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ABSTRACT Optimal reactive power dispatch (ORPD) intended for reducing the real power losses of the
transmission scheme remains one of the supreme concerns for the research community to explore the
competence of power schemes. Numerous systems have been deliberate to increase the performance of
the optimization method in tunning the operational variables as well as explored through estimating the
final results. The research offering a novel approach based on the entropy evolution technique implemented
into Fractional PSOGSA algorithm to solve the optimal reactive power dispatch problem. To alleviate the
drawback of PSOGSA the fractional and entropy techniques are implemented into the algorithm which
enhanced memory effect, stability and robustness of the algorithm. The novel design of FPSOGSA-Entropy
is further tested for the optimal reactive power dispatch problems on IEEE-30 and IEEE-57 bus standards
to find the two objective functions; minimization of power line losses and voltage deviation. The superior
performance of the proposed FPSOGSA-Entropy is further verified with the results of simple FPSOGSA
for both single and multiple runs through comparative analysis study with state of art counterparts for each
scenario of optimal reactive power dispatch problems.

INDEX TERMS Optimal power flow (OPF), optimal reactive power dispatch (ORPD), particle swarm
optimization (PSO), gravitational search algorithm (GSA), fractional calculus (FC).

NOMENCLATURE
F1, F2 Objective functions
PiGn,P

i
Dn Real Power Generation and Demand

QiGn,Q
i
Dn Reactive Power Generation and

Demand
Gij,Bij Conductance and Susceptance
Nlb, Nt No. of load buses and transmission

lines
PVge,i,PTc,i,PGrp,i Penalty Factors
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Mps,i(t),Mac,j(t) Active and Passive gravitational
masses of agents

G(t) Gravitational Constant at time t
Nt,NQc,Ng No. of transformers, compensators,

generators
−β, α Descending Coefficient, Fractional

order
G 0 Initial Value
Mii(t) Mass of object i
aci Accerlation of agent i
Vi,Vsu

i Voltages at ith bus, Specified Value
range [0,1]
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I. INTRODUCTION
A. MOTIVATION AND INCITEMENTS
The electrical power system is usually an intricate net-
work that contains three step of power supply to variety
of load demand such as; generation, transmission networks
and distributions. It is projected to utilize it at the minimum
consumption of resources and giving the reliability and secu-
rity. In the recent research and developments, the field of
optimal reactive power dispatch attained the attraction of the
researcher interest due to its capability to security and eco-
nomic operation in power networks. It is one of the basic sub
non-linear problem of the optimal power flow that contains
both continues and discrete variables related to equality and
inequality constraints. The best setting of the variables pro-
vides the good economic operation and it can be achieved by
adjusting the control variables such as; voltages of generator
buses, transformers tap settings and shunt reactive compen-
sators.

B. LITERATURE REVIEW
The previous optimization used to solve the ORPD
problems are such as; linear programming [1], quadratic
programming [2], Newton’s method [3], primal-dual
algorithm-based interior point techniques [4] and gradient-
based algorithm [5]. These techniques have some drawbacks
such as accuracy loss and premature convergence. To resolve
these problems, the new meta-heuristic on stochastic search-
based approaches are introduced such as differential evo-
lution, genetic algorithm, evolutionary programming and
strategy and tabu search [6]–[10]. These schemes can capable
of handling the non-convex and discontinuous of fitness
function problem with finding the global minima.

The development and the exploitation in meta-heuristic
approach are further exposed to improve the results
while resolving the optimal reactive power dispatch prob-
lems (ORPD) such as; particle swarm optimization [11],
harmony search algorithm [12], improved harmony search
algorithm [13] gray wolf optimizer [14], cuckoo search
algorithm [15], backtracking search algorithm [16], grav-
itational search algorithm [17], seeker optimization algo-
rithm [18], gaussian bare-bones water cycle algorithm [19],
colliding bodies optimization algorithm [20], chaotic krill
herd algorithm [21], moth-flame algorithm [22], chaotic
particle swarm optimization [23], bacterial colony chemo-
taxis algorithm [24], whale optimization algorithm [25],
adaptive chaotic symbiotic organisms search algorithm [26],
imperialist competitive algorithm [27], invasive weed opti-
mization [28] and firefly algorithm [29]. Moreover, some
other meta-heuristic approaches in support are discussed
in [30]–[35]. All these optimization techniques have their
value of importance, applications, impacts and their limita-
tions to resolve the optimization issues of optimal reactive
power dispatch.

The topical studies are investigated in scheming of meta-
heuristics fractional evolutionary approaches by inspiring the

concept of fractional calculus implies in the internal structure
of the optimizer. For specimen, fractional particle swarm opti-
mization FPSO and fractional order darwinian particle swarm
optimization FODPSO [36] are observed the good optimiza-
tion techniques. The applications of fractional concept are
using in the different approaches such as; frequency control
and automatic generation control [37], robotics [38], image
processing [39], bioengineering [40], control systems [41],
digital circuit synthesis [42], feature selection [43], adaptive
extended Kalman filtering [44], design of PID controller [45]
and extreme learning machine [46].

