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ABSTRACT The opportune fault detection of the rolling element bearings can avoid serious equipment
accidents or even casualties. However, the early fault features of the bearings are weak and often submerged
in heavy background noise and interferences. This paper proposes a novel approach for bearing fault
diagnosis based on the hard thresholding fast iterative filtering (HTFIF), IMF selection index integrating
L- kurtosis, correlation coefficient and autocorrelation function impulse harmonic to noise ratio (L-KCA),
and improved k-value symmetrical difference analytic energy operator (k-SDAEO). As an adaptive and fast
time-frequency analysis method, HTFIF is first adopted to process the bearing vibration signal and obtain
a series of IMFs. After that, an alternative fusion index L-KCA is developed to select the sensitive IMF.
Finally, a novel k-SDAEO with strong noise robustness is presented to process the selected IMF. With this
method, the weak bearing fault signatures can be identified from the energy spectrum. The performance
of the proposed method comparing to the traditional methods are investigated by numerical simulation and
experimental studies. The results show that the proposed method has better fault feature extraction capability
and higher efficiency, which can be implemented in the on-line and real-time fault detection.

INDEX TERMS Hard thresholding fast iterative filtering (HTFIF), L-KCA indicator, improved k-value
symmetrical difference analytic energy operator (k-SDAEO), rolling element bearings, fault diagnosis,
on-line detection.

LIST OF MAIN ABBREVIATIONS
FIF fast iterative filtering
HTFIF hard thresholding fast iterative filtering
IMF intrinsic mode function
ACFHNR autocorrelation function impulse harmonic to

noise ratio
L-KCA L-kurtosis combined with correlation coeffi-

cient and AFIHNR
SDAEO symmetrical difference analytic energy

operator
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k-SDAEO improved k-value symmetrical difference
analytic energy operator

DBN dynamic Bayesian network
TrResNet transfer residual network
PK-MMD polynomial kernel induced maximum mean

discrepancy
RUL remaining useful life
STFT short time Fourier transform
WT wavelet transform
RM reassignment method
WVD Wigner-Ville distribution
EMD empirical mode decomposition
MP matching pursuit
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BP basis pursuit
EEMD ensemble empirical mode decomposition
CEEMD complementary ensemble empirical mode

decomposition
IF iterative filter
MIF modified iterative filter
FFT fast Fourier transform
Corre. Coe. correlation coefficient
TEO Teager energy operator
MTEO multi-resolution Teager energy operator
AM-FM amplitude modulation-frequencymodulation
SNR signal-to-noise ratio
DFT discrete Fourier transform
IDFT inverse discrete Fourier transform
TVF-EMD time-varying filtering based empirical mode

decomposition
VMD variational mode decomposition
SNRI signal-to-noise ratio improvement

I. INTRODUCTION
The rolling element bearings are among the most funda-
mental elements in modern equipment, but they are prone
to be damaged due to their frequent use and harsh working
environments [1]. With the expansion of the damage, it will
further lead to the failure of the equipment operation and
even greater losses [2]. The function of a fault diagnosis
system is to rapidly detect and determine the root causes of
faults [3]. Hence, how to carry out on-line condition mon-
itoring and real-time fault diagnosis of the rolling element
bearings has become a key issue to ensure the good operation
of the machine, and to reduce the maintenance cost and major
accidents [3]–[5].

Fault diagnosis methods of the rolling element bearings
can be categorized as model-based, signal-based, and data-
driven method [6]. The model-based fault diagnostic method
has a profound theoretical foundation but is only useful for
the system with known mathematical models. It is difficult
to obtain precise mathematical models in actual situations,
which limits the use of this method [6]. Data-driven method,
which does not require a prior mathematical model, is a hot
spot in recent research [3], [6]–[9]. For instance, Cai et al.
presented a dynamic Bayesian network (DBN)-based fault
diagnosis methodology to identify the faulty component and
distinguish the fault types, including transient fault (TF)
and intermittent fault (IF) and Permanent fault (PF) [7].
Yang et al. proposed a distance metric named polynomial
kernel induced maximum mean discrepancy (PK-MMD) to
help construct a deep transfer residual network (TrResNet),
which is expected to reuse the diagnosis knowledge from one
machine to the other [8]. Cai et al. proposed a hybrid physics-
model-based and data-driven remaining useful life (RUL)
estimation methodology of structure systems considering the
influence of multiple causes by using dynamic Bayesian
networks (DBNs) [9]. Nevertheless, the data-driven methods
generally have no clear physical meaning. Compared with

above two methods, the signal-based method does not need
to establish a mathematical model while has good physi-
cal significance. Moreover, the vibration signal of the bear-
ing contains rich fault information as the periodic impulses
will be generated when the rolling bearing has a localized
defect [10]. Therefore, numerous vibration-based signal pro-
cessing methods have been developed and applied to the
bearing fault diagnosis, such as the short time Fourier trans-
form (STFT), the wavelet transform (WT), the reassignment
method (RM), theWigner-Ville distribution (WVD), the spar-
sity assisted method and the empirical mode decomposition
(EMD) [11], [12]. STFT and WT are effective and easy to
implement but they both depend on the predetermined bases
and cannot accomplish the high resolutions in time and fre-
quency domains simultaneously [13], [14]. RM improves the
time-frequency localization to some extent, but the original
signal processed by RM cannot be recovered [15]. WVD has
a higher time-frequency resolution, but it is restricted by the
cross term interference [4], [15]. Sparse decomposition (e.g.,
matching pursuit (MP) and basis pursuit (BP)) can obtain the
higher time-frequency resolution and self-adaptability, but
expands the computation and storage costs [5].

