
$1(t)

]T
R

 x̃(t)
x̃(ik )
$1(t)


+2(τ − τ (t))

[
˙̃x(t)

x̃(t)+$2(t)

]T
R

 x̃(t)
x̃(ik )
$1(t)


+2(τ − τ (t))

[
x̃(t)− x̃(ik )
$1(t)

]T
R

 ˙̃x(t)
0

x̃(t)+$2(t)


+2ρ(τ − τ (t))

[
x̃(t)− x̃(ik )
$1(t)

]T
R

 x̃(t)
x̃(ik )
$1(t)


+(Eijpλ̃x(t)+ Fipλω(t))T (Eijpλ̃x(t)+ Fipλω(t))

−γ 2ωT (t)ω(t) (19)

Applying the well-known inequality 2XTY ≤ XTX+Y TY
and Jensen’s integral inequality, we can deduce the following
inequality for any appropriate dimensional matrix G.

−

∫ t

t−τ (t)
eρ(s−t) ˙̃xT (s)Q ˙̃x(s)ds

≤ τ (t)ηT1 (t)e
−ρτGTQ−1Gη1(t)

+ 2e−ρτηT1 (t)G
T (̃x(t)− x̃(t − τ (t))) (20)

In addition, from Assumption 1, it holds for any positive
definite diagonal matrix V that

yT (t)LTVLy(t)− f T (y(t))Vf (y(t)) ≥ 0 (21)

Besides, for arbitrary matrices H, K1 and K2 with com-
patible dimensions, it is easy to obtain the following two
equalities.

0 = 2ηT2 (t)H
[
$1(t)− τ (t )̃x(t)
$2(t)− τ (t) ˙̃x(t)

]
(22)

0 = 2E
{
(̃xT (t)KT

1 +
˙̃xT (t)KT

2 )(−˙̃x(t)+Aijpλ̃x(t)

+βBijpλ̃x(t − τ (t))+ (1− β)Cjpλf (y(t))

+Dipλω(t))
}

(23)

Combining (19)–(23), we have

E{L V1(t, v(t))+ ρV1(t, v(t))+ J (t)}

≤ ηT3 (t)
{ N∑
i=1

N∑
j=1

λiλjXijp(τ (t))
}
η3(t)

where Xijp(τ (t)) = Uijp(τ (t)) + τ (t)W T (eρτQ)−1W +

V T
ijpVijp.
By using Schur Complement and convex combination,

we can derive from (9)–(12) that
N∑
i=1

N∑
j=1
λiλjXijp(τ (t)) < 0,

i.e.,

E{L V1(t, v(t))+ ρV1(t, v(t))+ J (t)} ≤ 0 (24)

Similarly, when t ∈ [sk , ik+1), we denote v(t) = m. Then,
from α(t) = 0 and (7), E{ ˙̃x(t)} = (Aijpλ + βBijpλ )̃x(t) +
βCjpλe(t) + (1 − β)Cjpλf (y(t)) + Dipλω(t) can be obtained.
There holds that

E{L V2(t, v(t))+ ρV2(t, v(t))+ J (t)}

≤ E
{
2̃xT (t)Sm ˙̃x(t)+

M∑
n=1

πmñxT (t)Smx̃(t)

+ ρx̃T (t)Smx̃(t)− γ 2ωT (t)ω(t)

+ (Eijpλ̃x(t)+ Fipλω(t))T (Eijpλ̃x(t)+ Fipλω(t))

+ 2(̃xT (t)KT
1 +
˙̃xT (t)KT

2 )(−˙̃x(t)+Aijmλ̃x(t)

+ βBijmλ̃x(t)+ βCjmλe(t)+Dimλω(t)

+ (1− β)Cjmλf (y(t)))− eT (t)9e(t)
+ ψ1(e(t)+ y(t))T9(e(t)+ y(t))+ yT (t)LTVLy(t)

− f T (y(t))Vf (y(t))
}
≤ ηT4 (t)

{ N∑
i=1

N∑
j=1

λiλjYijm

}
η4(t)
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where Yijm = Mijm + N T
ijmNijm. By using Schur Comple-

ment, we can derive from (13) and (14) that
N∑
i=1

N∑
j=1
λiλjYij <

0, i.e.,
E{L V2(t, v(t))+ ρV2(t, v(t))+ J (t)} ≤ 0 (25)

When ω(t) ≡ 0, J (t) = z̃T (t )̃z(t) ≥ 0. Thus, it can be
derived from (24) and (25) that

E{L V1(t, v(t))+ ρV1(t, v(t))} ≤ 0 (26)

E{L V2(t, v(t))+ ρV2(t, v(t))} ≤ 0 (27)

For t ∈ [ik , ik+1), without loss of generality, we assume
t ∈ [sk , ik+1). DenoteT (0, t) as the triggered times over time
interval (0, t), T (0, t) ≤ t

τ
obviously. From (17), (18), (26)

and (27), we have
E{V (t, v(t))}= E{V2(t, v(t))}

≤ e−ρ(t−sk )E{V2(sk , v(sk ))}
≤ e−ρ(t−ik )E{V1(ik , v(ik ))}
≤ µT (0,t)e−ρtE{V1(0, v(0))}
≤ e(

lnµ
τ
−ρ)tE{V1(0, v(0))}.

