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ABSTRACT With the rapid growth of data exfiltration carried out by cyber attacks, Covert Timing
Channels (CTC) have become an imminent network security risk that continues to grow in both sophistication
and utilization. These types of channels utilize inter-arrival times to steal sensitive data from the targeted
networks. CTC detection relies increasingly on machine learning techniques, which utilize statistical-based
metrics to separate malicious (covert) traffic flows from the legitimate (overt) ones. However, given the
efforts of cyber attacks to evade detection and the growing column of CTC, covert channels detection needs
to improve in both performance and precision to detect and prevent CTCs and mitigate the reduction of
the quality of service caused by the detection process. In this article, we present an innovative image-based
solution for fully automated CTC detection and localization. Our approach is based on the observation that
the covert channels generate traffic that can be converted to colored images. Leveraging this observation, our
solution is designed to automatically detect and locate the malicious part (i.e., set of packets) within a traffic
flow. By locating the covert parts within traffic flows, our approach reduces the drop of the quality of service
caused by blocking the entire traffic flows in which covert channels are detected. We first convert traffic flows
into colored images, and then we extract image-based features for detection covert traffic. We train a classifier
using these features on a large data set of covert and overt traffic. This approach demonstrates a remarkable
performance achieving a detection accuracy of 95.83% for cautious CTCs and a covert traffic accuracy
of 97.83% for 8 bit covert messages, which is way beyond what the popular statistical-based solutions can

achieve.

INDEX TERMS Covert timing channels, detection, entropy, image processing, machine learning.

I. INTRODUCTION

Covert channels provide effective methods to exfiltrate sen-
sitive data from the targeted networks. This type of exfiltra-
tion is particularly effective because it uses existing system
resources, which were not originally designed to transmit
sensitive data for the purpose of communication. By doing
this, the transfer of the covert data becomes undetectable by
traditional detection methods such as firewalls and intrusion
detection systems. Due to the ability to transmit data without
being detected, covert channels have become a serious threat
to the professional domain as well as the general community
of internet users. In addition to the fact that covert channels
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can be used to leak confidential information, they can be
utilized by malicious parties to communicate and exchange
information in order to coordinate devastating Distributed
Denial of Service (DDoS) attacks [35].

Covert channels can be divided into two broad categories
based on network resources used to transmit covert messages:
covert storage channels and covert timing channels. In Covert
Storage Channels (CSCs), the sender communicates with
the receiver by writing covert information into a particu-
lar storage location, and then the receiver reads from that
particular storage location such as a hard drive [16]. Many
applications that are based on TCP, IP, and HTTP protocols
can be used to establish covert storage channels. This type
of cyber attack takes advantage of unused packet fields,
such as TCP initial sequence number field, to maliciously
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embed covert messages that provide attackers with important
information about the targeted system.

An excellent example of covert storage channels in a
popular application is the ICMP error message. Many IP
implementations use the packet’s memory for storage. Some
ICMP error packet fields, which are intended to echo back
parts of the received message, may be utilized to store and
leak information about the target’s identity and/or determine
if the targeted system contains any vulnerabilities.

The second type of covert channel is the Covert Timing
Channels (CTCs). In this attack, the sender manipulates the
timing of network events (e.g., packet arrival times) in a spe-
cific way to transfer sensitive information from the targeted
system. The receiver observes the covert traffic and extracts
the timing information to decode the covert bits that contain
the covert information (e.g., user passwords) [18], [28]. CTCs
have stochastic distribution, and hence detecting them is more
challenging. Therefore, urging the need to design sophisti-
cated protection techniques to defend against CTCs.

There are two main approaches to defend against covert
channels: 1) blind thwarting and 2) thwarting after detec-
tion. Blind thwarting means limiting or blocking the possible
presence of active covert channels without detecting them.
This type of defense approach is enforced at the network
boundary and applied to all network traffic to disrupt traffic
streams that potentially carry covert information [6]. While
these techniques can be used to disrupt CTCs effectively, they
also have a serious impact on applications that have high
Quality of Service (QoS) requirements, such as streaming
video and remote desktop applications.