As an adaptive decomposition method, EMD [16] is used
to decompose a given signal into a set of intrinsic mode
functions (IMFs) that have unique information [17]–[19].
It has been widely used in many fields, such as Medicine,
Geophysics, Engineering, Information Technology and Eco-
nomics [18]. As a powerful time-frequency analysis method,
EMD also has exhibited some shortcomings, such as lack
of mathematical foundation, un-stability of the sifting algo-
rithm, noise susceptibility, intermittent and mode mix-
ing [14], [17]. Over the past two decades, the widespread use
and shortcomings of the technique have appealed to many
researchers and a large number of improved and alternative
approaches have been put forward. Deering and Kaiser [20]
used a masking signal to improve the mode mixing and inter-
mittent issue in the transient process, but its mode separation
ability is affected by the signal magnitude [4], [21], [22].
Wu and Huang [23] and Yeh et al. [24] proposed the ensem-
ble EMD (EEMD) and complementary EEMD (CEEMD)
methods to improve the mode mixing and sensitivity of the
standard EMD, but bring new issues of residue noise and
spurious modes [25]. Lin et al. [14] used the convolution
of the low-pass filter function and the signal itself as the
‘‘signal moving average’’ instead of the average between
two envelopes in EMD and proposed the iterative filter (IF)
algorithm. However, the compact support low-pass filters
used in the IF are not smooth enough and may create arti-
ficial oscillations in the subsequent IMFs [26]–[28]. To solve
this problem, Cicone et al. [13] constructed some smooth
filters from the solutions of Fokker-Planck equations (FP
filters) to replace the low-pass filters used in IF and obtained
the modified IF (we call it MIF) [13], [26], [27]. Recently,
Cicone [18] introduced the fast Fourier transform (FFT) and
down-sampling techniques into MIF and proposed a hard
thresholding fast iterative filtering (HTFIF). The HTFIF can
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simplify the process of MIF to one-step and make it closer
to an on-line algorithm [28]. Therefore, the HTFIF decom-
position method is adopted in this study to conduct on-line
detection and fault diagnosis of the bearings.

After the vibration signals are decomposed by HTFIF, how
to choose the sensitive IMF with rich fault information is
still a tricky issue [17]. Recently, a lot of analysis methods
for sensitive IMF selection have been reported. For example,
Xiao et al. [29] selected the sensitive IMF by calculating the
correlation coefficient between each IMF and the original sig-
nal. The correlation coefficient method has good adaptability
but small discrimination and it is easily to be misjudged near
the threshold boundary. Xu and Cai [30] selected sensitive
IMF based on the maximum kurtosis method. Although the
kurtosis has a high value for the impulse feature extracting,
it is susceptible to the outliers, the noise and the sparsity of
the impact [31]. In view of the above shortcomings of the
traditional kurtosis method, Liu et al. [32] first applied the
L-kurtosis to bearing fault diagnosis. Zheng et al. [31] pro-
posed an autocorrelation function impulse harmonic to noise
ratio (ACFHNR) index and its fusion method with Pearson
correlation coefficient and kurtosis to measure the richness of
the periodic pulse fault feature information [33]. In view of
this, an alternative fusion index of L-kurtosis combined with
correlation coefficient and ACFHNR (L-KCA) is developed
in this paper to select the sensitive IMF.

However, when the working environment of the bearings is
harsh, the noise and interference level is high. It is necessary
to combine the mode decomposition method with other pro-
cessing techniques. Energy operator demodulation technique,
which has the characteristics of low computational com-
plexity and high time resolution is typically a good option.
Teager energy operator (TEO) is an effective demodulation
method for the amplitude modulation-frequency modulation
(AM-FM) signal and can adaptively detect the instantaneous
changes of the signals [34]. However, it also has obvious
disadvantages, such as low demodulation accuracy and noise-
sensitivity [35]. Choi and Kim [36], Choi et al. [37] pro-
posed a multi-resolution Teager energy operator (MTEO)
in the study of neural action potential detector, which has
strong noise robustness compared with TEO. Feldman [38]
found a new analytic energy operator (AEO) by integrat-
ing the concept of Hilbert transform and energy operator.
Xu et al. [39] proposed a symmetrical difference analytic
energy operator (SDAEO), which used the symmetric dif-
ference sequence with higher accuracy to replace the for-
ward difference sequence in TEO and greatly reduced the
end effect. Moreover, the symmetric difference sequence can
also smooth the data and enhance the noise robustness of
the energy operator. Therefore, to extract the fault features
of the bearings from seriously contaminated signals quickly
and accurately, an improved k-value symmetrical difference
analysis energy operator (k-SDAEO), which not only retains
the advantages of SDAEO but also has better robustness
under low signal-to-noise ratio (SNR) is presented in this
work.

The fault signal of the rolling element bearings is often
accompanied by the heavy background noise. Meanwhile,
the traditional fault diagnosis methods are usually time-
consuming. To accurately and fast extract the fault features,
a new bearing fault diagnosis approach based on HTFIF
and k-SDAEO is proposed. The main contributions of this
work can be summarized as follows: The HTFIF is first
adopted for bearing fault diagnosis in this paper, and it is
able to decompose a given signal into a set of IMFs. More-
over, an alternative fusion indicator L-KCA is developed to
select the sensitive IMF with rich fault information. Finally,
a k-SDAEO is presented to apply the spectrum analysis on
the selected IMF. As a result, the fault characteristics can be
easily and quickly identified.

The remainder of this paper is organized as follows:
Section 2 introduces the fundamental theory of the proposed
method. A numerical simulation is carried out on a com-
plex signal with heavy noise and interference harmonics in
Section 3. In Section 4, two experiments are conducted to
validate the effectiveness of the proposed method. Finally,
the conclusions are drawn in Section 5.

II. THEORETICAL ANALYSIS
A. HARD THRESHOLDING FAST ITERATIVE FILTERING
The structure of the Fast Iterative Filtering (FIF) resembles
EMD and contains two nested loops: the outer loop to gen-
erate all the IMFs and the inner loop to compute each single
IMF. The key step of the algorithm is the iteration equation
of the inner loop [18]. For a discrete signal s(x) supported on
[0, 1], the mth iteration of the inner loop is given by:

sm+1(xi) = sm(xi)−
xi+lm∑

xj=xi−lm

sm(xj)wm(xi − xj)
1
n
,

j = 0, . . . , n− 1 (1)

and its matrix form is expressed as:

sm+1 = (I −Wm)sm, (2)

in which

Wm =

[
wm(xi − xj) ·

1
n

]n−1
i,j=0

, (3)

and wm is a Fokker-Planck filter described in the article [13]
with compact support on [lm,−lm], where lm is the filter
length, whose value can be tuned by parameter ζ and once set
will be kept constant throughout the entire inner loop iteration
process. Hence, for every m ≥ 1, lm = l1 = l and Wm = W .
Since W represents the discrete convolution operator, in the
case of periodicity of the signal at the boundaries, W is a
circulant matrix. In this case, the eigenvalues of the circulant
matrixW =

{
wpq

}
p,q=0,1,...,n−1 are given by:

