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ABSTRACT The article presents a novel weak ground truth (WGT) determination procedure on continuous
human-rated data. The notion of WGT is essential in cases where there is no direct empirical evidence for an
observed construct and human annotations provide the most reliable means for determining the ground truth.
The core idea behind the proposed procedure is to transform the ratings to reduce rater bias, maximize inter-
rater agreement, and improve WGT. The procedure was evaluated on two behavioral datasets containing
continuous annotations of several expressive dimensions. The results show that the procedure improves the
size of WGT data by removing the disagreement originating from rater-specific distortions, such as rater
mean and scaling bias. The entropy of residuals decreases after WGT optimization, meaning that more
relevant information is retained. The average improvement of WGT data size is between 10.1 and 20.9
percentage points, depending on the respective dimension. However, in cases where the rater bias is small,
the procedure does not substantially modify WGT. This indicates that the proposed optimization only
removes rater biases derived from rater-specific distortions, while retaining and improving valid WGT. The
proposed procedure is generalizable on any type and size of continuous or discrete numerical data where
multiple raters are involved.

INDEX TERMS Bias removal, continuous data, inter-rater reliability and agreement, weak ground truth.

I. INTRODUCTION
Intelligent systems are increasingly capable of conduct-
ing more naturalistic (human-like) interaction with their
users [1]–[3]. To this end, various elements of social intel-
ligence are being employed that take into account the emo-
tional engagement, attention, and fatigue of users. One exam-
ple of this is advanced conversational systems where user
engagement needs to be continuously evaluated to provide
sustained communication [4]–[8]. To execute such evalua-
tions and improve the interaction, a ground truth of user
engagement needs to be obtained continuously and in real-
time.

This presents a challenge. State-of-the-art intelligent sys-
tems cannot yet make reliable evaluations from behavioral
data, especially when taking into account continuous time
quantity [9]–[12]. In cases where there is no direct empirical
evidence or ground truth for a target construct, human ratings
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still provide the most reliable means for determining the
baseline for the construct or its weak ground truth (WGT).

However, WGT is highly sensitive to several factors
that affect its reliability. Among these factors are types of
observed phenomenon and latent constructs used in annota-
tion, types of rating procedures, and, particularly, rater spe-
cific distortions due to individual differences among raters
(e.g. level of expertise and domain knowledge, personality,
perceptiveness) that contribute to rater biases and affect the
quality of WGT. These issues are even more pressing for
WGT determination of continuous data, which is a problem
inmany behavioral studies because proper statistical methods
to offset rater bias are lacking.

The aim of this article is to propose a novel procedure for
the determination of WGT on continuous human-rated data.
The key contributions of the presented research are:
• WGT determination on continuous annotations where
multiple raters are involved;

• WGT optimization and improvement of WGT data
size;
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• rater bias removal (the proposed procedure performs the
removal of the two most common types of rater bias:
a) rater mean bias, which relates to differences in the
mean ratings among individual raters, and b) scaling
bias, which relates to raters’ deviations from their own
mean ratings).

Moreover, an online tool was developed and is freely avail-
able to researchers in order to assess the proposed procedure
and calculate WGT for their data1.
We build our case on the annotations of behavioral data

from two well-known public datasets: the SEMAINE dataset
of interactions between humans and artificial agents [13]
and the CreativeIT dataset of expressive behaviors and nat-
ural interaction between human beings [14]. Both datasets
present difficulties because the latent dimensions used in the
annotation of behavioral data are highly subjective and thus
susceptible to rater bias, and this makes determination of
WGT challenging.

The article is organized as follows. An overview of related
work on rater reliability and agreement statistics along with
alternative approaches to WGT is presented in Section II).
A novel WGT determination and bias removal procedure
is presented in Section III along with materials used in the
study. The results, a demonstration of the performance of
the proposed approach on the two datasets, are presented
in Section IV. The article concludes with Section V, which
presents a discussion and possibilities for future work.

II. RELATED WORK
The problem of the lack of ground truth is prevalent in a
wide range of domains [15], including, among others, behav-
ioral studies [16], [17], medical studies [18], and computer
vision [19]–[21]. In such cases, human annotation is treated
as WGT and rater specific distortion tendencies are to be
expected [15], [17]. Because of this, an important aspect
of determining WGT is to assess reliability and agreement
among raters in order to provide a measure of homogeneity
and consensus in their ratings.

Reliability and agreement are two concepts often used
interchangeably because they both provide insight into errors
inmeasurement. However, the two concepts differ. Reliability
is generally defined as the proportion of agreement between
two measurements among or within raters. It is a measure-
ment of raters’ consistency and thus the variability among
raters. In contrast, agreement is a measure of the degree to
which the ratings of two or more raters are identical [22].
The reliability of agreement is measured in two ways: a) as
the reliability of a rater over multiple occasions – the intra-
rater reliability, and b) as the reliability of multiple raters on
a single task – the inter-rater reliability. This second aspect is
the primary focus of this article.