Over the year, there are several entropy interpretations have
been proposed in which the best known are chaos spreading,
information, disorder, mixing and freedom [47]. First of all,
the description about entropy was given by Boltzmann to
define the systems that changes from one ordered to disor-
dered states. The spreading concept used by Guggenheim
to specify the energy diffusion from small to a big volume.
Lewis, in an isolated system the spontaneous expansion of
gas, the uncertainty increases while the information regarding
particles are decreases. Shannon, gives the information theory
to enumerate the losses information during the transmission
of a given message [48]. He also focused in statistical and
physical restraints which limits the message of transmission.
While, their application have been observed in different fields
such as; feature extraction [49], identification [50], weighting
analysis [51], frequency shifting and detection [52], image
alignment [53], laser dynamics [54], gear fault diagnosis [55],
structural pattern recognition [56], hydrologic synthesis [57],
material selections [58] and measure of information [53].

C. PAPER CONTRIBUTION AND POWER ORGANITION
Optimal reactive power dispatch is a non-linear complex,
non-convex, non-continuous andmulti-model problemwhich
involves discrete as well as continuous variables. Thus,
its solution comprises of different objective functions like
improving voltage profile, voltage stability, reducing power
losses enhancement and transmission cost minimization.
Thus, application the conventional particle swarm optimiza-
tion may suffer from stagnation and it may be trapped in
local optima as well as it does not have strongly convergence
guarantees. While, GSA has good memory property but it
required extensive time for some optimization problems to
find the global solution. The main idea is to integrate both
algorithms to get the exploitation / exploration abilities from
PSO and GSA algorithm.

Aforementioned, the vast applications of fractional and
entropy diversity concepts in field of science and technol-
ogy. We can refer the integration of the fractional properties
into the internal structure of PSOGSA algorithm to update
velocity and developed the FPSOGSA algorithm. In addi-
tion, the Shannon entropy is implemented to the position of
the FPSOGSA algorithm to developed the novel FPSOGSA
entropy in order to enhance the convergence strength of the
algorithm with improving the memory effects [41].

2716 VOLUME 9, 2021



R. Jamal et al.: Application of Shannon Entropy Implementation Into an FPSOGSA

In this paper, the FPSOGSA-Entropy algorithm is
proposed for enhancing the searching capabilities to be
applied for solving the ORPD. The selection / updating
process regarding particles are depended upon the change
in the entropy. In the paper, FPSOGSA-Entropy algorithm
is proposed for enhancing the searching capabilities to be
applied for solving the ORPD.

The learning methods incorporated in the novel proposed
FPSOGSA-Entropy algorithm are as follows:
• Novel application of fractional and entropy evolutionary
techniques implemented and improved the optimization
strength of FPSOGSA-Entropy for the optimal reactive
dispatch problems.

• The proposed strategy is successfully applied to the
optimal reactive power dispatch problems to find the
minimization of power line losses with voltage devia-
tion.

• The performance of the algorithm is determined through
the outcomes of proposed FPSOGSA-Entropy over sim-
ple FPSOGSA algorithm through the statistical analysis
in term of stairs, histogram, empirical CDF, minimiza-
tion curves and box plots gauges.

This paper proposes the utilization concept related to a
novel meta-heuristic approach based on FPSOGSA-Entropy
algorithm to solve the optimal reactive power dispatch prob-
lems. In order to find the two objective functions ofminimiza-
tion of power line losses and voltage deviation, the special
tool of MATPOWER is used to run the power flow [28]. The
paper organization is set as follows: Section 2 computational
problem formulation of optimal reactive power dispatch,
Section 3 gives a mathematical review of traditional PSO,
GSA, fractional calculus, Entropy evolution technique and
graphical explanation with pseudo code, Section 4 explores
the result and discussion, Section 5 represents the comparison
of statistical analysis between FPSOGSA-Entropy and simple
FPSOGSA algorithm while Section 6 states the conclusion.

II. SYSTEM MODEL: ORPD PROBLEM
The optimal reactive power dispatch is a sub problem of
optimal power flow that delivers the optimal standards of
control variables through reducing a predefined objective
function with respect to the operational constraints of the
scheme. The objectives of ORPD for two objective functions
are formulated as follows [59].

Generally, the function f (x, y) describes as the objective
function, x is represented as vector of dependent variables
while y is indicated as the vector of control variables.

g(x,y) = 0

h(x,y) ≤ 0 (1)

where g(x,y) = 0 represents the equality constraints includ-
ing the balance active and reactive powers flow in system
while h(x,y) ≤ 0 represents the inequality constraints includ-
ing the dependent and the control variables such as the gener-
ator voltages, the transformer taps, the reactive power of the
generators, the voltage of load buses.

A. OBJECTIVE FUNCTION 1 (MIN PLOSS (X, Y))
F1 is the objective function which aims to minimize the entire
power line losses.

F1 = Ploss(x, y) =
Nt∑
i=lb

Ploss (2)

The power balance of load flow equation for equality
constraints are given as follows:

PiGn − PiDn = Vi

∑
j∈Ni

Vj(Gij cos θij + Bij sin θij) (3)

Qi
Gn − Qi

Dn = Vi

∑
j∈Ni

Vj(Bij cos θij + Gij sin θij) (4)

The inequality constraints are considered for generators, the
constraints are generator real as well as reactive power gen-
eration limits and voltage limits are given as follows:

Pmin
G,i ≤ PG,i ≤ Pmax

G,i i = 1, 2.....Ng

Qmin
G,i ≤ QG,i ≤ Qmax

G,i i = 1, 2.....Ng

Vmin
G,i ≤ VG,i ≤ Vmax

G,i i = 1, 2.....Ng (5)

The formulation of the transformer tap setting is restricted by
their lower upper limits and defined as follows:

Tmin
t,i ≤ Tt,i ≤ Tmax

t,i i = 1, 2 . . . . . . ,Nt (6)

whereas, the minimum and the maximum limits of the shunt
reactive compensators are given as follows:

Qmin
c,i ≤ Qc,i ≤ Qmax

c,i i = 1, . . . . . . . . .NQc (7)

In optimal RPD, the inequality constraints are defined as the
following penalty factor equation.