λa =

n−1∑
q=0

w1qe−2π ip
q
n , p = 0, 1, . . . , n− 1 (4)
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and the corresponding eigenvectors are:

up =
1
√
n

[
1, e−2π ip

1
n , . . . , e−2π ip

n−1
n

]
(5)

Given a matrix U , whose columns are the eigenvectors up,
then U is a unitary matrix. In addition, W is diagonalizable
by U . Hence W = UDUT , where D is a diagonal matrix
whose diagonal elements are the eigenvalues of W and UT .
Assume that N0 is the number of iterations needed by FIF
method to derive the first IMF computation. Based on a
predefined stopping criterion, the first IMF is given by:

IMF1= lim
m→∞

(I−Wm)sm= lim
m→∞

(I−W )ms=U (1−D)N0UT s

(6)

As we know, UT s is the discrete Fourier transform (DFT)
of s, which can be computed using the FFT algorithm. Mul-
tiplying the matrix U on the left is equivalent to calculating
the inverse DFT (IDFT), which can be computed using the
inverse FFT. Hence, assuming we can evaluate a priori the
value of N0 needed in equation (6), then the IMF can be
derived in one step as:

IMF1=U (1−D)N0UTs= IDFT (1−diag(DFT (w)))N0DFT(s)

(7)

Let M be the number of IMFs already computed. The
subsequent IMFs are generated by iteratively applying the
same procedure described above to the remainder signal r =
s−

∑M
k=1 IMFk . The computation of sm+1 is the critical step

of the algorithm, which is now made fast significantly by
exploiting the FFT. When r becomes the trend signal, i.e.
it does not contain any more oscillations, the algorithm stops.

The FIF method, which is originally an iterative procedure,
can be made to be a direct method, based on equation (7).
In order to do so, it needs to compute a priori the number
of iterations N0 required in the inner loop of the algorithm
to extract each IMF. However this task is not easy at all and
currently the only possibility proposed in the literature [18]
is a formula which allows only to upper bound the exact
value of N0. For this reason in [18] an alternative approach
is proposed. In particular in [18] it is pointed out that the
purpose of the inner loop iterations in the FIF method is to
send, after N0 iterations, all eigenvalues in I − D that are
close to zero to be zero, up to machine precision, and keep the
eigenvalues bigger enough than zero unchanged [18], [40].
Therefore, the idea is to send the eigenvalues of matrix I −D
that are smaller than the threshold τ to 0, while preserving the
other eigenvalues unchanged. This is a direct method, and it
is called the hard thresholding fast iterative filtering (HTFIF).

B. COMPARISON OF DIFFERENT MODE
DECOMPOSITION METHODS
To validate the effectiveness and superiority of the innovative
HTFIF algorithm, the excellent signal decomposition meth-
ods newly proposed in recent years, such as time-varying

filter EMD (TVF-EMD) and variational mode decomposi-
tion (VMD) are employed to compare with HTFIF. Besides,
HTFIF is developed on the basis of MIF. The comparison
between MIF and HTFIF is also conducted.

Given an artificial signal f1(t), 0 ≤ t ≤ 5, which is com-
posed of an intermittent signal and two harmonics. Perturbed
by the white noise n(t) ∼ N (0, t), the signals are considered
and expressed as follows:

s1(t) = sin(π t) t ∈ [0,5]
s2(t) = sin(4π t) t ∈ [0,5]

s3(t) =

{
sin(55π t) t ∈ (1,1.5) ∪ (2.5,3) ∪ (4,4.5)
0 others

f0(t) = s1 + s2 + s3 t ∈ [0,5]
f1(t) = f0 + n(t) t ∈ [0, 5]

(8)

The mixed-signal f1(t) and its real components are dis-
played in fig. 1.

FIGURE 1. The mixed-signal and its components.

The decomposition methods of the VMD with the num-
ber of the mode K to be 4, TVF-EMD with the bandwidth
threshold to be 0.4 and the B-spline order to be 20, MIF with
the filter length adjustment parameter ζ to be 4 and HTFIF
with the filter length adjustment parameter ζ to be 4 and the
threshold τ to be 0.8 are performed on f1(t) respectively. The
decomposition results are displayed in Fig. 2. It can be clearly
seen that severe mode mixing occurs in the signals decom-
posed by VMD. TVF-EMD, MIF and HTFIF are all able
to separate the real components from the mixed-signal with
the first and second IMF revealing the noise and intermittent
signal respectively, and the last two IMFs corresponding to
the harmonics s2 and s1 respectively. The modes decomposed
by the three methods are almost equal that is hard to judge
which one is better from the waveform.

To further explore the decomposition performance of TVF-
EMD, MIF and HTFIF, a relative error introduced in [41] is
used here. And for the harmonic component s2, the relative
error can be expressed as follows:

e(f ) =
‖s2 − IMF3‖2
‖s2‖2

(9)

The decomposition results are shown in Table. 1. It indi-
cates that the HTFIF decomposition method has higher
accuracy.
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FIGURE 2. Decomposition results: (a) VMD; (b) TVF-EMD; (c) MIF and (d) HTFIF.

TABLE 1. The relative error of the three methods.

TABLE 2. Running time of three methods.

What’s more, the operating time of the three methods
above is computed. The experimental hardware conditions
are as follows: Intel(R) Core(TM) i5-8265 CPU @1.6 GHz
and 8 GB RAM. The soft-ware conditions are as follows:
Windows 10, 64-bit operating system, X64-based processor,
and MATLAB R2017b. The calculation results are shown
in Table. 2. Obviously, the running time of HTFIF decom-
position is 0.0128s, far less than that of TVF-EMD and MIF,
which indicates that HTFIF has excellent efficiency in signal
decomposition.

C. L-KCA INDICTOR FOR SENSITIVE IMF SELECTION
To choose the sensitive feature component from a series of
IMFs that decomposed by HTFIF, a fusion indicator L-KCA
on the basis of L-kurtosis, autocorrelation function impulse
harmonic to noise ratio index (ACFHNR) and correlation
coefficient (Corre. Coe.) is developed in this research.

1) L-KURTOSIS
Given a real valued random variable X , let its associated
cumulative distribution function be F(x) = P(X ≤ x) and the
inverse function of F(x) be x(F). Let X1:n ≤ X2:n ≤ ···Xn:n be

the statistics of the random sample X with size n in ascending
order. Hosking [42] defined the r th L-moment of X as:

λr =
1
r

∑r−1

k=0
(−1)k

(
r−1
k

)
E (Xr−k:r ) , r = 1, 2 . . . ,

(10)

where E (Xr−k:r ) is described as:

EXj:r=
r !