Noting that lnµ − ρτ < 0, it holds that lnµ
τ
− ρ < 0, and

thus there exist a positive scalar ρ∗ such that E{V (t, v(t))} ≤
e−ρ

∗tE{V1(0, v(0))}. Moreover, we can obtain from (16) that
V2(t, v(t)) ≥ min

m∈M
{λmin(Sm)}‖̃x(t)‖2 and V1(0, v(0)) ≤

max
p∈M
{λmax(Pp)}‖̃x(0)‖2. Therefore, we have

E{‖̃x(t)‖2} ≤
max
p∈M
{λmax(Pp)}

min
m∈M
{λmin(Sm)}

e−ρ
∗tE{‖̃x(0)‖2}

That is to say, system (7) is exponentially mean-square stable.
When ω(t) 6= 0, similarly, from (17), (18), (24) and (25),

we have

E{V (t, v(t))} = E{V2(t, v(t))}

≤ e−ρ(t−sk )E{V2(sk , v(sk ))} −
∫ t

sk
e−ρ(t−s)E{J (s)}ds

≤ e−ρ(t−sk )E{V1(s−k , v(s
−

k ))} −
∫ t

sk
e−ρ(t−s)E{J (s)}ds

≤ e−ρ(t−ik )E{V1(ik , v(ik ))} −
∫ t

ik
e−ρ(t−s)E{J (s)}ds

≤ µe−ρ(t−ik )E{V2(i−k , v(i
−

k ))}

−

∫ t

ik
e−ρ(t−s)E{J (s)}ds

≤ µe−ρ(t−sk−1)E{V2(sk−1, v(sk−1))}

− µ

∫ ik

sk−1
e−ρ(t−s)E{J (s)}ds

−

∫ t

ik
e−ρ(t−s)E{J (s)}ds

≤ µT (0,t)e−ρtE{V1(0, v(0))}

−

∫ t

0
µT (s,t)e−ρ(t−s)E{J (s)}ds.

Under the conditions of V1(0, v(0)) = 0 and V2(t, v(t)) ≥ 0,
we can easily obtain∫ t

0
µT (s,t)e−ρ(t−s)E{̃zT (s)̃z(s)}ds

≤ γ 2
∫ t

0
µT (s,t)e−ρ(t−s)ωT (s)ω(s)ds. (28)

By multiplying both side of inequality (28) with µ−T (0,t),
we obtain∫ t

0
e−ρ(t−s)−T (0,s) lnµE{̃zT (s)̃z(s)}ds

≤ γ 2
∫ t

0
e−ρ(t−s)−T (0,s) lnµωT (s)ω(s)ds. (29)

where T (0, s) lnµ ≤ ρs because T (0, s) ≤ s
τ
and lnµ −

ρτ < 0. Thus, we further obtain∫ t

0
e−ρ(t−s)−ρsE{̃zT (s)̃z(s)}ds

≤ γ 2
∫ t

0
e−ρ(t−s)ωT (s)ω(s)ds. (30)

Integrating inequality (30) from t = 0 to t = +∞, it can
be deduced that∫

∞

0
e−ρsE{̃zT (s)̃z(s)}ds ≤ γ 2

∫
∞

0
ωT (s)ω(s)ds.

which means that system (7) satisfies a weighted H∞ perfor-
mance γ . This completes the proof.
Remark 5: The LKF constructed in (16) has the following

three features.
1) It is not required to be continuous since V (ik , v(ik )) 6=

V (i−k , v(i
−

k )) and V (sk , v(sk )) 6= V (s−k , v(s
−

k )).
2) The non-positive definiteness of V (t, v(t)) is allowed

since matrix R is arbitrary.
3) The available information on the sawtooth structure of

τ (t) is fully considered.
Base on these relaxation and consideration, less conserva-

tive result is expected to be obtained.
Theorem 2: For given scalars τ , ψ1, ψ2, ρ, µ ≥ 1 satisfy-

ing lnµ − ρτ < 0, system (7) is exponentially mean-square
stable with a weighted H∞ performance γ if there exist posi-
tive definite matrices9,Pp, Sm,Q, positive definite diagonal
matrix V = diag{v1, v2, · · · , vdy}, arbitrary matrices R, H,
G, K11, K12, K21, K22 Ãjκ , B̃jκ , Ẽjk (κ ∈ {p,m}) and any
invertible matrix K13, such that ∀i, j ∈ N (j > i), p,m ∈M,
(15) and the following linear matrix inequalities (LMIs) hold:[