FP = f(F1/F2)+
∑
i∈Nqp

PVge,i
(
Vi − Vlim

i

)2
+

∑
i∈NT

PTc,i
(
Ti − Tlim

i

)2
+

∑
i∈NG

PGrp,i
(
Qi − Qlim

i

)2
(8)

here, xlim is the limit values of the dependent variable x, so
the representation for Vlim

i ,Tlim
i and Qlim

i are as follows.
If x>xmax, then xlim = xmax

elseif x>xmin, then xlim = xmin

else
xlim = x
end

B. OBJECTIVE FUNCTION 2 (VOLTAGE DEVIATION)
F2 is the second objective function which aims to minimize
the voltage deviation.

F2 = VD(x, y) =
Nlb∑
i=1

[
Vi − Vsu

i
]

(9)
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III. METHODOLOGY
The proposed strategy is based on FPSOGSA-Entropy to
solve the optimal reactive power dispatch problem tested
on IEEE 30 and 57 Standards with 13, 19 and 25 control
variables respectively. The design approach of is given in the
following steps:
• A Brief review on PSO, GSA, FC and Shannon Entropy
• The graphical illustration of overall workflow of
FPSOGSA-Entropy in Fig. 1.

• The Algorithm. 1 pseudocode of the proposed
FPSOGSA-Entropy

A. PARTICLE SWARM OPTIMIZATION (PSO)
It is one of the most common computational method estab-
lished by Eberhart and Kennedy in 1995 [60]. The algorithm
is inspired by birds flocking, where the velocity is maintained
by every bird while it closes to the food. By adding the veloc-
ity, the initial population will be improved and it determined
the difference between the particles with respect to Pbest and
Gbest. The updating of velocity vi for every particle is given
as follows.

vi(t+ 1) = w× vi(t)+ c1 × rand× (Pbest− xi(t))

+ c2 × rand× (Gbest− xi(t)) (10)

here, w inertia weight, c1, c2 are the positive coefficients,
Pbest and Gbest are the local and the global best position.
While, the position xi is updating as follows.

xi(t+ 1) = xi(t)+ vi(t) (11)

B. GRAVITATIONAL SEARCH ALGORITHM (GSA)
It is the new stochastic search technique introduced by
Rashedi et al. in 2009 [61] in which agents are measured
due to performance on basis of their masses while the objects
are attracted with each other with gravity force. Therefore,
the gravity force leads to overall movement of entire objects
towards other with heavier mases. Suppose, there are N num-
ber of agents in a system, GSA algorithm starts with the
randomly placing entire agents in the search space. According
to gravity law, the force applied on the ith mass from jth mass
is defined as follows:

Fij,d(t) = G(t)
Mps,i(t)×Mac,j(t)∥∥Xi(t),Xj(t)

∥∥
2

(xi,d(t)− xj,d(t)) (12)

here, G(t) is calculated as:

G(t) = G0 × exp(−β × iter/max iter) (13)

For the ith agent, the total force wielded from other agents is
defined as follows:

Fi,d(t) =
∑
j6=i

randjFij,d(t) (14)

The acceleration of ith agent is computed as follows:

ai,d(t) =
Fi,d(t)
Mii(t)

(15)

here, the updating velocity and position of GSA are computed
as follows:

vi,d(t+ 1) = randi × vi,d(t)+ ai,d(t) (16)

xi,d(t+ 1) = xi,d(t)+ vi,d(t) (17)

C. PARTICLE SWARM OPTIMIZATION AND
GRAVITATIONAL SEARCH ALGORITHM (PSOGSA)
The optimal values are obtained with the motion of the agents
in search space during hybridization process but perhaps their
methods of movements are different. In GSA the movement
of agent computed by the total forces applied from other
agents. The GSA contains some draw backs such as; lacking
of memory and only present position of the agent further acts
of updating the agent’s positions.While, the PSO uses kind of
memory such as; best earlier position of each and among all
particles; thus, speed increases towards the optimal solution
during movement of individual particles. In this approach to
enhance the performance of GSA by improving the memory
and group information of PSO has been used.

here, the c′1 and c
′

2 are positive coefficient constants, Pbesti
is the best previous position of ith particle while Gbest rep-
resents the best previous position of all particles. The math-
ematical representation of the velocity and the positions are
given as follows [62].

vi(t+ 1) = wf × vi(t)+ c′1 × randi,1 × aci
× + c′2 × randi,2 × (Gbest(t)− xi(t)) (18)

xi,d(t+ 1) = xi,d(t)+ vi,d(t) (19)

D. FRACTIONAL CALCULUS
The idea of fractional calculus (FC) plays a vital role in
mathematical modeling for increasing the performance of
algorithms applied to different fields for specimen; edge
detection, observability, identification and robustness stabil-
ity. The Euler gamma function is as follows.