(j−1)! (r − j)!

∫
x {F (x)}j−1 {1−F (x)}

r−j
dF (x) .

(11)

Then the first four order L-moments are calculated as
follows:

λ1 = EX = b0 =
∫ 1

0
XdF, (12)

λ2 =
1
2
E (X2:2 − X1:2) = 2b1 − b0 =

∫ 1

0
X (2F − 1) dF,

(13)

λ3 =
1
3
E (X3:3 − 2X2:3 + X1:3) = 6b2 − 6b1 + b0

=

∫ 1

0
X
(
6F2
− 6F + 1

)
dF, (14)

λ4 =
1
4
E (X4:4 − 3X3:4 + 3X2:4 − X1:4) = 20b3 − 30b2

+ 12b1 − b0 =
∫ 1

0
X
(
20F3

− 30F2
+ 12F − 1

)
dF .

(15)

According to the above results, L-kurtosis can be obtained
as:

L − kurtosis =
λ4

λ2
. (16)
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2) AUTOCORRELATION FUNCTION IMPULSE HARMONIC TO
NOISE RATIO INDEX
The energy of the autocorrelation function of the general
periodic signal is periodically distributed, while that of
the white noise signal is mainly concentrated in the zero
point and becomes zero at the non-zero points. Therefore,
Zheng et al. [33] proposed a new autocorrelation function
periodic impulse harmonic to noise ratio index (ACFHNR) to
detect the periodic pulse fault characteristics. The calculation
process is as follows:

Let x̂ be the Hilbert transform of the original signal x(t)
with the length of N , and y be the absolute value of x̂. And
they can be calculated as follows:

x̂ (t) = H {x (t)} =
1
π

∫
+∞

−∞

x (τ )
t − τ

dτ , (17)

y = |̂x (t) |. (18)

Then remove the direct current component of y. It should
be note that for the purpose of nondimensionalize, during
the process, y with its average removed need to divide by its
standard deviation, which can be expressed as:

s (t) =
y (t)− mean (y)√
1
N

∑N
i=1 (yi − y)

2
. (19)

Next, compute the autocorrelation function R(µ) of s(t):

R (µ) = E {s (n+ µ) s (n)} , (20)

where E{·} is the expectation operator and s(n)∗ is the conju-
gation of s(n).

Finally, the ACFHNR index is described as follows:

ACFHNR =

∑k
i=1 Ren (kNT )
Ren (0)

, (21)

where NT is the number of the sampling points in a pulse
period, Ren (kNT ) is the energy value of the autocorrelation
function R(µ) at kth period impulse, Ren(0) is the energy
value of the autocorrelation function R(µ) at the zero point.
And k = 3 is suggested [31].

3) L-KCA INDICATOR
Compared with kurtosis, L-kurtosis is robust to outliers and
more sensitive to the fault pulse sequence itself, but it still
mainly focuses on the general statistical distribution of a
signal and may ignore the specific characteristics of the
vibration signals. The ACFHNR index can indicate the ratio
of period impulse harmonics and noise components in the
vibration signals, but it is sensitive to interference harmonics.
According to the correlation coefficients between each IMF
and the original vibration signal, the IMFs can be divided
into clusters of sensitive and insensitive IMFs [33]. Make
the above three indicators have complementary advantages to
obtain a fusion index L-KCA for the sensitive IMF selection,
which is calculated as follows:

First, the L-kurtosis and ACFHNR values of each IMF and
the correlation coefficient between each IMF and the original

vibration signal are calculated. Then the following Min-Max
scaling formula (22) is used to normalize them in the same
scale:

λnorm (k) =
λ (k)−min (λ)

max (λ)−min (λ)
. (22)

Finally, the L-KCA indictor of each IMF is calculated as:

L−KCA (k)=λL−kurtosis (k) · λCorre.Coe. (k) · λACFHNR (k) ,

(23)

where λL−kurtosis (k), λCorre.Coe. (k) and λACFHNR (k) denote
the normalization value of L-kurtosis, correlation coefficient
and ACFHNR of the kth IMF, respectively.

Obviously, the limit [Min,Max] of L-KCA indicator is set
to [0, 1], and the larger the L-KCA indicator of the IMF is,
the more periodic impact features is contained in it.

In order to illustrate the effectiveness and superiority of the
proposed sensitive IMF selection indicator, the comparisons
of L-KCA with kurtosis, L-kurtosis, ACFHNR and correla-
tion coefficient are carried out. The tested signal S(t) can be
described as follow:

S(t) = x(t)+ n(t), (24)

where x(t) is the fault transient impulse sequence and n(t)
is the noise signal. The SNR of the mixed-signal S(t) is
set to −1dB to −15dB. The indicators of the sensitive IMF
decomposed by HTFIF at different SNR are shown in Fig. 3.
It can be seen that when the input SNR of the mixed signal
changed from −1dB to −15 dB, all the indicators are grad-
ually decreased, which indicates that all the indicators can
distinguish the sensitive IMF. The L-KCA index has the best
resolution among the indicators, indicating that the proposed
L-KCA index outperforms other indicators in identifying the
periodic impulse feature of the rolling bearings. In addition,
it is worth noting that the kurtosis indicator changes suddenly
at higher noise level, which is due to the fact that the kurtosis
metric is susceptible to outliers caused by random events.
This could mislead the detection decision. L-kurtosis is more
robust and reliable than the traditional kurtosis, which is the

FIGURE 3. The comparative results of the indicators of the sensitive IMF.
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reason why we choose L-kurtosis instead of kurtosis in the
fusion index L-KCA.