A comprehensive overview of statistical methods measur-
ing the reliability of agreement is given by [23]–[26]. Several
reliability measurement methods exist, from a simple percent

1https://www.lucami.org/en/WGT/

agreement to more complex Kappa statistics. The percent
agreement (number of agreement scores/total scores) is prob-
lematic as it does not account for the agreement made by
chance (i.e. due to raters guessing) and can thus overestimate
the inter-rater agreement. The Kappa statistic was introduced
to control for this issue. The Kappa coefficient is a statistical
measure of inter-rater agreement that is used to determine the
agreement between two ormore raters when themeasurement
scale is categorical. It takes into account the element of
chance to measure ‘‘true’’ beyond-chance agreement [27].

Among the most known coefficients for measuring the
reliability of agreement are Cohen’s kappa [27], weighted
kappa [28], Fleiss’s kappa [29], Krippendorff’s alpha [30],
and the Intra-class correlation coefficient (ICC) [31], [32].
Cohen’s kappa measures the coefficient of agreement
between a pair of deliberately chosen raters on a nominal
scale. Various extensions of Cohen’s kappa exist, depending
on the type of data and the number of raters. For example,
Fleiss’s kappa is an extension of Cohen’s kappa that can
measure the agreement among randomly selected multiple
raters on a nominal scale [31].

The main drawback of the many statistical measurements
of reliability, with the exception of Krippendorff’s alpha and
ICC, is that they don’t differentiate between various kinds
of disagreements [23]. Krippendorff’s alpha is a widely-used
reliability statistic because it provides a measure of relia-
bility for several types of data (nominal, interval, ordinal,
and ratio). It can also deal with incomplete data and account
for disagreement by calculating inter-rater reliability as a
ratio of observed disagreement versus expected disagreement
[30], [33]. However, Krippendorff’s alpha cannot measure
the reliability of agreement on a continuous, time-dependent
quantity [23], [26]. ICC, a special case of Krippendorf’s
alpha for continuous data, is commonly used for this purpose.
ICC is based on an analysis of variance (ANOVA) models
and measures the proportion of total variance accounted for
between subject variation [32], [34].

Standard reliability statistics are based on the average of
the ratings and aim to confound or remove disagreement,
which is typically seen as annotation noise, or rater bias.
This is more straightforward when dealing with discrete
annotations, where raters agree or disagree on the chosen
label, in contrast to continuous annotations. For continuous
annotations, the ground truth is generally determined as a
framewise mean of the ratings of various annotators [17].
There are several sources of rater disagreement and bias that
can increase inter-rater variability, including time-shifting
bias (represented by a rater-specific delay in annotations),
rater mean bias (where raters annotate around different means
and some raters’ mean ratings are higher or lower than
others), and scaling bias (the magnitude of deviations from
the mean ratings) [16], [17], [35], [36]. Often ambiguity
occurs in the ratings due to different interpretations of a
construct observed by human raters, which, as several studies
show, is particularly common in the annotation of behavioral
data [15], [36]–[38].
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Several approaches have been developed in order to deal
with these issues. Rater-specific time delays can be addressed
in post-processing by aligning the annotations before com-
puting WGT [16], [17]. Because this procedure is very
time consuming when conducted manually, several auto-
mated solutions have been developed, such as the use of
framewise binning to group annotations [16]. More advanced
approaches based on machine learning are being adopted to
account for various types of rater-specific distortions, includ-
ing rater bias and delay. These include a latent time warping
process and generative probabilistic model based on dynamic
Probabilistic Canonical Correlation Analysis (PCCA) [10] to
solve the problems of temporal alignment and fusion ofmulti-
ple annotations, other research models based on Expectation-
Maximization algorithm [17], [39] and generalized additive
mixed models [11], [40], [41] for fusing multiple continuous
annotations.

Several novel approaches also combine machine learning
with crowd-sourced data [12], [20], [21], [42]. For exam-
ple, [42] combined machine generated labels derived from
human generated data and deep convolutional neural net-
works (DCNN) to create a baseline for the classification of
a dataset composed of approximately eight million videos.
DCNN were also used by [12] to provide the baseline for
annotations of affective dimensions (valence/arousal, liking/
disliking), whereas [21] employed a probabilistic graphi-
cal annotation model to infer the underlying ground truth
(as categorical distribution) and evaluate annotators’ behavior
and reliability.

In general, machine learning approaches require large
amounts of training data and cannot be effectively applied
to smaller datasets which are prevalent in behavioral stud-
ies. In such cases, alternative approaches to bias removal
and WGT determination are more appropriate. These are
generally based on the use of various combinations of trun-
cated mean (or, alternatively, a weighted truncated mean) and
correlation metrics in order to calculate and maximize the
inter-rater agreement needed for WGT. The truncated mean
approach is simple and, by omitting the lowest and highest
ratings, can mitigate random effects, such as a rater’s mind
wandering and the temporary loss of attention. The weighted
truncated mean approach also mitigates random effects but
relies on different weight estimation techniques in order to
calculate WGT.