The second approach aims at detecting CTCs prior to
thwarting (or blocking) them. Due to its “detect before
block” nature, this defense strategy causes less impact on the
quality of service, which makes it more suitable for appli-
cations with high QoS requirements. In general, the detec-
tion approaches of CTCs use statistical tests to distinguish
between covert and overt traffic. These tests use measures
such as inter-arrival time distributions and entropy to distin-
guish between covert from overt traffic. However, due to the
high variation of overt traffic, these standard statistical tests
are not accurate nor robust enough to identify CTCs. There
have been various research efforts on detecting CTCs over
the Internet. However, some of these detection techniques are
designed only to detect one or two types of CTCs and are not
applicable to detect other types of CTCs. The broader detec-
tion techniques are too sensitive to the high variance of the
network traffic. Moreover, some of the detection techniques
are computationally complex, which makes them inapplica-
ble to networks with high QoS requirements.

In this article, we propose a new detection approach for
CTCs to address the existing statistical-based techniques lim-
itations. The proposed approach utilizes image processing
and machine learning techniques to detect CTCs by convert-
ing the inter-arrival times of packets into colored images.
This conversion allows for utilizing more accurate and robust
image-based features. Once features are extracted from these
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images, our approach uses them to construct CTC detection
models using the popular machine learning algorithms to
classify traffic flows into overt or covert. To evaluate the
image-based approach, we conduct a series of experiments to
measure its accuracy in detecting CTCs. In addition, we eval-
uate the model’s ability to locate the part of traffic flows
where covert occurs. Moreover, we investigate our approach’s
robustness to detect CTCs that utilize different sizes of covert
messages. Based on our best knowledge, image processing
and machine learning techniques have not been applied in the
literature to detect CTCs. In addition, there is no approach
that detects the location of covert data within traffic flows.

In summary, our contributions can be summarized below:

« We propose a technique for converting CTCs inter-arrival
times into two-dimensional (2D) colored images to gen-
erate robust features that we utilize for training machine
learning classifiers.

« We present a novel method for detecting CTCs using
image processing techniques and machine learning.

o We propose a mechanism that uses our trained classi-
fiers to accurately pinpoint the covert part of the traffic
that contain covert messages within a traffic flow. This
allows our approach to alert the existence of CTCs to
start covert mitigation defend mechanisms such as those
mentioned in [4], [14], [25] or traffic blocking applica-
tions, which significantly improves the quality of service
that gets impaired upon dropping the entire traffic flow.

The rest of this article is organized as follows. In Section 2,

we review existing literature related to the detection of CTC
and examine their effectiveness in comparison to the pro-
posed approach. In Section 3, we describe our detection
approach’s design and further detail the proposed image
processing techniques and feature extraction for training
machine learning classifiers. In Section 4, we discuss the
performance evaluation measures for CTC detection. Finally,
in Section 5, we detail the conducted experiments using our
proposed approach and discuss its effectiveness in detecting
covert channels and in locating CTC sub-flows within traffic
flows.

Il. RELATED WORK

In this section, we discuss CTC detection and prevention
approaches proposed in the literature. The research works
that we have considered for the design and evaluation of our
proposed approach can be grouped into two main categories:
statistical-based CTC detection, and machine learning-based
CTC detection. First, we provide an overview of each
of these categories, then we discuss the relevant image
processing-based approaches and applications.

A. STATISTICAL-DRIVEN CTC DETECTION

CTC detection methods are mostly focused on the analysis
of network traffic. The majority of CTC detection methods
observe network traffic behavior and extract statistical prop-
erties of covert and overt traffic and compare those properties
to recognize anomalies and detect covert communication.
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Several statistical tests are introduced in the literature, and
their effectiveness for detecting CTCs is investigated. In [9],
the authors detected a binary CTC by comparing overt traffic
and covert traffic distribution. Similarly, in [7], a binary
CTC was detected using overt traffic and covert traffic his-
togram. Berk et al. [5] investigated a simple statistical method
for detecting CTCs. This method assumes that a stream of
network traffic roughly fits a normal distribution; a stream
with a bimodal or multi-modal distribution would suggest
the presence of a covert timing channel. Thus, the method
was among the first to focus on irregularities in the shape
of network traffic distribution. Although simple tests such
as distribution and histogram of traffic can detect simple
CTC algorithms, these simple tests do not effectively detect
robust and complicated CTC algorithms. Consequently, more
effective statistical tests were introduced and investigated to
detect CTCs.