D. IMPROVED k-VALUE SYMMETRICAL DIFFERENCE
ANALYTIC ENERGY OPERATOR
The concept of analytic energy operator is developed from
the analytic signal. Suppose a modulated signal:

x (t) = A (t) cosϕ (t) , (25)

whose analytic form is:

X (t) = |X (t)| [cosϕ (t)+ j sinϕ (t)] = A (t) ejϕ(t), (26)

where A (t) is the instantaneous amplitude. Let x̂ be the
Hilbert transform of x(t), then the instantaneous amplitude
can be obtained by:

A (t) = ± |X (t)| = ±
√
x2 (t)+ x̂2 (t). (27)

ϕ(t) is the instantaneous phase, which can be expressed as:

ϕ (t) = arctan
x̂(t)
x (t)

. (28)

The instantaneous frequency can be expressed by the first
derivative of the instantaneous phase, that is:

w (t) = ϕ′ (t) =
x (t) x̂ ′ (t)− x ′ (t) x̂ (t)

A2
. (29)

Hence,

x (t) x̂ ′ (t)− x ′ (t) x̂ (t) = A2 (t)w (t) . (30)

Obviously, it includes amplitude demodulation and fre-
quency demodulation, so it is called analytical energy opera-
tor (AEO) and represented by 0{x(t)}, that is:

0{x(t)} = x ′ (t) x̂ (t)− x (t) x̂ ′ (t) (31)

where x ′(t) is the first derivative of the signal x(t); x̂ ′ (t) is the
first derivative of the Hilbert transform of x(t). The discrete
form of equation (30) can be expressed as:

0{x(n)} = x ′ (n) x̂ (n)− x (n) x̂ ′ (n) . (32)

At the same time, for the discrete time signal x(n), Teager
energy operator adopts the forward difference

•
x(n) = x(n +

1) − x(n) to approximate the time derivative. However, the
maximum relative error can reach 11% after taking the deriva-
tive by the forward difference, resulting in low demodulation
accuracy [34]. Therefore, to smooth the original discrete
signal and improve the accuracy of demodulation, instead of
forward difference the central finite difference sequence is
adopted in the symmetrical difference analytic energy opera-
tor (SDAEO), which is expressed as:

•
x (n) =

x (n+ 1)− x (n− 1)
2

. (33)

In order to enhance the noise robustness of the energy oper-
ator, inspired by the multi-resolution Teager energy operator
(MTEO) [36], [37]. This paper uses three sampling points

that spaced k apart in the signal to improve the symmetrical
difference sequence and obtains:

•
x (n) =

x (n+ k)− x (n− k)
2

. (34)

Then the improved k-value Symmetric Difference Analytic
Energy Operator (k-SDAEO) is constructed by combining
Equation (31) with Equation (33), and expressed as:

0{x(n)} =
[x (n+ k)− x (n− k)] · h [x (n)]

2

−
h [x (n+ k)− x (n− k)] · x (n)

2
(35)

where h [n] = H [x (n)], represents the discrete Hilbert trans-
formation.

E. THE SNR IMPROVEMENT OF THE k-SDAEO
The demodulation performance of the optimized k-SDAEO is
hard to evaluate due to its nonlinearity. It is clear that higher
SNR improvement (SNRI) brings about better demodulation
results. Therefore, we use SNRI indicator to evaluate the
demodulation performance of k-SDAEO indirectly. Let s(n)
with a sample size N be the original signal and ν(n) be the
signal denoised by k-SDAEO, and we define the SNRI of
K-SDAEO as follows:

SNRI = 10 log

[
1
N

∑N
n=1

∣∣v (n)|2
1
N

∑N
n=1

∣∣ s (n)− v (n)|2
]
. (36)

F. THE PROCEDURE OF THE PROPOSED HTFIF-k-SDAEO
METHOD
Motivated by the advantages of HTFIF, L-KCA indictor and
the improved k-SDAEO demodulation technology, a new
HTFIF-k-SDAEO method for rolling element bearing fault
diagnosis is proposed. The detailed procedure of the HTFIF-
k-SDAEO is illustrated in Fig.4 and the explanation is as
follows:
Step 1: Decompose the collected vibration signal into a

series of IMFs by HTFIF;
Step 2: Calculate the L-KCA indictor of each IMF and

select the one with the maximum L-KCA as the sensitive
IMF;
Step 3: Calculate the SNRI of each k-SDAEO of the sen-

sitive IMF at different resolution parameter k and select the
one with the maximum SNRI as the optimal k-SDAEO;

Step4: Perform the optimal k-SDAEO on the sensitive IMF
component to extract the fault characteristics of the bearing.

III. NUMERICAL SIMULATION
Due to the vibration signal acquired from a defective bear-
ing is usually a mixture of the bearing fault-induced signal,
the interferences are transmitted from other components and
background noise. To verify the proposed method, the fault
signal with heavy background noise and harmonic interfer-
ences was created by Equations (37), (38) and (39).

s(t) = x(t)+ I (t)+ n(t) (37)
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FIGURE 4. Flowchart of the proposed method.

FIGURE 5. Simulated fault signal: (a) The time-domain waveform and (b) Envelope spectrum.

I (t) = Ahg(t) = Ah
H∑
i=1

gi(t) = Ah
H∑
i=1

K∑
j=1

Bij sin(2π jfhi)

(38)

x(t) = Ame−2απ fn sin(2π fn
√
1− α2t). (39)

where I (t) is the interference signal; Ah is the amplitude of
the interference harmonics; H is the total number of the each
interference component; K is the number of harmonics of the
ith interference; Bij is the amplitude of the jth harmonic of
the ith interference;fhi is the fundamental frequency of the
ith interference, here three vibration interference frequen-
cies (73Hz, 135 and 183Hz) are added. x(t) is the transient
impulse fault signal; Am is the amplitude of the fault impulse
and is set to be 3; α is the damping coefficient and is set to be
0.1; fn with a value of 2,000Hz is the resonance frequency.
The fault characteristic frequency is fc = 105Hz. n(t) is
the additive white Gaussian noise; here the SNR of the fault
signal is set to −9.5dB. The number of the sampling points
of each simulated signal is set to be 12,000 and the sampling
frequency is set to be 12kHz.

The heavily contaminated signal s(t) and its corresponding
envelope spectrum are displayed in Fig. 5. It is found that the

time-domain signal is dominated by noise, and the envelope
spectrum cannot reveal any information about the impulse
fault features.

To increase the SNR of the spectrum and enhance the
spectral peaks of the fault characteristic frequency, the TEO,
SDAEO and k-SDAEO are performed on the simulated signal
respectively, and the results are shown in Fig. 6. Since the
fault characteristic frequency can hardly be extracted when
k is greater than 5 and k-SDAEO degenerates to SDAEO
when k=1, this research only takes the cases of k = 2, 3,
4 and 5 into consideration. The calculated SNRIs of SDAEO
and k-SDAEO at different k are listed in Table. 3. As shown
in Fig. 6, it is difficult for these energy operators to extract the
fault impulse characteristics from strong background noise.
But it can be seen that 2-SDAEO is able to identify several
harmonics of the fault characteristic frequency and is slightly
better than the other energy operators, which is consistent
with the case that the value of SNRI of k-SDAEO at k=2 is
slightly higher.