To our knowledge, the only comparable alternatives to
the WGT determination of continuous human-rated data
proposed in this article are given by [16] and [35]. Both
approaches are based on the truncated mean and use cor-
relation metrics to account for variability among the raters.
For example, [35] use correlation metrics (Pearson’s corre-
lation) to measure agreement among multiple raters on the
CreativeIT dataset of behavioral annotations. To control for
the variability of raters (the rater mean bias), a correlation
threshold is used to remove highly inconsistent ratings and
then the ground truth is computed with the mean ratings.

An alternative approach toWGTdetermination is proposed
by [16]. WGT is produced by maximizing the inter-rater
agreement based on the correlation and sign agreement statis-
tics among pairs of two raters. Then the weighted truncated
mean of agreement is calculated with these variables. In addi-
tion to WGT determination, [16] also propose a solution to
automatically segment large sessions of audio-visual data for
the purpose of machine learning approaches that cannot deal
with unsegmented sequences. This approach was tested on a
dataset of video annotations but could be generalized to other
annotation tasks.

Neither of these two approaches addresses rater biases
explicitly. [35]only partially address the problem of rater bias.
The authors observe that raters often agree on relative but
not absolute terms, but their approach does not distinguish
between different types of bias. Because their approach is
based on correlation statistics, it is affected by scaling bias,
which is independent of rater mean bias. For each rating
session, rater agreement is defined on the rater pairs with
linear correlations greater than the preset cut-off threshold.
The estimated value (or WGT, as used in this article) is
then obtained by averaging the ratings of selected raters with
no reported attempt of removing direct bias. The approach
by [16] proposes solutions for ground truth determination
and video segmentation of rated sessions (for the purpose
of machine learning), and does not directly address various
types of rater bias. However, this approach does make use
of local normalization (for each coder and each session) in
order to ‘‘avoid propagating noise in cases where one of the
coders is in large disagreement with the rest’’ [16, p. 44].
The maximization of inter-rater agreement is implemented
by maximizing the number of participating raters based on
their pair comparisons, with the aim of producing WGT.
By applying weighted averaging, this procedure may also
indirectly account for rater disagreement by assigning lower
weights to uncorrelated raters.

Our solution also utilizes the maximization of the inter-
rater agreement, but on different grounds. It employs the
weighted truncated mean approach and operates on a family
of rating transformations that are used to directly remove indi-
vidual rater biases. It employs a two-way randomized design
and a single observation ICC where absolute value matters
(see Subsection III-D). The proposed approach addresses the
removal of rater bias by direct maximization of the inter-rater
agreement on the transformed ratings, which is based on the
inter-rater agreement calculated by the ICC for the whole
rating session and not only for pairwise correlations.

It is difficult to conduct a direct comparison of the methods
proposed by [35] and [16] using objectivemetrics. Since there
is no ground truth, it is impossible to objectively compare
the quality of WGT generated by these methods, or, for
example, the effect size of bias removal. The two methods
differ conceptually and do not directly address the removal
of rater bias, which is the key advantage of the proposed
procedure in terms of improving the quality of WGT.

4596 VOLUME 9, 2021



A. Košir et al.: Weak Ground Truth Determination of Continuous Human-Rated Data

The proposed procedure is straightforward, robust, con-
figurable, and generalizable. Only the raw ratings are input
into the procedure, without any need for sampling or seg-
mentation of material. It can be applied to any task where
the data types (rated quantities) are discrete or continuous
numerical variables. The distribution of the data and its size is
irrelevant. This makes the procedure straightforward to apply.
The following sections discuss the proposed bias removal and
WGT determination procedure in detail.

III. MATERIALS AND METHODS
A. MATERIALS
Materials were taken from two behavioral datasets widely
used in affective computing research: the CreativeIT
dataset [43] and the SEMAINE dataset [13]. Both datasets
focus on expressive affective behavior and emotionally
charged interaction, with annotation attributes that are largely
subjective [14].

The CreativeIT is a multimodal dataset of theatrical impro-
visation [14], [43]. It was designed to study theatrical
improvisation, affective and expressive behaviors, and nat-
ural human interaction, and has been extensively used in
the domains of affective computing, emotion recognition,
and annotation [35], [44]–[47]. The dyadic interactions per-
formed by pairs of actors were recorded using video camera
and motion capture technology.

The publicly available CreativeIT dataset contains eight
recordings (each approximately an hour long) divided into
300 sessions containing the improvisations of 40 two-
sentence exercises, with a total of 19 actors involved.Multiple
raters (n=8), separated into three groups (actor, expert,
novice), were used to annotate the data from the videos along
the discrete dimensions for theatrical performance (natural-
ness, creativity) and the continuous emotional dimensions of
valence, arousal (or activation), and dominance [14]. Each
recorded session was annotated by three raters.

The SEMAINE audiovisual dataset was built in order
to motivate research on systems that support sustained,
emotionally-charged interaction with artificial agents [16],
[35], [39], [43], [48]. The SEMAINE dataset contains
recorded face-to-face emotional conversations between
150 participants (users) and an artificial agent (Sensitive
Artificial Listener - SAL) [13]. It contains 959 audiovi-
sual recording sessions lasting approximately five minutes
each [13]. These sessions were annotated by two to eight
raters and include the annotations of perceived emotions
taken from audiovisual cues (acoustic cues and facial expres-
sions) in the conversations, with several descriptors used for
the five affective dimensions of Valence, Arousal/Activation,
Power, Anticipation/Expectation, and Intensity.