0(k) = (k− 1)! (20)

The Grünwald–Letnikov [63] explanation of fractional dif-
ferential with order α ∈ C is further explanation for discrete
time interpolation of signal (x[t)) is defined as:

Dα (x [t]) =
1
Tα

r∑
k=0

(−1)k0 [α + 1] x [t− kT]
0(k+ 1)0(α − k+ 1)

(21)

here, k represents the index that represents number of terms
in power series expansion in basic Grunwald-Letnikov inter-
pretation of fractional calculus. T represent the sampling
time, α is the fractional order, 0 represents Euler gamma
function, while r is the truncation order.Whereas, the velocity
is defined as follows:

vnt+1 − vnt = ρ1r1(LB
n
t − xnt )+ ρ2r2(GBn

t − xnt ) (22)

Here, vnt+1 indicates the next velocity at t
th iteration, x denotes

particle position, n is the particle index crossponding velocity
v, r1 and r2 are the random numbers range between [0,1],
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FIGURE 1. Graphical abstract of FPSOGSA-Entropy Algorithm tested on IEEE30 and 57 Standards for power losses minimization and voltage
deviation.
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Algorithm 1 Pseudocode of Designed FPSOGSA-Entropy for Solving ORPD Problems
Inputs: Set iterations, swarm size, fractional orders with control variables for
tested IEEE-30, IEEE 57 Standards.
Output: Power Line losses (2) and Voltage deviation (9).
Start FPSOGSA-Entropy
Step 1: Initialization: Randomly generated swarms with n particles

Provide I/p to every particle according to IEEE Bus dimension
For every particle of swarm
For the dimension based on variables
Randomly set x and v with permissible real entries
End

Step 2: Evaluate fitness for each particle of Swarm using (2) and (9)
With run the power flow.

Step 3: Stop the execution of algorithm based on following factors

a) Total iterations executed
b) Saturation limit attains

If termination criteria fulfilled then go to step 5 and 6.
Step 4: Calculating Parameters: Performed by (12), (13) and (15)
Step 5: Updating Velocity: Updating velocity of FPSOGSA-Entropy by (24):

v(p, t + 1) = α v(p, t)+
1
2
α(1− α) v(p, t − 1)+

1
6
α (1− α) (2− α) v(p, t − 2)

+
1
24
α (1− α) (2− α) (3− α) v(p, t − 3)+ c′1 × randi,1 × aci(p, t) + c

′

2 × randi,2

× (Gbest (p, t)− xi(p, t))

Here, p denotes the particle, t is the flight index
Step 6: Updating Position: FPSOGSA-Entropy updating position by (28).

x(p, t + 1) = x(p, t)+ v(p, t + 1)

Update particle of swarm and go to Step 2.
Step 7: Storage: Save parameters of Global best on minimization of

transmission power losses and voltage deviation.
Step 8: Analysis: Repeat step 1 to step 5,6 for different fractional

order alpha for detailed analysis of the results.
Step 9: Replication: Repeat the steps 1 to 6 for IEEE 30 and 57

Standards with 13, 19 and 25 control variables.

End FPSOGSA-Entropy

ρ1 and ρ2 are the local and global coefficients, while LBn
t

and GBn
t are the local and global positions. By considering T

= 1 in (21), the (23) can rewrite and express as:

vnt+1 = −
r∑

k=1

(−1)k0 [α + 1] vsn [t+ 1− kT]
0(k+ 1)0(α − k+ 1)

+ ρ1r1(LBn
t − xnt ) + ρ2r2(GB

n
t − xnt ) (23)

The order of velocity order derived in between the real num-
ber of limitations 0 ≤ α ≤ 1 and for the consideration of the
fractional concept, it increases the memory with leading to a
smoother variation. The behavior of the curve for fractional
mechanism testing on FPSOGSA algorithm is range between
1α = 0 to α = 1 by stepping of 1α = 0.1 increment. The
updated velocity in case of using fractional properties added

into PSOGSA (18) is rewritten as follows.

vnt+1 = α v
n
t +

1
2
α(1− α)vnt−1 +

1
6
α (1− α) (2− α) vnt−2

+
1
24
α (1− α) (2− α) (3− α) vnt−3

+ c′1 × rand i,1 × aci(t) + c
′

2 × rand i,2
× (Gbest (t)− xi(t)) (24)

E. SHANNON ENTROPY
The Shannon, gives the information theory to enumerate the
losses information during the transmission of a given mes-
sage [48]. The concept of entropy evolutionary techniques
implemented for increasing the performance of the algorithm
in the fields are feature extraction, identification, weighting
analysis, structural pattern recognition, hydrologic synthesis
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and measure of information. The mathematical expression of
the Shannon entropy equation is given as follows:

here, H is defined as the measure of choice, information
and uncertainty.

H(X) = −K
∑
xεX

pi−th(x) log pi−th(x) (25)

here,K is the positive constant, frequently its value is set to 1.
The above expression considered a discrete random variables
xεX characterized by probability distribution p(x).

H(X,Y) = −K
∑
x∈X

∑
y∈Y

pi−th(x,y) log pi−th(x,y) (26)

The above expression is the extended form of Shannon
entropy to the random multivariable.

F. SHANNON ENTROPY IMPLEMENTED TO FRACTIONAL
PSOGSA ALGORITHM
The technique is used in the study is to encourage the
exploitation and exploration the entropy during the Fractional
PSOGSA time evolution in order to enhance the overall
convergence of the algorithm. For this purpose, the concept
of Shannon entropy is introduced in the internal structure of
FPSOGSA algorithm to enhance the strength of the algo-
rithm. The FPSOGSA is the non-deterministic approach,
therefore a set of 100 autonomous trail is executed to rep-
resent the statistical data set.