Hence, the proposed method is performed on the simulated
signal to identify the fault impulse features. Firstly, HTFIF is
employed to decompose the simulated signal s(t), and eleven
components are obtained as shown in Fig. 7.
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FIGURE 6. Energy spectra of original Simulated siginal: (a) TEO spectrum; (b) SDAEO spectrum;
(c) 2-SDAEO spectrum; (d) 3-SDAEO spectrum; (e) 4-SDAEO spectrum; and (f) 5-SDAEO spectrum.

FIGURE 7. Decomposition of simulated signal by HTFIF.

TABLE 3. SNRI of k-SDAEO for the simulated signal.

Secondly, in order to select the sensitive component which
contains rich fault feature information, the value of the kur-
tosis, correlation coefficient, ACFHNR, and the developed
L-KCA indicator for each IMF component are calculated
respectively, as shown in Fig. 8.

Obviously, the kurtosis, ACFHNR and correlation coeffi-
cient values of IMF1 are respectively larger than the ones of
other components, while IMF2 has maximum L-KCA value.
To confirm the effective component, the envelop analyses of
IMF1 and IMF2 are carried out, as shown in Fig. 9. It can
be found that the periodic impulse features in the envelop
spectrum of IMF1 are totally submerged in background noise.
However, several harmonics of fault characteristic frequency
can be identified from the envelop spectrum of IMF2, which
shows that IMF2 is the sensitive component and the devel-
oped L-KCA indicator is superior to the kurtosis, ACFHNR
and correlation coefficient indexes in selecting the sensitive
IMF.
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FIGURE 8. Indictors of each IMF component by HTFIF for simulated signal.

TABLE 4. SNRI of k-SDAEO for the sensitive IMF in HTFIF.

Compared the envelope spectrum of the mixed signal
(Fig. 5(b)) with that of the optimal IMF2 (Fig. 9(b)), it can
be found that after HTFIF processing, the noise has been
reduced and the impact characteristics have been enhanced.
Several harmonics of the fault characteristic frequency can
be identified, but the fault characteristic frequency itself is
still submerged in noise. To select the optimal resolution
parameter k, the SNRI of each k-SDAEO is calculated as
shown in Table. 4. It is evident that the maximum SNRI value
appears at k = 2, so the optimal resolution parameter k is set
to be 2 here.

Therefore, TEO, SDAEO and 2-SDAEO are performed on
the sensitive IMF2 respectively and the results are shown
in Fig. 10. It can be seen that compared with TEO and
SDAEO, 2-SDAEO is able to extract more obvious fault
characteristic frequencies and more harmonics, which gives
another proof that k-SDAEO outperforms TEO, SDAEO.

In order to further prove the superiority of the pro-
posed method, the excellent signal decomposition methods
TVF-EMD and VMD newly proposed in recent years are
employed for comparison and analysis. Six IMFs are obtained
by VMDwith the number of the mode K to be 6 and fourteen
IMFs are obtained by TVF-EMD with the bandwidth thresh-
old to be 0.25 and the B-spline order to be 27. The third IMF
in VMD and the second one in TVFEMD are respectively
selected as the sensitive IMF according to the maximum
L-KCA indicators, as shown in Fig. 11. Then the SNRIs of
k-SDAEO of the sensitive IMFs for the two methods are
calculated as shown in Table. 5. 4-SDAEO and 2-SDAEO are
the optimal k-SDAEO for VMD and TVFEMD respectively
according to the maximum SNRI.

Perform the optimal k-SDAEO on the sensitive IMFs
derived from VMD and TVF-EMD and the results are illus-
trated in Fig.12. It can be seen that although the fault

TABLE 5. SNRI of k-SDAEO for the sensitive IMF the of the two methods.

TABLE 6. Running time of three methods.

characteristic frequency and its some harmonics could be
identified by the methods based on VMD and TVFEMD.
However, compared with the analysis results of the proposed
method (Fig. 10(c)), the observed periodic pulse characteris-
tics are not so clear due to the strong noise contamination.

For the purpose of quantitative evaluation, this paper selects
the proportion of the spectrum energy as an evaluation func-
tion, which is expressed as:

η =

m∑
i=1

Eifc+ε

E
× 100%, (40)

where fc is fault characteristic frequency; i represents the har-
monic order of the fault characteristic frequency;m is the total
number of the harmonics of the fault characteristic frequency
that can be found from the spectrum within a frequency band
(0∼1000Hz); ε is the error caused by bearing mounting,

running, etc.
m∑
i=1

Eifc+ε is the frequency band energy sum of

observable fault characteristic frequency and its harmonics;E
is the total sum of the frequency band (0∼1000Hz); η is the
proportion of the spectrum energy, and the greater the value,
the better the detection results.

Then the proportion of the spectrum energy of the HTFIF-
k-SDAEO, VMD-k-SDAEO and TVFEMD-k-SDAEO
method are calculated to be 3.02%, 2.13% and 2.68% respec-
tively, which verifies that the proposed HTFIF-k-SDAEO
method has the best detection result.

Finally, MATLAB 2017b was used as the operating soft-
ware to compare the computing efficiency of HTFIF-k-
SDAEO, VMD-k-SDAEO and TVFEMD-k-SDAEO on a
laptop configured with Intel Core i5-8265U CPU and 8.0GB
RAM under windows10 and 64-bit operating system. The
computation time of the three methods is shown in Table. 6.
It can be seen that the calculation time of HTFIF-k-SDAEO
is 0.0989s, which is significantly smaller than that of VMD-
k-SDAEO (38.9011s) and TVFEMD-k-SDAEO (40.3258s).

Therefore, it can be seen from the above analy-
sis that although TEO, SDAEO and k-SDAEO have
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FIGURE 9. Envelope spectra of the IMFs decomposed by HTFIF for simulated signal (a) IMF1 and (b) IMF2.

FIGURE 10. Energy spectra of the sensitive IMF obtained by HTFIF (a) TEO spectrum; (b) SDAEO spectrum; (c) 2-SDAEO spectrum.

FIGURE 11. L-KCA indicators for each IMF component by the two
methods: (a) VMD and (b) TVFEMD.

high computation efficiency, they cannot identify periodic
impulses from the composite signals containing heavy noise
and harmonic interferences. VMD-k-SDAEO and TVFEMD-
k-SDAEO can extract the periodic impulse features, but the
effects are not obvious and are time-consuming. However,
the proposed HTFIF-k-SDAEO method not only has strong
feature extraction performance, but also has high computa-
tional efficiency.