To preserve the flow of affective interactions, the annota-
tions in both datasets were recorded continuously using the
Feeltrace annotation tool [49]. The Feeltrace tool enables
continuous annotations over time by using a mouse to
mark the annotation (as a value ranging from −1 to 1) in

two-dimensional affective space. The valence and arousal
dimensions are annotated in the Feeltrace interface as a pair
of orthogonal dimensions in two-dimensional affective space.
For the dimensions that need to be traced individually as a
single scale (such as dominance, intensity, power, anticipa-
tion), the Feeltrace interface was slightly adapted to allow for
annotation on a single (one-dimensional) scale [13], [14].

Materials used in the presented study include a subset
of the SEMAINE dataset and the entire publicly available
CreativeIT dataset. The CreativeIT dataset contains the anno-
tations of Valence, Activation (or arousal), and Dominance
dimensions over 300 sessions, rated by three raters per ses-
sion. The subset of the SEMAINE dataset includes only the
dimensions with at least 15 sessions per dimension rated
by three or more raters, resulting in a total of 406 sessions.
The threshold on the number of sessions for each dimension
was applied in order to obtain a balanced representation of
the dimensions used in WGT optimization. The final set of
descriptors for the five core dimensions of the SEMAINE
dataset used in the study includes: Agreeing, Thought-
ful, Gives Information, Gives Opinion, Activation, Inten-
sity, Power, Valence, and Amusement. The terms arousal
and activation are used interchangeably in the literature
(see [50], [51]), but we use activation because this term is
reported in the results of both studies [13], [14]. The number
of sessions for each of the selected dimensions is shown
in Table 1.

B. OVERVIEW OF WGT DETERMINATION PROCEDURE
The core idea behind the proposed WGT determination pro-
cedure is to calculate the weighted truncated mean of the
ratings and defineWGT on session intervals where inter-rater
agreement is high enough. We transform individual ratings in
order to decrease the rater bias (errors), maximize the inter-
rater agreement, and increase the size of WGT data.

A pipeline for the WGT determination procedure is pre-
sented in Figure 1. We treat the problem of inter-rater agree-
ment estimation and the problem of WGT determination as
a single problem. Our reasoning is as follows. As each step
of the rating procedure could represent a potential source of
rater bias, we first analyze and define a class of parameter-
ized transformations of the ratings. These transformations are
defined according to the factors that caused the disagreement
originating from the rater bias. Next, we maximize inter-
rater agreement for the transformed ratings in order to obtain
optimal parameters of rating transformations. We argue that
the corrected (optimally transformed) ratings are a more
realistic representation of inter-rater agreement than the orig-
inal values because of the removed rater bias. Moreover,
as demonstrated later (Section IV-D), the proposed optimiza-
tion procedure only removes the disagreement originating
from rater bias and preserves the true disagreement among
raters. We compute WGT based on the weighted truncated
mean of the transformed ratings where ICC is above the
predefined cut-off threshold.
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TABLE 1. Comparison of WGT Data Size Before and After Optimization for Each Dimension and Dataset. The Table Shows Number of Sessions for Each
Dimension (N), the Min and Max Values for WGT, Average WGT Data Size Before and After Optimization (rWGT vs. rWGT_opt), and Average Improvement
(impr. pp) of WGT Data Size in Percentage Points After Optimization.

FIGURE 1. Pipeline of WGT determination procedure. The annotation session results generate a ratings matrix ER. The output of the optimization of the
ratings maximizing the inter-rater agreement is the optimal set of the transformation parameters p∗ that is used to produce optimal ratings T (ER, p∗). The
individual rater biases (mean and scaling bias) are removed during the optimization and transformation of the ratings (within the dashed-line
rectangular). The weighted truncated mean of these optimal ratings yields WGT whereas the minimal reliability criteria is used to determine WGT data size.

The inter-rater reliability is estimated in order to decide
whether the rating procedure was successful and the obtained
ratings can be reliably used for WGT. For this purpose, a cut-
off threshold value must be defined to account for a level of
agreement adequate to produce WGT. The cut-off threshold
value depends on the coefficient used to estimate it, and is
relatively independent of the domain of measurement. WGT
obtained from the weighted truncated means of the ratings
is then determined only where the achieved inter-rater agree-
ment exceeds a predefined cut-off threshold value.

The following sections present WGT determination
procedure in detail.

C. INTER-RATER RELIABILITY AND AGREEMENT
The proposed approach measures the inter-rater reliability
using ICC and assuming the proper ANOVA model. We use
a two-way randomized design and single observation ICC
where the absolute value is relevant (see [24]). Rated quantity
is denoted by y, a vector of their values by Ey = [yj]j where
j = 1, . . . , n is the time index and yj its value, and n is the
number of ratings provided by a single rater. The raters are
denoted by their indices i = 1, . . . ,N (N is the number of
raters in a single rating session). The rating of a rater i of the
quantity yj is denoted by rij. A vector of the ratings for rater i
is Eri and the matrix of the ratings N×n is denoted by a capital

letter ER = [rij]ij (the rating vectors are rows). The estimation
of the rated quantity yj at a time index j is denoted by ŷj and
the vector of its estimations by Êy. We call this estimation the
weak ground truth (WGT).