Certainly, entropy measures the changing propensity of the
system energy, for specimen; during the present case,
the spreading of the particles inside the search space. Bearing
the idea comes in mind, the distance di−th measured between
i-th particle position and global best particle. So, the proba-
bility of every particle pi−th is specified by the distance di−th
to maximum possible distance dmax i. The computational rela-
tion is given as follows [59]:

pi−th =
di−th
dmax i

(27)

For, swarm size = n, and k = 1, the diversity index (28) is
computed as follows:

H(X) = −
n∑

i=1

pi−th log pi−th (28)

The presented research work is motivated by the need to
understand the entropy signal during the FPSOGSA time evo-
lution and to use it for improving its convergence. The entropy
signal is used to influence the algorithm behavior, namely
the reinitialization of the swarm given in Fig. 1. Where the
concept of Shannon entropy applied to the position of the
FPSOGSA-Entropy algorithm to improve the convergence
performance of the algorithm by updating the Gbest and G
values of the algorithm.

TABLE 1. Parameters settings of FPSOGSA-Entropy Algorithm for IEEE
30 and 57 bus standards [72].

IV. RESULTS AND DISCUSSION
In order to demonstrate the effectiveness of the proposed
algorithm for solving optimal reactive power dispatch prob-
lems, MATLAB 2015 onWindow 10 Professional Lenovo E-
480 Model Intel R©CoreTMi7-8550U CPU @ 1.80 GHz 8GB
RAM is operated to performed the simulations. The paper
represents the three cases of IEEE 30 (13 and 19 variables)
and IEEE 57 (25 variables) standards with giving six scenar-
ios are directed to prove the better efficiency of the proposed
FPSOGSA-Entropy algorithm. The two objective functions
are subjected to find such as; minimization of power line
losses and voltage deviation. The detail of all scenarios are
defined as follows:
1. Power Line Losses for IEEE 30 Standard (13 Var)
2. Voltage Deviation for IEEE 30 Standard (13 Var)
3. Power Line Losses for IEEE 30 Standard (19 Var)
4. Voltage Deviation for IEEE 30 Standard (19 Var)
5. Power Line Losses for IEEE 57 Standard (25 Var)
6. Voltage Deviation for IEEE 57 Standard (25 Var)

Additionally, the detail results of the proposed algorithm are
compared to the other algorithms are given in Table 2, IV and
VI while the statistical outcomes are compared to the variant
of the proposed algorithm with FPSOGSA algorithms.

The performance of the FPSOGSA is highly sensitive to
the values of its main controlling parameter and a small
variation in these parameters may cause premature saturation
that results in a suboptimal solution. The parameters of the
FPSOGSA i.e., velocity bounds, number of flights, number of
particles, size of swarm, inertia weight, social and cognitive
acceleration vector and fractional coefficient are selected
based on experience, knowledge of optimization problem,
knowledge of the optimizer, experimentations, and extensive
care.

The selection of parameters for tune up the proposed
FPSOGSA-Entropy is given in Table 1 and in case of every
scenario the algorithms is run for different fractional alpha
order to attain the best performance of the proposed strategy.
For all scenarios, the outcomes are reported and mapped into
the same MATPOWER load flow (LF) package to evaluate
the entire transmission loss with voltage deviation as for fair
comparison with other selected optimization algorithms.

A. MINIMAZATION OF POWER LINE LOSSES TESTED ON
IEEE 30 STANDARD (13 CONTROL VARIABLES)
The consideration of the control variables in the first scenario
is 13 and it contains six generators connected at the buses 2,
5, 8, 11 and 13 while the slack bus is connected at bus 1,
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TABLE 2. Optimal values of control variables for IEEE30 Standard (13 Var) for minimization power line losses.

TABLE 3. Comparison of percentage of power losses minimization for IEEE30 standard (13 variables).

the range of the generators (Vgt ) are between [0.95-1.1].
There are four transformers tap settings (Tc), which are placed
at the given lines 6-9, 6-10, 4-12 and 28-27 and their vari-
ables the range is between [0.9-1.1]. Moreover, three shunt
compensators are connected to the buses 10, 20 and 24 with
the range between [0-30 MVAr]. The load demand for the
current scenario is set in per unit as S = P + jQ = 2.832+
j1.262 pu [72].

The Table 2 disclosed the optimal outcomes from the dif-
ferent algorithms such as; HSA [12], DE [64], R-DE [28],
MFO [28], GWO [66], FODPSO-EE [65], FPSOGSA [72]
are compared to the proposed FPSOGSA-Entropy algorithm
for optimal reactive power dispatch problem. The reduction in
power line losses % are given in Table 3, the base case values
is considering here 5.663 MW for comparing the results from
different techniques. The power losses % in MW are reported
such as; HSA is 9.78%, DE is 13.68%, R-DE is 17.58%,
MFO is 18.63%, GWO is 19.59%, FODPSO-EE is 18.82%,
FPSOGSA is 19.93%while the proposed FPOSGSA-Entropy
is reported at 19.96% respectively.

The Fig. 2 illustrates the performance curve of proposed
FPOSGSA-Entropy algorithm at the different fractional alpha
orders range between α = [0.1, . . . , 0.9] in case of finding
the minimization of power line losses. The selection of the
parameters in case of each fractional alpha order is set to
20 swarm, 50 iterations with 10 autonomous trails to find the
lowermost losses at the best fractional alpha order.