IV. EXPERIMENTAL EVALUATIONS
To further validate the effectiveness and superiority of the
proposed HTFIF-k-SDAEO method in practical fault diag-
nosis, the experiments of the vibrating screen bearings are
conducted. In this part, two types of the bearing faults are
considered: the outer race fault and the inner race fault.

A. EXPERIMENTAL SETUP
The experiments are performed on the multi-function vibrat-
ing screen (SDM00) with two shafts and two motors,
in mechanical vibration laboratory of Xi’an University of
Architecture and Technology. The DYTRAN piezoelectric
accelerometers with the sensitivity of 97.3 MV/g and sam-
pling frequency of 20 kHz are adopted. The experimental
setup is shown in Fig.13. Type 1308 aligning ball bearings
are applied to these real tests and their specifications are
displayed in Table.7. The sampling frequency of the signals is
20 KHz and 20000 points are collected for the outer and inner
race analysis. The bearing speed is n = 1000 r/min and the
rotating frequency is fr = 16.7Hz. According to the formulas
of bearing theoretical fault frequency, the fault characteristic
frequencies of the outer race and inner race are calculated as
fo = 104.18 Hz and fi = 145.87 Hz, respectively.

TABLE 7. Specifications of the bearing.

B. FAULT DETECTION FOR THE OUTER RACE
The time-domain waveform of the outer race fault signal
and its corresponding envelope spectrum are presented in
Fig.14 (a) and Fig.14 (b), respectively.

From the time domain diagram we cannot see any fault
impulse characteristics with uniform interval. The envelope
spectrum is abound with interference spectral lines and noise,
which makes the fault features difficult to be extracted. Then,
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FIGURE 12. Optimal k-SDAEO spectra of the Sensitive IMFs of VMD and TVFEMD: (a) 4-SDAEO spectrum of the third IMF in VMD
and (b) 2-SDAEO spectrum of the second IMF in TVFEMD.

FIGURE 13. The experimental set-up: (a) Vibrating screen and (b) Detail of sensor measuring point of
fault signal sampling channel 5.

FIGURE 14. Outer race fault signal: (a) time-domain waveform and (b) envelope spectrum.

TABLE 8. SNRI of k-SDAEO for the outer race fault signal.

perform the energy operators TEO, SDAEO and k-SDAEO
on the original vibration signal for demodulate analysis and
their corresponding energy spectra are obtained as shown
in Fig.15. According to the maximum SNRI (Table.8), k is
set to be 4.

As shown in the TEO spectrum, the fault features are
totally submerged in the heavy background noise. SDAEO
cannot extract the outer race fault characteristic frequency fo
although its second and fourth harmonics can be revealed.
4-SDAEO can both extract the outer race fault characteristic
frequency and its several harmonics. Therefore, among these
energy operators, 4-SDAEO has the best fault extraction
performance, which verifies the superiority of the proposed
k-SDAEO method. However, there are also some interfer-
ence frequencies and background noise in the 4-SDAEO
spectrum and the order of the extracted harmonics are
discontinuous.
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FIGURE 15. Energy spectra of original outer race fault signal: (a) TEO spectrum; (b) SDAEO spectrum and (c) 4-SDAEO spectrum.

FIGURE 16. Decomposition of outer race fault signal by HTFIF.

Therefore, the proposed method is performed on the outer
race fault signal. Firstly, the HTFIF is employed to decom-
pose the vibration signal adaptively, and ten components are
obtained as shown in Fig.16.

To select the sensitive IMF, the values of kurtosis, correla-
tion coefficient and L-KCA indictor for each IMF compo-
nent are calculated respectively as shown in Fig.17. It can
be found that the components with the maximum values
of kurtosis, correlation coefficient and L-KCA indictor are
IMF7, IMF1 and IMF2, respectively. As can be seen from
fig.16, IMF7 does not contain any periodic impact character-
istics. The envelop spectra of IMF1 and IMF2 are illustrated
in Fig.18. It is easy to discover that IMF2, which contain rich

FIGURE 17. Indictors for each IMF component.

fault features, is the sensitive component and the developed
L-KCA indicator outperforms the correlation coefficient and
kurtosis indexes.

According to the maximum SNRI of k-SDAEO for IMF2
(Table.9), k is set to be 3.

TABLE 9. SNRI of k-SDAEO for IMF2 of HTFIF.

Then the sensitive IMF2 is processed by TEO, SDAEO,
and 3-SDAEO and the results are illustrated in Fig.19. It can
be seen that the fault characteristic frequency and the asso-
ciated harmonics can be detected from the IMF2 by TEO,
SDAEO and 3-SDAEO all. But compared with 3-SDAEO
spectrum, the amplitudes are small in SDAEO spectrum and
the harmonic orders are discontinuous in TEO spectrum.
Accordingly, the k-SDAEO outperforms TEO and SDAEO
under the same conditions.

To further verify the advantages of the HTFIF-based
method, the vibration signal is also decomposed by VMD
and TVF-EMD. Seven IMFs are obtained by VMD with the
number of mode k to be 7 and eight IMFs are obtained by
TVFEMD with the bandwidth threshold to be 0.28 and the
B-spline order to be 26. The third IMF in VMD and the fourth
IMF in TVFEMD are respectively selected as the sensitive
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FIGURE 18. The envelop spectra of the IMFs with the maximum indictors: (a) Envelop spectrum of IMF1 with the maximum
correlation coefficient and (b) Envelop spectrum of the IMF2 with the maximum L-KCA indicator.

FIGURE 19. Energy spectra of the sensitive IMF obtained by HTFIF for outer race fault signal: (a) TEO spectrum; (b) SDAEO spectrum; (c) 3-SDAEO
spectrum.

FIGURE 20. L-KCA indicators of each IMF obtained by VMD and TVF-EMD.

TABLE 10. SNRI of k-SDAEO for the sensitive IMF the of the two methods.

IMFs according to themaximumL-KCA indicators, as shown
in Fig.20. The SNRI of k-SDAEO for the selected IMFs
obtained by the two methods are shown in Table.10.

It is can be seen that both VMD and TVFEMD have max-
imum SNRI at k=5. The 5-SDAEO spectra of the selected
IMFs for the two methods are shown in Fig.21. It is clear to
be seen that the results are inferior to the 3-SDAEO spectrum
of the sensitive IMF obtained by HTFIF (Fig.19(c)).