We denote the inter-rater agreement of the rating matrix ER
by ρ(ER) and the reliability of these ratings by γ (ER).

The inter-rater agreement is defined as

ρ(ER) =
#(not stat. diff. ratings)

#(all ratings)
, (1)

where # stands for the ‘‘number of’’. To count the values
in the nominator correctly, we apply statistical hypothesis
testing. We follow the reasoning given in [52] where the
authors clearly distinguish between reliability and agreement
while acknowledging the close connection between the two
concepts. They take into account only statistically significant
disagreements among raters, as opposed to all disagreements.
To do so, they employ the concept of the Reliable change
index (RCI), which relates to inter-rater reliability γ . From
this index, we derive the critical difference between the two
ratings

1 = zα
√
2s1

√
1− γ , (2)

where zα = 1.96 at assumed risk level α = 0.05, s1
is the rating’s standard deviation, and γ is the inter-rater
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reliability (here measured with ICC). The two ratings ra,
rb are significantly different at risk level α if, and only if,
their difference is larger than the critical difference 1 <

|rb − ra|. For this step, we reason that the raters are in better
agreement the lower the critical difference between the two
test scores 1. According to Eq. (2) above, the optimization
task of maximizing the inter-rater agreement argmax ρ(ER) is
equivalent to themaximization of the reliability argmax γ (ER),
see Eq. (4). Since inter-rater agreement and reliability have
the same maximums, we maximize the inter-rater reliability
because the implementation of the optimization procedure is
simpler for reliability than for inter-rater agreement.

D. PARAMETERIZED RATING TRANSFORMATION
WGT determination is formulated as an optimization prob-
lem (Eq. (4)), maximizing the inter-rater agreement in the
optimization space of the rating transformation parameters Ep.
We identify two types of rater disagreement: a) true dis-

agreement among the raters, and b) disagreement originat-
ing from rater bias. Clearly, to better estimate WGT, true
disagreement should be preserved whereas the disagreement
based on rater bias should be removed. For this purpose,
we implement a parameterized rating transformation T (r, Ep)
in order to remove two common types of rater bias: a) mean
bias (differences in mean ratings between individual raters),
and b) scaling bias (the range or the magnitude of deviations
from the mean ratings for an individual rater).

FIGURE 2. Conceptual representation of rater biases with discrete ratings
depicted as continuous curves. Left: scaling bias or magnitude of
deviations from the mean ratings. Right: rater mean bias (the differences
between rater mean ratings) where raters rate around different means.

First, we address scaling bias. Assume that two raters rate
around level 3. For the same observed event, the ratings of
the first rater vary between levels 2 and 4, and the ratings
of the second rater vary between 1 and 5. They may agree
on the observations but they disagree on the range, and this
generates a scaling bias (see Figure 2, left). We remove the
scaling bias by introducing scale parameter a (see Eq. 3).
Second, we address mean bias. For the same observed event,
if two raters rate around different means but with similar
amplitude (e.g., one rater rates around level 3 and the other
around level 4), they may agree, but the difference in their
means generates rater mean (or offset) bias (see Figure 2,
right). We remove the mean bias by introducing the additive
parameter denoted by b (see Eq. 3).

The inversion of offset and scaling bias is obtained with
a linear transform (see Eq. (3)). Altogether, we parameterize

the rating transformations as

T (Er, (a, b))(t) = a · Er(t)+ b, (3)

where Ep = (a, b) is a set of parameters.

E. REMOVING RATER BIAS BY MAXIMIZING
INTER-RATER AGREEMENT
The transformation of ratings is an inverse transformation
of the rater biases. For instance, if one rater has a con-
sistently positive bias, the transformation will remove this
bias by adding a negative value. The optimization problem
(see Eq. 4) is defined where Epi = (ai, bi) is a pair of the
rating transformation parameters for the i-th rater. The first
parameter ai represents scaling bias and the second parameter
bi represents offset bias (i.e., the transformation maps the
rating ri as T (ri, ai, bi) 7→ a · r + b). These pairs (ai, bi)
are combined into a vector of transformation parameters Ep =
(Epi)i, i = 1, . . . ,N , which is a tuple of tuples of the rating
transformation parameters. For example, if N = 5 raters,
the vector Ep has 10 entries. The regularization term β‖Ep‖2

prefers smaller transformations over larger ones, with ‖Ep‖
being the Euclidean distance and the regularization parameter
β = 0.1 working well in practice.
The unconstrained optimization task is presented by the

following equation

(Ep∗) = argmaxEpγ (T (Eri, Epi)i)+ β‖Ep‖
2 (4)

The optimal transformation parameters Ep∗ define the cor-
rected ratings T (Eri, Ep∗i ) for each rater i = 1, . . . ,N . The
initial solution (ai, bi) = (1, 0), representing the identity
transformation (no change to the ratings), leads to a stable
optimization result. Note that the maximized inter-rater reli-
ability γ (T (Eri, Ep∗i )i) is understood as the achieved inter-rater
agreement, and not the original one γ (Eri).