Ũiip(0) Ṽ T
iip

∗ −I

]
< 0 (31) Ũiip(τ ) Ṽ T

iip
√
τW T

∗ −I 0
∗ ∗ −eρτQ

 < 0 (32)

 Ũijp(0)+ Ũjip(0) Ṽ T
ijp Ṽ T

jip
∗ −I 0
∗ ∗ −I

 < 0 (33)
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Ũijp(τ )+ Ũjip(τ ) Ṽ T

ijp Ṽ T
jip

√
2τW T

∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −eρτQ

 < 0 (34)

[
M̃iim Ñ T

iim
∗ −I

]
< 0 (35) M̃ijm + M̃jim Ñ T

ijm Ñ T
jim

∗ −I 0
∗ ∗ −I

 < 0 (36)

where Ũijp(τ (t)) = U 2
ijp + Uip(τ (t)), Ṽijp = EipI11 −

ẼjpI12+FipI7, and M̃ijm =M 2
ijm+Mim, Ñijm = EimJ11−

ẼjmJ12 + FimJ5 with

U 2
ijp = sym

{
(IT11K

T
11 + IT12K

T
12)AipI11

+ (IT21K
T
21 + IT22K

T
22)AipI11

+ (IT11 + IT12 + IT21 + IT22 )̃AjpI12
+β(IT11 + IT12 + IT21 + IT22)̃BjpCipI31
+ (1− β)(IT11 + IT12 + IT21 + IT22)̃BjpI6
+ (IT1 K

T
1 + IT2 K

T
2 )(−I2 +DipI7)

}
M 2

ijm = sym
{
(J T

11K
T
11 + J T

12K
T
12)AimJ11

+ (J T
21K

T
21 + J T

22K
T
22)AimJ11

+ (J T
11 + J T

12 + J T
21 + J T

22 )̃AjmJ12

+β(J T
11 + J T

12 + J T
21 + J T

22)̃BjmCimJ11

+β(J T
11 + J T

12 + J T
21 + J T

22)̃BjmJ3

+ (1− β)(J T
11 + J T

12 + J T
21 + J T

22)̃BjmJ4

+ (J T
1 KT

1 + J T
2 KT

2 )(−J2 +DimJ5)
}

Moreover, the filter gains can be given as

Âjκ = (KT
13)
−1Ãjκ , B̂jκ = (KT

13)
−1B̃jκ , Êjκ = Ẽjκ .

(37)

Proof: Define Is =
[
Is1
Is2

]
(s = 1, 2, 3), Js =

[
Js1
Js2

]
(s = 1, 2), K1 =

[
K11 K12
K13 K13

]
and K2 =

[
K21 K22
K13 K13

]
. From

(37) and system (7), it is easy to check that (31)–(36) are
equivalent to (9)–(14). This completes the proof.

IV. NUMERICAL EXAMPLE
In this section, a numerical example is provided to demon-
strate the effectiveness and advantage of the results obtained
in this paper.
Example 1: We apply the proposed filter design method to

a tunnel diode circuit system [47], the schematic diagram of
which is given in Figure 1.
Similar to [36], the tunnel diode circuit system can be

modeled by T-S fuzzy system (1). The system matrices and
the membership functions are given as

A11 =
[
−0.1 50
−1 −10

]
, A21 =

[
−4.6 50
−1 −10

]

FIGURE 1. Tunnel diode circuit.

A12 =
[
−0.11 50.1
−1 −10.1

]
, A22 =

[
−4.5 50
−1.1 −10

]
B11 = B21 =

[
0
1

]
, B12 =

[
0
1.1

]
, B22 =

[
0
0.9

]
C11 = C21 =

[
1 0

]
, C12 =

[
1.1 0

]
C22 =

[
0.9 0

]
, E11 = E21 = E22 =

[
1 0

]
E12 =

[
1.5 0

]
, F11 = F21 = F12 = F22 = 0.1

λ1 =


3+ x1(t)

3
, −3 ≤ x1(t) ≤ 0;

3− x1(t)
3

, 0 ≤ x1(t) ≤ 3;

0, otherwise,

λ2 = 1− λ1,

and the transition rate matrix is given as

5 =

[
−6 6
4 −4

]
.