After getting the results, the best fractional alpha order
α = 0.7 gives 4.5487 MW while the worst result is reported
4.6194 MW at α = 0.4.

FIGURE 2. FPSOGSA-Entropy Convergence Curve for IEEE30 Standard
(13 Variables) at different fractional orders for power losses
minimization.

The consideration of worst case reported only in term of
comparing every fractional order but its values is reported
best as compared to the base case. Furthermore, the best
alpha would be further run for the 100 autonomous trails
which gives the lowermost minimum power line losses to
4.5323 MW at fractional alpha order α = 0.7.

B. MINIMAZATION OF VOLTAGE DEVIATION TESTED ON
IEEE 30 STANDARD (13 CONTROL VARIABLES)
The proposed FPSOGSA-Entropy algorithm is further run
for the second scenario in order to find the lowest voltage
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TABLE 4. Comparison of percentage of power losses minimization for IEEE30 standard (19 variables).

TABLE 5. Optimal values of control variables for IEEE30 standard (19 variables) in case of minimization of losses.

deviation value. The proposed algorithm is run for 10 inde-
pendent trails on different fractional alpha orders range
between α = [0.1, . . . , 0.9].

The Fig. 3 illustrates the performance of each alpha while
the best and the worst outcomes are reported at α = 0.4 gives
0.1031p.u and α = 0.3 gives 0.1280p.u respectively. Fur-
thermore, the best fractional order is run for 100 autonomous
trails which gives the lowermost voltage deviation value
reported as 0.0914 p.u.

FIGURE 3. FPSOGSA-Entropy Convergence Curve for IEEE30 Standard
(13 Variables) at different fractional orders for voltage deviation
minimization.

FIGURE 4. FPSOGSA-Entropy Convergence Curve for IEEE30 Standard
(19 Variables) performed at different fractional alpha orders for power
losses minimization.

In this scenario, the voltage deviation reported for
FPSOGSA [72] is 0.1025p.u while the best performance
achieved by FPSOGSA-Entropy is reported to 0.0914p.u.

C. MINIMAZATION OF POWER LINE LOSSES TESTED ON
IEEE 30 STANDARD (19 CONTROL VARIABLES)
The consideration of the control variables for IEEE30 Stan-
dards in the third scenario is 19. It contains 41 branches, six
generators (Vgt ), four transformers tap settings (Tc) connect
to the same buses and branches with the same range are given
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TABLE 6. Optimal values of control variables for IEEE57 standard (25 variables) in case of minimization of power losses.

FIGURE 5. FPSOGSA-Entropy Convergence Curve for IEEE30 Standard
(19 Variables) performed at different fractional alpha orders for voltage
deviation minimization.

in scenario 1.While, the shunt reactive compensators (Qc) are
connected to the buses 10, 12,15,17,20,21,23,24 and 29 with
the range between [0-30MVAr] respectively. The real and
reactive load demands for this scenario are the same as given
in the previous scenario.

FIGURE 6. FPSOGSA-Entropy Convergence Curve for IEEE57 Standard
(25 Variables) performed at different fractional alpha orders for power
line losses minimization.

The results are compared with the different algorithms are
given in Table 5 while the outcomes attain from the proposed
FPSOGSA-Entropy algorithm is leading at 4.3248 MW in
case of minimization of power line losses. The reduction in
power line losses % are given in Table 4, the base case values
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TABLE 7. Comparison of percentage of power losses minimization for IEEE57 standard (25 variables).

FIGURE 7. FPSOGSA-Entropy Convergence Curve for IEEE57 Standard
(25 Variables) performed at different fractional alpha orders for voltage
deviation minimization.

is considering here 5.811 MW for comparing the results from
different algorithms.

The power line losses reduction % in MW are given such
as; GSA is 21.67%, MFO is 22.34%, SGA(Ff1) is 21.37%,

PSOGSA is 22.03%, FA is 17.92%, CKH is 6.58%, PSO-TS
is 22.19%, FPSOGSA is 24.07% while FPSOGSA-Entropy
is reported as 25.57% respectively. The Fig. 4, illustrates the
convergence performance curve of the FPSOGSA-Entropy
algorithm at the different fractional alpha order range
α = [0.1, . . . , 0.9] in order to attain the best alpha.
In this scenario, the best alpha is report at fractional order

α.5 with minimum losses to 4.3410 MW while the worst
results reported at α = 0.3 with minimum power losses
4.3849 MW respectively.

The best fractional order alpha α.5 is further used to run
the proposed algorithm for 100 autonomous trails to get min-
imization in power losses which is reported at 4.3248 MW.

D. MINIMAZATION OF VOLTAGE DEVIATION TESTED ON
IEEE 30 STANDARD (19 CONTROL VARIABLES)
The proposed FPSOGSA-Entropy algorithm is further run for
the fourth scenario to find the minimum voltage deviation
(VD). The proposes FPSOGSA-Entropy algorithm is run for

FIGURE 8. FPSOGSA-Entropy and FPSOGSA statistical analysis results for IEEE 30 Standard
(13 Variables) for Power Losses. (a) Stairs (b) Histogram (c) ecdf Plot (d) Minimization of Power losses
(e) Boxplot-Time complexity of FPSOGSA-Entropy (f) Box plot Gauge.
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FIGURE 9. FPSOGSA-Entropy and FPSOGSA statistical analysis for IEEE 30 Standard (13 Variables) for Voltage
Deviation. (a) Stairs (b) Histogram (c) ecdf Plot (d) Minimization of Power losses (e) Boxplot-Time complexity of
FPSOGSA-Entropy (f) Box plot Gauge.