F. WGT DETERMINATION
WGT ŷ(t) of the quantity y(t) is determined using the trans-
formed ratings T (Eri, Ep∗i ) where the transformation parameters
Ep∗i are set to minimize rater bias and maximize inter-rater
agreement see Eq. (4).

After bias removal, WGT determination proceeds with the
following formula:
• the weighted truncated mean is applied in order to leave
out the most deviated ratings;

• a higher weight is assigned to the ratings in higher agree-
ment (based on the assumption that higher agreement
among raters contributes more to WGT).

Weighting (wi) is assigned using a leave-one-out method
by measuring the individual rater’s i reliability versus the
overall reliability among raters ERi = ER \ Eri (with i-th row
removed). Individual contributions are then normalized to
obtain the weights wi = γ (ERi)/

∑
k γ (ERk ). The weighted

truncated mean is defined as

ŷj =
1

N − 2

N−a/2∑
i=1+a/2

wi · sort(T (Eri, Ep∗i )), (5)
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where a is a number of values left out (applicable values
are even values a = 0, 2, 4 less than N − 1) and sort
stands for the ratings sorted according to their values. This
is the the final step of the WGT determination procedure.
WGT is determined only from the truncated means (Eq. 5)
where optimized reliability exceeds the cut-off threshold, that
is γ (T (ri, Epi

∗)) > Tγ . The DWGT = {k : γ (T (ri, Epi
∗))

[k] > Tγ } represents the size of WGT.
ICC is computed at each step within the predefined time

interval of a sliding window. At any given time point, ICC is
estimated within the sliding window in a time-local manner.
This local ICC value is then computed against the cut-off
threshold in order to evaluate if ICC at this particular time
point is high enough to compute WGT or not. The length of
the interval for the sliding window is chosen as a compromise
between the following two competitive features: 1) high time
dynamics (where a shorter sliding window is preferable),
and 2) short confidence intervals of ICC estimation (where
a longer sliding window is preferable).

IV. RESULTS
The proposed WGT determination procedure was tested on
the SEMAINE and CreativeIT datasets. WGT is determined
where the inter-rater agreement is above the ICC threshold
of 0.2 and the time interval of the sliding window is set to
40s. The relatively low value of the cut-off threshold for ICC
is due to low inter-rater agreement typically found in the
annotation of behavioral data and also to the ICC formula
appropriate in this setting. The length of the interval for the
sliding window was chosen as a compromise between the
two competitive features mentioned in the previous section,
the high time dynamics and the short confidence intervals of
ICC estimation.

In the subsequent section, we report on the following
aspects:
A. the effect of optimization on the size of WGT data: by

removing the rater bias we expect to improve the size of
WGT data (see Section IV-A);

B. the effect of optimization on the ratings’ min-max inter-
vals: the reduction of the min-max interval indicates the
reduction of scatter among the transformed ratings (see
Section IV-B);

C. the effect of optimization on the entropy of residuals:
the size of residuals indicates whether the optimization
procedure truly eliminates rater bias from the ratings
where bias is present (see Section IV-C);

D. the effect of optimization on rater disagreement to verify
that the proposed optimization preserves the true dis-
agreement among raters (see Section IV-D).

A. THE EFFECT OF OPTIMIZATION ON WGT DATA SIZE
The optimization procedure is expected to improve the
inter-rater agreement and the size of WGT data. Moreover,
by removing the disagreement originating from rater bias,
we also expect to obtain a more reliable measure of WGT.

The overall effect of optimization is shown in Table 1.
TheWGT optimization procedure improved the size of WGT

data in almost all cases, however, the improvement varies
in different dimensions. For instance, the largest average
improvement (20.9 percentage points) is measured in the
‘‘Thoughtful’’ dimension (from the SEMAINE dataset), with
WGT data size increasing from 24.8% before to 45.8% after
optimization. The smallest average improvement of WGT
data size is 10.1 percentage points in the ‘‘Power’’ dimen-
sion (from the SEMAINE dataset), increasing from 5.4%
before to 15.5% after optimization. Optimization was not
always successful. In a fraction of cases from the CreativeIT
dataset (3% of the samples), optimization actually reduced
the original WGT data size with a median (IQR) reduction
of -1.4 percentage points (-3.9 to -0.7 percentage points).
We suspect this was due to time-shifting bias where rater-
specific delays in annotation did not generate sufficient inter-
rater agreement for the predefined WGT interval.

FIGURE 3. SEMAINE dataset: An example of optimization effect with a
significant improvement of WGT data size (red line). The session was
rated by 7 raters (grey line).