Peng et al. [40] used the Kolmogorov-Smirnov (K-S) test
to quantify the distance between two empirical distribution
functions for traffic sample and the expected overt traffic
sample. Their results demonstrated that when the distance
between the test sample and training set was large, it indicates
a possible CTC occurrence. Liu et al. [30] used the variance
test to determine whether there are existing CTCs. In their
approach, the variance test indicated a high distribution of
transmitted data as evidence of existing CTCs, whereas a low
data distribution indicated their absence.

Cabuk et al. [9] designed a detection method based on the
variance of inter-arrival times of network stream to measure
traffic’s regularity score to detect covert timing channels. This
approach interpreted low regularity scores as an indication of
existing CTCs. Gianvecchio and Wang [17] used the entropy
test as a metric to detect CTCs. The entropy test provides
significant evidence of the existence of patterns inside the
data signaling the presence of a covert channel with high
probability. High entropy implies high randomness in the
data and the absence of patterns. In contrast, low entropy
implies the existence of a particular ordering in the data
indicating the increased possibility of a covert channel. In [3],
the authors extended Gianvechhio et al.’s work by introduc-
ing two additional statistical tests for detecting CTCs—the
K-L divergence and Welch’s t-test. They showed that Welch’s
t-test was better suited to detect the Jitterbug algorithm as it
was a non-parametric test based on the difference of means.
Shrestha et al. [43] introduced autocorrelation of the traffic
distribution as an additional statistical test that can indicate
the presence of covert communication. They showed that
using a classifier system with autocorrelation properties of
traffic as feature points outperforms other detection methods,
providing reliable detection and generality.

To overcome the drawbacks of using flat statistical-based
analysis for detecting CTCs, Darwish et al. [12], proposed
hierarchical entropy analysis to detect covert timing channels.
Moreover, they designed a solution that utilizes hierarchical
entropy to divide the stream of inter-arrival times to identify
the time-scale that best reveals the existence of a CTCs.
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Their results showed that the solution achieves significantly
better accuracy than the solutions that use flat entropy.
Darwish et al. [13] utilized the MapReduce technique to
measure traffic flows’ hierarchical entropy to improve CTC
detection speed.

In summary, many approaches that use statistical tests have
been proposed in the literature for detecting CTCs. However,
due to the high variation and complexity of overt traffic,
detection approaches that depend on statistical tests are not
reliable nor robust for detecting CTCs.

Given the rapid increase of cyber attacks and their uti-
lization of covert time channels to exfiltrate stolen data,
this article aims to develop a new technique that utilizes
image processing and machine learning techniques to detect
CTCs accurately and robustly. Furthermore, we propose a
mechanism to pinpoint the part of traffic flow (sub-flow) that
contains covert traffic. Also, we investigate CTC detection for
scenarios where the size of a covert message is small, which
presents a challenging task for CTC detection methods in the
literature.

B. MACHINE LEARNING BASED CTC DETECTION

Machine learning algorithms have been used in many CTC
detection approaches because of their ability to effectively
identify covert timing channels. In general, these approaches
use various metrics (or features) to train and construct
machine learning models using a labeled set of overt and
covert traffic flows. Then, these models are used to clas-
sify new traffic flows to either overt or covert traffic.
Zander et al. [47] proposed an approach that utilizes the deci-
sion tree learning algorithm. In their approach, the decision
tree was trained using multiple statistical features extracted
from traffic flows. The model’s effectiveness in detecting the
pattern of inter-arrival times of CTC packets was then tested
using a set of both overt and covert traffic. The evaluation
results of this work showed that the model was effective in
detecting CTCs. Similarly, Iglesias et al. [23] using a set of
statistical properties of traffic as features to build a decision
tree model that can detect CTCs. The model was trained
offline to avoid high computational costs during the detec-
tion process. Decision trees have also been applied in [22]
to detect CTCs. The decision tree classifier was used to
fine-tune parameters of a set of Descriptive Analytics of Traf-
fic (DAT) detectors previously proposed by the same authors
to detect covert channels in general. DAT detectors used a
set of descriptive analytics-related traffic flow features such
as the number of unique values, the sum of autocorrelation
coefficients, and the total number of packets. Their results
showed that descriptive analytics grounded the detectors; they
exhibited high flexibility and easily incorporated new traffic
features for future detection methodologies.