10 autonomous trails for each fractional alpha orders range
between α = [0.1, . . . , 0.9].

The Fig. 5 illustrates the performance of each alpha while
the best and the worst outcomes are reported at α = 0.8
gives 0.1243p.u and α = 0.2 gives 0.1473p.u respectively.
Furthermore, the best fractional order α = 0.8 for this
scenario is run for 100 autonomous trails which gives the
lowermost value of voltage deviation which is reported as
0.1168 p.u.

The voltage deviation in this scenario, FPSOGSA
algorithm [72] is reported to 0.1468p.u while the
FPSOGSA-Entropy is reported to 0.1243p.u. Hence, the per-
formance of FPSOGSA-Entropy for voltage deviation is
superior to FPSOGSA algorithm.

E. MINIMAZATION OF POWER LINE LOSSES TESTED ON
IEEE 57 STANDARD (25 CONTROL VARIABLES)
In order to consider the performance and the effectiveness of
the proposed FPSOGSA-Entropy algorithm in a large-scale
power system, IEEE 57 bus standards is introduced as the
test system in this scenario with 25 variables. The test system

contains seven generators (Vgt ) at the buses 1, 2, 3, 6, 8,
9 and 12 with the range between α = [0.95 − 1.1]. There
will be 15 branches of transformer tap settings (Tc) range
[0.9-1.1], while three shunt compensators are connected to
buses 18,25 and 53 range [−30,30] respectively.

The optimal values of the control variables settings for
the different algorithms are given in Table 6. The results
revealed the better performance of the proposed FPSOGSA-
Entropy with minimum power line losses reported at
21.7753 MW.

The reduction in power line losses % are given in Table 7
while the base case values is considering here is 27.86 MW
for comparing the results from different techniques.
The power losses % in MW are given such as; DE is 11.92%,
FODPSO is 4.23%, GWO is 11.22%, GSA is 12.08%,
CLPSO is 10.66%, IWO is 11.72, FPSOGSA is 17.76%while
the proposed FPOSGSA-Entropy is recorded as 21.84%
respectively. The Fig. 6 illustrates the performance proposed
algorithm at the different fractional alpha order range α =
[0.1, . . . , 0.9] in order to get the best alpha. The best alpha
is report at fractional order α.8 with minimum power line
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FIGURE 10. FPSOGSA-Entropy and FPSOGSA Statistical Analysis for IEEE 30 Standard (19 Var) for Power Losses. (a) Stairs (b)
Histogram (c) ecdf Plot (d) Minimization of Power losses (e) Boxplot-Time complexity of FPSOGSA-Entropy (f) Box plot Gauge.

losses to 21.8826 MW while the worst results reported at
α = 0.2 with 22.5425 MW respectively. The best fractional
order alpha α.8 is further used to run the proposed algorithm
for 100 independent trails to get minimization in power line
losses which is reported at 21.7753 MW.

F. MINIMAZATION OF VOLTAGE DEVIATION TESTED ON
IEEE 57 STANDARD (25 CONTROL VARIABLES)
The proposed FPSOGSA-Entropy algorithm is run for the
sixth scenario to find the second objective while using IEEE
57 Standard to minimize the voltage deviation (VD). range
between α = [0.1, . . . , 0.9] to attain the minimum voltage
deviation at best alpha.

The Fig. 7 illustrates the performance of each alpha while
the best and the worst outcomes are reported at α = 0.6 gives
0.7468p.u and α = 0.1 gives 0.8590p.u respectively.

Furthermore, the best fractional order α = 0.6 for this
scenario is run for 100 autonomous trails which gives the

lowermost value of voltage deviation which is reported as
0.7378 p.u. The voltage deviation in case of FPSOGSA
algorithm [72] is reported to 0.8017.u while the volt-
age deviation achieved by FPSOGSA-Entropy is 0.7378p.u
that endorse the effectiveness of FPSOGSA-Entropy over
FPSOGSA.

V. STATISTICAL ANALYSIS OF FPSOGSA-ENTROPY WITH
FPSOGSA ALGORITHM
In this approach, the performance of FPSOGSA-Entropy is
further measured by taking the comparatively analysis with
FPSOGSA algorithm through statistical analysis for all given
scenarios considering at the best alpha orders. For this pur-
pose, the hundred autonomous tails are performed to illus-
trate the authentic inferences between the performance of
FPSOGSA-Entropy and FPSOGSA. The statistical analysis
is performed by using both algorithms for optimal reactive
power dispatch problem on the basis of minimum fitness in
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FIGURE 11. FPSOGSA-Entropy and FPSOGSA Statistical Analysis for IEEE 30 Standard (19 Variables) for Voltage
Deviation. (a) Stairs (b) Histogram (c) ecdf Plot (d) Minimization of Power losses (e) Boxplot-Time complexity of
FPSOGSA-Entropy (f) Box plot Gauge.

every autonomous simulation, boxplot, empirical CDF, min-
imization plots in case of each scenarios, histogram curves
and time complexity analysis.