We assume that the deception attack signal f (y(t)) =
0.1y(t) + tanh(0.1y(t)) and the occurrence probability of a
successful deception attack is 0.3, thus L = 0.2 and β = 0.7
can be easily obtained. In addition, we setµ = 1.1, ρ = 1.95,
τ = 0.05, ψ1 = 0.15 and ψ2 = 0.2.
By solving the LMIs in Theorem 2, we get the optimal

H∞ performance γmin = 2.0013, and weighting matrix 9 =
0.0395 is achieved, the corresponding filter gains are obtained
as (To save space, we do not list all the filter gains):

Â11 =
[
−3.0987 55.2556
−0.0986 −2.0252

]
,

Â21 =
[
−3.0827 56.8321
−0.0991 −2.0746

]
,

Â12 =
[
−3.0969 56.7800
−0.1016 −1.7827

]
,

Â22 =
[
−3.0853 55.4330
−0.1038 −1.9517

]
.

Supposing the external disturbance ω(t) = sin(0.1t)e−0.1t

and the initial state x(t) = x̂(t) =
[
1 −1

]T . The simulation
results are shown in Figure 2 to Figure 7. Figure 2 shows the
release instants and intervals of signal y(t), and the trigger
times is found to be 43. Figure 3 and Figure 4 present the state
trajectories of z(t), ẑ(t) and z̃(t), respectively. From Figure 2
to Figure 4, we can conclude that the hybrid and adaptive
ETCM-based filter designed here works well in estimation
while reducing the communication burden.
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FIGURE 2. The release instants and release intervals under ψ1 = 0.15,
ψ2 = 0.2.

FIGURE 3. The state trajectories of z(t) and ẑ(t).

FIGURE 4. The mode evolution and state trajectory of z̃(t).

Additionally, Figure 5 and Figure 6 show the release
instants and intervals of signal y(t) under ψ1 = ψ2 = 0
and ψ1 = 0.15, ψ2 = 0, respectively. By comparing with
the result presented in Figure 2, more trigger times can be
found in Figures 5 and 6. Figure 7 presents the evolution of
the threshold ψ(ik ), from which we can find that the value of

FIGURE 5. The release instants and release intervals under ψ1 = ψ2 = 0.

FIGURE 6. The release instants and release intervals under ψ1 = 0.15,
ψ2 = 0.

FIGURE 7. The evolution of ψ(ik ).

ψ(ik ) is dynamically changing. Notably, the value of ψ(ik )
starts to become larger as the value of z̃(t) is approaching
zero, i.e., compared with the ETCM with constant threshold,
the adaptive ETCMproposed here has the advantage in saving
more communication resource, especially when the filtering
is about to be done.
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TABLE 1. The trigger times under different communication schemes.

TABLE 2. The optimal H∞ performance γmin for different values of τ and
β.

In order to make my point more convincing, we make a
comparison of the trigger times obtained by using periodic
sampling method (ψ1 = ψ2 = 0), static ETCM (ψ1 6= 0,
ψ2 = 0) and adaptive ETCM (3) (ψ1 6= 0, ψ2 6= 0). Setting
the simulation time as 60, the trigger times under different
communication schemes is listed in Table 1. From Table 1,
it can be clearly seen that adaptive ETCM (3) achieve the least
trigger times. Thus, the hybrid and adaptive ETCM proposed
here is superior to the existing ETCM in [20], [21] and the
periodic sampling method.

To illustrate the relationship among the optimal H∞ per-
formance γmin, τ and β, Table 2 is provided. By solving the
LMIs in Theorem 2 under µ = 1.1, ρ = 0.2, ψ1 = 0.15 and
ψ2 = 0.2, Table 2 lists the optimal H∞ performance γmin for
different values of τ and β.
Two trends are shown in Table 2. One is that for the same

value of τ , the value of γmin decreases as the value of β
increases, i.e., cyber-attacks impair the performance of a sys-
tem. It is thus necessary to consider the factor of cyber-attacks
in filter design. The other is that for the same value of β,
the value of γmin increases as the value of τ increases,
which means that the disturbance attenuation performance of
the system degrades with the decrease of data transmission.
Therefore, it is a tradeoff between system performance and
utilization of communication resource.

V. CONCLUSION
We proposed a new hybrid and adaptive event-triggered
mechanism, by which the workload of communication net-
work has been largely reduced. Considering the influence of
stochastic deception attacks, an event-based filter has been
designed for the nonlinear Makov jump systems. Based on
the LKF with less restriction, a sufficient condition has been
developed on the exponential mean-square stability for the
filtering error system with a weighted H∞ performance.
The effectiveness and advantage of the obtained results have
finally been illustrated by a tunnel diode circuit system. The
present method can be extended to the stabilization of non-
linear networked systems with unreliable links that may be a
topic for the future research.
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