In [24], the authors analyzed if CTCs can be detected
as strong anomalies according to their statistical properties
in unsupervised machine learning (i.e., outlier detection
algorithms). Their results disclosed that flows containing
CTCs do not usually show extremes values or suspicious
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density differences. All covert flows are actually (mild)
distance-outliers, but not all distance-outliers are covert
flows; therefore, their detection with unsupervised methods is
unsatisfactory. In [24], the authors proposed a CTC detection
method based on using supervised and unsupervised machine
learning algorithms. Their results demonstrated that CTCs
showed high histogram distance-based outliers but insuffi-
cient to distinguish them from regular traffic due to the high
shape variability of normal traffic. Therefore, the authors
concluded that the combination of supervised and unsuper-
vised methods (i.e., semi-supervise methods) appeared in the
right direction to follow to develop accurate and reliable CTC
detectors.

The Support Vector Machine (SVM) learning algorithm
has also been widely used in the CTCs detection research
domain. This is due to the fact that SVM has an exploration
and classification power that goes beyond checking for statis-
tical properties of traffic. Sohn et al. [45] demonstrated that
simple covert channels encoded demonstrated that a simple
covert channel encoded in the sequence number fields of
TCP/IP protocol headers could be accurately detected using
an SVM classifier. Recently, Shrestha et al. [44] proposed a
reliable detection approach based on the SVM classifier for
detecting CTCs. Their approach utilized four types of statis-
tical features generated from four CTCs algorithms to build
their model. The evaluation results of the method showed
that machine learning techniques performed well in detect-
ing CTCs. In [36], a new detection approach was proposed
based on wavelet transform as features and SVM classifiers
to detect various kinds of CTCs. Their approach relied on
extracting maximum entropy features at different wavelet
levels, and then these features were fed to SVM. In addition,
the authors designed a sliding window-based scheme to detect
complex traffic with several types of CTCs.

Artificial Neural Networks (ANN) learning algorithm has
also been used for CTC detection. This is not surpris-
ing given the ANN effectiveness in recognizing patterns.
Darwish et al. [15] proposed an approach that uses deep
neural networks to build a CTC detection classifier. This clas-
sifier was trained using a set of statistical features extracted
from the flow of inter-arrival times using the hierarchical
statistical-based method. Their results showed that deep neu-
ral networks achieved higher accuracy compared to the SVM
models.

Unfortunately, most of the machine learning-based
approaches in the literature are based on statistical tests
extracted from the network traffic, such as CCE values of
the inter-arrival time of packets. Such metrics are extremely
limited in CTC detection, especially when the covert message
size is small (e.g., 8 bits). Another key limitation of the
current approaches is that they become less reliable (and
unpredictable) when the attacker tries to imitate benign traffic
to evade detection.

To address these challenges, we propose a technique that
yellowconverts the inter-arrival times of packets to colored
images. Then, we utilize wildly popular image processing
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techniques to extract more robust image-based features from
the colored images. We evaluate our approach’s performance
using three types of covert channels to show more complex
cyber-attacks that are more difficult to detect. Also, we use
different covert message sizes ranging from larger to smaller
sizes (128 to 8 bits). Our approach shows remarkable per-
formance to detect CTCs used by simple and more complex
attacks, as well as small and larger sizes of covert messages.
Our approach also shows a reasonable accuracy in pinpoint-
ing the location (i.e., set of packets) of covert messages in
traffic flow. Based on our best knowledge, no approach in the
literature can accurately do this.

C. IMAGE PROCESSING APPLICATIONS

Image processing techniques have been extensively studied
and integrated with machine learning algorithms by the
research communities in various domains. These techniques’
popularity is due to their accuracy and efficiency in solving
complex problems and detecting image patterns. This section
provides a brief overview of the research and applications of
image processing techniques in the healthcare, transportation,
and cybersecurity domains. Research works at the intersec-
tion of these domains provide interesting and innovative
integration of image processing and machine learning for
medical diagnosis, monitoring vehicle movements, and
network threats detection.