The outcomes are given in sub-Figs. 8(a)-13(a) depicts the
minor variations observed in all cases of minimum power
line losses and voltage deviation which determines the best
precision of FPSOGSA-Entropy over FPSOGSA for entire
autonomous trails. The histogram outcomes are demon-
strated in sub-Figs. 8(b)-13(b), most of the autonomous sim-
ulations of FPSOGSA-Entropy provides the tiniest gauges
of the precision over FPSOGSA. The empirical CDF in
sub-Figs. 8(c)-13(c) indicates towards the outcomes attained
during performed all autonomous simulations for both algo-
rithms. The fitness values are recorded less than the base
case which demonstrate the best an iterative process attained
from FPSOGSA-Entropy. The sub-Figs. 8(d)-13(d) illus-
trates the comparison of the minimum fitness in case
of power line losses and voltage deviation attained by
FPSOGSA-Entropy and FPSOGSA algorithms for IEEE30
(13,19 variables) and IEEE57 (25 variables). While, the best

fitness minimization is achieved by FPSOGSA-Entropy
algorithm for all given scenarios. The sub-Figs. 8(e)-13(e)
demonstrated the execution time of FPSOGSA-Entropy to
ORPD problem for two given objectives functions; power
line losses and voltage deviation. The detail of compari-
son of execution time of between FPSOGSA-Entropy and
FPSOGSA algorithm is given in Table 9 and the data spread-
ing is very close in each quartile during the independent
trials.

The computational efficiency in terms of time complexity
of the proposed method for different scales test systems is
now conducted and compared with other state of the art
counter parts designed to solve ORPD problems. A com-
parison between the computational time complexity of the
proposed optimization framework i.e., FPSOGSA-Entropy
evolution, with other optimizers including the fractional order
Darwinian PSO (FO-DPSO) [36], simple genetic algorithm
(SGA) [80], multi agent PSO (MAPSO) [79], evolution-
ary programming EP [3] and seeker optimization algorithm
(SOA) [18] is tabulated in Table 8 along with adopted
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FIGURE 12. FPSOGSA-Entropy and FPOGSA Statistical Analysis for IEEE 57 Standard (25 Variables) for Power
Losses. (a) Stairs (b) Histogram (c) ecdf Plot (d) Minimization of Power losses (e) Boxplot-Time complexity of
FPSOGSA-Entropy (f) Box plot Gauge.

TABLE 8. Computational efficiency of the proposed method compared to
different scale systems.

system (machine) specifications and number of autonomous
simulations.

One may observe that there is no considerable difference
in execution time during each run of the FPSOGSA-Entropy
evolution and other counterparts’ techniques. Although,
the computational efficiency of the proposed algorithm is at
the higher side due to its inherent long memory that keeps the

track of particle’s trajectory, this limitation is overwhelmed
by its fast convergence rate which is evident from the learning
behaviors as depicted in Figs 8(e)-12(e). In addition, the com-
putational efficiency investigation in such manner is very
difficult to conclude and justify because evaluated outcomes
are machine dependent which may have diverse hardware
specification, i.e., cloud, CPU, RAM etc., operating mecha-
nisms, i.e., evolutionary computing, swarm intelligence etc.,
on software environment, i.e., MATHEMATICA, MATLAB,
operating systems etc., initial parameters i.e., generations,
flights, population and swarm size etc.

The boxplots are given in sub-Figs. 8(f)-13(f) illustrates
the stretching of data values and the outliers that are closed
to the median. It disclosed the accurate optimization pro-
cess attained by FPSOGSA-Entropy over FPSOGSA. The
overall statistical results discussed in this section are proved
the robustness, consistency and the stability of the proposed
FPSOGSA-Entropy over FPSOGSA algorithm. The entropy
evaluation technique implemented in FPSOGSA indicates
towards the excellence performance of the novel FPSOGSA-
Entropy algorithm.
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FIGURE 13. FPSOGSA-Entropy and FPSOGSA Statistical Analysis for IEEE 57 Standard (25 Variables) for Voltage
Deviation. (a) Stairs (b) Histogram (c) ecdf Plot (d) Minimization of Power losses (e) Boxplot-Time complexity of
FPSOGSA-Entropy (f) Box plot Gauge.

TABLE 9. Comparison of execution time (s) of FPSOGSA and FPSOGSA-Entropy for ORPD problems.

VI. CONCLUSION
A novel hybrid optimization FPSOGSA with entropy evo-
lution technique is proposed and successfully applied on
IEEE 30 and 57 Bus Standards to solve two objective func-
tions of optimal reactive power dispatch such as; minimiza-
tion of power line losses and voltage deviation. The concept
of fractional derivative implemented with Shannon entropy
to improve the performance of hybrid PSOGSA algorithm
with enhancing the abilities like memory effects, velocity
and updating positions with convergence rate to find the
global best solution. The outcomes of FPSOGSA-Entropy are
further compared to different algorithms such as HSA, DE,
R-DE,MFO, GWO, FODPSO-EE, PSOGSA, SGA(Ff2), FA,
CKH, PSO-TS, CLPSO, IWO and FPSOGSA that depicted

the best outcomes and performance achieved by the pro-
posed FPSOGSA-Entropy algorithm in case of each given
scenarios.

It is recommended that the both entropy and fractional
techniques will be implemented to design the new evolution-
ary and fractional swarming algorithms to solve the problems
related to engineering and power sectors [73]–[78] in future.
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