Time graphs (Figures 3–7) provide further details on
how optimization affects individual dimensions in terms of
increased WGT data size. The selected examples compare
WGT data size before and after optimization and illustrate
the optimization effect in terms of the maximum (Figure 3),
median (Figure 5), and minimal (Figure 7) improvement.
The results are shown for selected sessions and for different
dimensions of both datasets, with the number of raters vary-
ing in each example from the SEMAINE dataset. Examples of
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TABLE 2. The Optimization Effect on the Size of the Min-Max Interval for Each Dimension and Dataset. The Table Shows the Number of Sessions for Each
Dimension (N), the Min-Max Interval for WGT Before and After Optimization (rMinMax vs. rMinMax_opt), the Min and Max Values of the Interval, and the
Average Improvement (impr.) of the Interval Size (Lower is Better) After the Optimization.

FIGURE 4. CreativeIT dataset: An example of the optimization effect with
a significant improvement of WGT data size (red line). The session was
rated by 3 raters (grey line).

significant WGT optimization effect are shown in Figures 3
and 4. Initially,WGT could not be determined due to the inter-
rater reliability being below the ICC threshold for the entire
session. After WGT optimization, a significant improvement
inWGT data size was obtained in several cases (see Figures 3
and 4, and refer also to Table 1).

B. THE EFFECT OF OPTIMIZATION ON THE SIZE OF THE
RATINGS’ MIN-MAX INTERVALS
This subsection illustrates how the proposed optimization
procedure impacts the size of the ratings’ min-max intervals.

FIGURE 5. SEMAINE dataset: An example of the optimization effect with
a median improvement of WGT data size (red line). The session was rated
by 3 raters (grey line).

The min-max interval is calculated by subtracting the lowest
rating value from the highest (for example, the min-max
interval of the three ordered ratings a, b, c is [a, c] and its size
is c − a). A smaller min-max interval means a lower scatter
of the transformed ratings.

Table 2 shows the effect of optimization on the size of the
min-max intervals for all sessions by dimension. The reduc-
tion of the min-max interval indicates an improved WGT
estimation. Optimization was successful for all dimensions,
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FIGURE 6. CreativeIT dataset: An example of the optimization effect with
a median improvement of WGT data size (red line). The session was rated
by 3 raters (grey line).

with the size of min-max intervals after optimization reduced
from between 15.4 and 29.6 percentage points.

The time graphs in Figures 9 and 11 show the best and
worst examples of the optimization effect on the size of
the min-max interval. In the best case, there is a significant
reduction in the size of the min-max interval. However, in the
worst case, the reduction is close to zero and has no practical
impact.

C. THE EFFECT OF OPTIMIZATION ON THE
ENTROPY OF RESIDUALS
The entropy of residuals is another aspect of measuring the
optimization effect onWGT data size. The rating residuals of
WGT are computed before ICC thresholding. The residuals
are computed for each rater’s vectors Eri, i = 1, . . . ,N from a
set of N rating vectors. These N rating vectors are input into
the weighted truncated mean. Eq. (5) is used to obtain WGT
(ŷ) where the residuals are defined as

Esi = Eri − ŷ, i = 1, . . . ,N , (6)

(see notations in Subsec. III-C).
As an indicator of the improvement achieved by the pro-

posed procedure, we report on the entropy of residuals before
and after optimization. As shown in Table 3, the entropy of
residuals decreases after optimization. A lower entropy of

FIGURE 7. SEMAINE dataset: An example of the optimization effect with
a minimal improvement of WGT data size (red line). The session was
rated by 6 raters (grey line).

residuals means more relevant information is retained in the
ratings. The improvement is small but consistent across all
dimensions.

D. THE EFFECT OF OPTIMIZATION ON
RATER DISAGREEMENT
We further examine how the proposed optimization procedure
affects WGT in terms of the type of rater disagreement. This
is done in order to verify that the proposed optimization
removes only the disagreement originating from rater bias
and not true disagreement among raters. In cases where the
rater bias is relatively small, the procedure should not sub-
stantially modify the value of WGT.

We tested this hypothesis on WGT and min-max intervals.
As shown in Figure 13, optimization reduced the size of the
min-max intervals (compare the green and themagenta lines).
However, comparing the segments with the valid (above the
cut-off threshold) WGT before optimization (the yellow line)
and after optimization (the red line), we do not observe any
significant changes in WGT value for the respective seg-
ments. This points to the optimization procedure being sensi-
tive to rater bias, with true disagreement among raters being
preserved. A similar effect can be observed in Figures 9–12.

V. DISCUSSION AND FUTURE WORK
The notion of WGT is essential in cases where there is
no ground truth for an observed construct. The problem of
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TABLE 3. The Entropy of Residuals Before and After Optimization for Each Dimension and Dataset. The Table Shows the Number of Sessions for Each
Dimension (N), the Min-Max Values of Residuals, the Values of Residuals Before and After Optimization (rResid vs. rResid_opt), and the Average
Improvement (impr.; Lower is Better) Due to the Optimization Procedure.

FIGURE 8. CreativIT dataset: An example of the optimization effect with a
minimal improvement of WGT data size (red line). The session was rated
by 3 raters (grey line).

the lack of ground truth is prevalent in a wide range of
domains. In such cases, human annotation is treated as WGT
and rater-specific distortion tendencies (or biases) are to be
expected. Because of this, an important aspect of determining
WGT is assessing reliability and agreement among raters in
order to provide a measure of homogeneity and consensus
in their ratings. However, traditional reliability statistics do

FIGURE 9. SEMAINE dataset: An example of the optimization effect with
a significant reduction of the min-max interval size and an improvement
of 1.08. The figure shows the non-optimized (cyan line) and the
optimized (magenta line) min-max ratings as well as the WGT data size
before optimization (yellow line) and after (red line).