For the purpose of quantitative evaluation, the proportion
of the spectrum energy of the HTFIF-k-SDAEO, VMD-k-
SDAEO and TVFEMD-k-SDAEO method are calculated to
be 16.6%, 4.58% and 7.06% respectively, which verifies that
the proposed HTFIF-k-SDAEOmethod has the best detection
result.

Finally, MATLAB2017b was used as the operating soft-
ware to compare the computing efficiency of HTFIF-k-
SDAEO, VMD-k-SDAEO and TVFEMD-k-SDAEO on a
laptop configured with Intel Core i5-8265U CPU and 8.0GB
RAM under windows10, 64-bit operating system. And the
computational time of the threemethods is shown in Table.11.
It can be seen that the calculated time of HTFIF-k-SDAEO is
only 0.0609s which is far less than that of VMD-k-SDAEO
(17.1528s) and TVFEMD-KSDAEO (34.3194). Therefore,
the proposed HTFIF-k-SDAEO method can be used for
real-time monitoring and on-line fault diagnosis.

TABLE 11. Running time of three methods.

C. FAULT DETECTION FOR THE INNER RACE
The time domain waveform of the inner race fault sig-
nal and its corresponding envelope spectrum are presented
in Fig. 22(a) and Fig. 22(b), respectively. Similarly, the fault
impulses cannot be seen from the time domain signal, and
the envelope spectrum of the measured signal is dominated
by noise and interferences.
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FIGURE 21. Optimal k-SDAEO spectra of the sensitive IMFs in VMD and TVFEMD: (a) 5-SDAEO spectrum of the third
IMF in VMD; and (b) 5-SDAEO spectrum of the fourth IMF in TVFEMD.

FIGURE 22. Inner race fault signal: (a) time-domain waveform and (b) envelope spectrum.

FIGURE 23. Energy spectra of the original inner race fault signal: (a) TEO spectrum; (b) SDAEO spectrum and (c) 5-SDAEO spectrum.

TABLE 12. SNRI of k-SDAEO for the inner race fault signal.

As before, according to the SNRI of each k-SDAEO
(Table. 12) the optimal k-SDAEO presents at k=5.

Perform TEO, SDAEO and 5-SDAEO on the raw signal
and the results are illustrated in fig. 23. It clear to be seen
that TEO spectrum is dominated by noise. In the SDAEO
spectrum only the fourth and sixth harmonics of the fault
characteristic frequency can be found. 5-SDAEO can both
identify the inner race fault characteristic frequency fi and its
5-fold and 6-fold frequency, which is better than the results of
the above two energy operators. Nevertheless, there are also
too many interference spectral lines in 5-SDAEO spectrum
and the orders of the extracted harmonics are discontinuous.

Then, the HTFIF, VMD and TVFEMD are applied to
decompose this vibration signal and the L-KCA indictors of

FIGURE 24. L-KCA indictor of each IMF for the three method.

each IMF component for the three methods are calculated as
shown in Fig. 24. It can be seen that the components with
the maximum value of L-KCA are IMF2, IMF3, and IMF2,
respectively for the three methods. According to the maxi-
mum SNRI of k-SDAEO for the sensitive IMF (Table.13),
the optimal resolution parameter k is set to be 2, 1, and 2
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FIGURE 25. The sensitive IMFs of HTFIF, VMD, TVFEMD and their corresponding optimal k-SDAEO
spectra: (a) IMF2 of HTFIF; (b) 2-SDAEO spectrum of IMF2 in HTFIF; (c) IMF3 of VMD; (d) SDAEO
spectrum of IMF3 in VMD; (e) IMF2 of TVFEMD; (f) 2-SDAEO spectrum of IMF2 in TVFEMD.

TABLE 13. SNRI of k-SDAEO for the sensitive IMF of the three methods.

respectively for the three methods. It should be noted that
k-SDAEO degenerates to SDAEO when k = 1.
The sensitive IMFs for the three methods and their corre-

sponding optimal k-SDAEO spectra are illustrated in Fig. 25.
It can be seen that both VMD- and TVFEMD-based meth-
ods can extract several harmonics of the fault characteris-
tic frequency with small amplitudes and accompanied by
strong noise and harmonic interferences. However, the fault
characteristic frequency and its harmonics can be identified
evidently from the 2-SDAEO spectrum of IMF2 in HTFIF.
In addition, the execution time has to be taken into account.
Thus, the proposed method is more likely to be further appre-
ciated in practice.

V. CONCLUSION
A novel rolling element bearing fault diagnosis approach
HTFIF-k-SDAEO is proposed in this study. It consists of
three steps: hard thresholding fast iterative filtering (HTFIF)
adopted for signal decomposition, L-KCA indicator devel-
oped for sensitive IMF selection and the improved k-value
symmetrical difference analytic energy operator (k-SDAEO)

presented for demodulation analysis. The results of numerical
simulation and experiments demonstrated the superiority of
the proposed method. The main conclusions are summarized
as follows:

(1) HTFIF was first applied to the bearing fault diagno-
sis. The comparison of HTFIF with VMD, TVFEMD
and MIF based on simulation signal highlighted that
the HTFIF decomposition method has higher decom-
position accuracy and more favorable decomposition
efficiency. Furthermore, to select the sensitive IMF,
the L-KCA indicator combining the L-kurtosis, cor-
relation coefficient and ACFHNR was developed and
verified to be superior to the indexes of kurtosis,
ACFHNR and correlation coefficient. Finally, a k-
SDAEO with an optimal k value selected according to
SNRI for different signals was presented to extract the
bearing fault features from the sensitive IMF.

(2) Through numerical simulation and experimental stud-
ies, the performance of the proposed method is
compared with that of the non-preprocessing energy
operator demodulation, HTFIF-TEO, HTFIF-SDAEO,
VMD- and TVFEMD-basedmethods. The results show
that the proposed method achieves a better fault feature
extraction capability and higher efficiency and it is
more likely to be an effective tool for bearing fault
real-time detection and on-line diagnosis.

In addition, some parameters of the algorithms in this
paper are the choices when the best decomposition results are
obtained after repeated debugging according to experience.
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In the succeeding research, we will study some parameter
optimization algorithms to realize the automatic adjustment
of the parameters and improve the engineering applicability
of the algorithms.
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