FIGURE 10. CreativeIT dataset: An example of the optimization effect
with a significant reduction of the min-max interval size and an
improvement of 0.463. The figure shows the non-optimized (cyan line)
and the optimized (magenta line) min-max ratings as well as WGT data
size before optimization (yellow line) and after (red line).

not properly address the disagreement originating from rater
bias. The challenge of WGT determination is even more
pressing for continuous data as these introduce several types
of biases, including rater-specific delays in annotation (time-
shifting bias), rater mean bias (where different raters annotate
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FIGURE 11. SEMAINE dataset: An example of the optimization effect with
a minimal reduction of the min-max interval size. The figure shows the
non-optimized (cyan line) and the optimized (magenta line) min-max
ratings as well as WGT data size before optimization (yellow line) and
after (red line).

FIGURE 12. CreativeIT dataset: An example of the optimization effect
with a minimal reduction of the min-max interval size. The figure shows
the non-optimized (cyan line) and the optimized (magenta line) min-max
ratings as well as WGT data size before optimization (yellow line) and
after (red line).

FIGURE 13. SEMAINE dataset: The effect of the optimization on rater
disagreement. The comparison is given for WGT data size before
optimization (yellow line) and after (red line), and for the min-max
intervals before optimization (cyan line) and after (magenta line).

around different means), and scaling bias (the magnitude of
deviations from the mean ratings).

As presented in Section II, there are several compet-
itive methods for determining WGT. Standard reliability
statistics are based on the averaging of ratings in order
to remove disagreement and does not differentiate between
true rater disagreement and disagreement due to rater bias.
On the other hand, machine learning approaches require large
amounts of training data and cannot be effectively applied to

smaller datasets. In such cases, alternative approaches, com-
monly based on using various combinations of truncated
mean (or, alternatively, a weighted truncated mean) and cor-
relation metrics, are more appropriate.

It is difficult to conduct a direct comparison of these meth-
ods using objective metrics. Since there is no ground truth,
it is impossible to objectively compare the quality of WGT
generated by these methods, or, for example, the effect size
of the bias removal. The two methods that are comparable
with our approach differ conceptually (cf. [16], [35]) and do
not directly address the removal of rater bias, which is the key
advantage of the proposed procedure in terms of improving
the quality of WGT.

The proposed procedure determines WGT from multiple
raters by combining their ratings about some time-varying
quantity into a valid WGT only when sufficient inter-rater
agreement has been achieved. This is done using the fol-
lowing parameters: 1) the measurement of the inter-rater
agreement with ICC on a global and time-local scale; 2) the
removal of rater bias and optimization of global ICC through
the (shifting and scaling) transformation of ratings; 3) the
time-local determination of valid WGT only where the inter-
rater agreement is above the cut-off threshold, and; 4) the
optimization of WGT using the weighted truncated mean
where higher weights are assigned in a time-local manner to
raters that contributed the most to local ICC within a sliding
window.

There are several advantages to the proposed WGT deter-
mination procedure. It is robust, configurable, and generaliz-
able to any type or size of continuous or discrete numerical
data where multiple raters are involved. It utilizes a max-
imization of the inter-rater agreement in order to improve
WGT. It operates on a family of rating transformations aimed
at removing the two most common types of rater bias (rater
mean bias and scaling bias) and preserves true disagreement
among the raters.

The proposed WGT determination procedure was tested
on two widely-used behavioral datasets of continuous anno-
tations, the SEMAINE dataset and CreativeIT dataset. The
results show that, in most cases, the WGT optimization
improved the size of the WGT data, as well as the inter-
rater reliability and agreement, by removing rater bias.
The average improvement of WGT data size was between
10.1 - 20.9 percentage points for the SEMAINE dataset
and 15.2 - 18.7 percentage points for the CreativeIT dataset
depending on the dimension. The entropy of residuals also
decreased after optimization for both datasets, meaning more
relevant information was retained. This improvement was
small but consistent. The results also show the procedure
is sensitive to the type of rater disagreement – it preserves
true rater disagreement and removes disagreement originat-
ing from rater bias.

We are making an online tool available to researchers to
apply the proposed procedure to their data.2 The tool removes

2https://www.lucami.org/en/WGT/
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the two types of rater biases (mean and scaling bias) and
generates optimized WGT along with an estimation of inter-
rater reliability and agreement.

The drawback of the proposed procedure is that it removes
rater mean and scaling bias, but not time-shifting bias.
In practice, there are often rater-specific delays in annotation,
and rater biases may also drift over time. This might have
contributed to the decrease of WGT data size found in a
fraction of the CreativeIT samples (3%), where, after WGT
optimization, the size of originalWGT data was reduced (by a
median of −1.4 percentage points). In order to address these
issues, our future work will focus on the development of a
time-local bias removal procedure that will detect and remove
rater biases affected by drift.
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