1) HEALTHCARE

Image processing is a widely used methodology in various
medical sectors. For example, image analysis is very helpful
in the early detection of various cancers. Paul er al. [39]
proposed a solution integrating image processing techniques
with deep neural networks to predict the odds of survival for
lung cancer patients after a diagnosis is determined from CT
scan images. A similar work [46] studied breast cancer detec-
tion using a combination of image processing techniques and
a hybrid machine learning approach of deep neural networks
and multi-criteria decision making. Their method achieved
a reasonable accuracy (84.33%) compared to the classical
machine learning algorithms, such as SVM. Moreover,
Najadat et al. [37] used image processing techniques to detect
abnormalities in the human brain using an average front-back
CT image. This approach was able to detect general abnor-
malities from the whole CT image with high accuracy.

2) TRANSPORTATION

Traffic monitoring and analysis based on computer visu-
alization techniques became valuable and essential due to
the transportation evolution in recent decades. For example,
Ma et al. [32] presented an image-based traffic speed pre-
diction model. This model evaluates the traffic information
extracted from vehicle trajectories to help the people choose
better routes, predict traffic congestion, and support the traffic
managers in controlling the road network and systematically
allocating resources. The method of the speed prediction
model contains two main procedures. The first procedure
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involves converting network traffic to images representing
time and space dimensions of a transportation network as 2D
of an image. The second procedure was to employ machine
learning techniques for traffic prediction. The model results
showed significant improvement within an acceptable exe-
cution time. On the other hand, our proposed model detects
the CTCs as security threats in the network environments.
Moreover, image processing and machine learning tech-
niques are used to detect enemies in vehicle movements
such as standing and traveling in the reverse direction. For
instance, Sarikan and Ozbayoglu [42] presented a vehicle
flow detection approach to distinguish traffic anomalies.
In their model, image processing and machine learning
technique k-nearest neighbor were adapted using different
illumination levels of vehicle images. The proposed method
was evaluated on a public highway and achieved a high
detection accuracy.

3) CYBERSECURITY

Recently, various cyber-attacks detection techniques have
been proposed to detect various network attacks. Most of
these techniques utilize visualization models to monitor
and detect malicious traffic patterns. For example,
Anderson et al. [2] proposed a visualization model to detect
malware malicious software samples based on the similar-
ity between malware heatmap images. Nataraj et al. [38]
used image processing techniques to transform binary code
samples structure into 2D gray-scale images. Then extracted
various features from these images to train machine learn-
ing classifiers to detect malicious software. The classifier
achieved an accuracy of 97.18% in detecting multiple types of
malware. Similarly, Han et al. [20] proposed a colored visual-
ization model to detect complex malware software types and
achieve high detection accuracy. Makandar and Patrot [34]
converted malware binary into 2D gray-scale images and
normalized the images into x dimensions to train the SVM
classifier. The classifier achieved 92.52% accuracy in detect-
ing 24 malware types. Makandar and Patrot [33] investigated
using different classifiers to detect malware and discovered
that ANN achieved the highest accuracy of 96.35%.

Recently deep machine learning and image processing
techniques were integrated and used to detect malware.
Cui et al. [11] and Luo and Lo [31] used CNN to extract
features of malware images automatically. Both approaches
achieved high accuracy in detecting malware.

Image processing techniques also have been used to
detect covert Storage Channel (CSC) threats. For instance,
Kim and Reddy in [26] and [27] proposed a visualization
model to detect the CSCs. In their model, the traffic data such
as the IP address of sender and receiver were converted to
images. Then image processing techniques have been applied
to identify the existence of any data patterns in the traffic
and detect CSCs. The results of the model achieved a high
accuracy of such channel detection. However, the Kim and
Reddy approach could not detect CTCs because CSCs utilize
the data packets such as header fields or IP Identification
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fields for leaking the covert data while CTCs utilize the
packet timing events such as inter-arrival times for leaking
the covert data. Moreover, Liu et al. [29] presented a survey
covering four network traffic visualization techniques used to
monitor and detect malicious network threats: 1) visualization
of bandwidth technique that used the advantage of utilizing
the most bandwidth consumption in a particular location in
the network to indicate attack existence and alert wherever
it was detected. On the other hand, instead of using the
bandwidth consumption as indicator, our model utilized the
inter-arrival times of traffic that are converted to colored
images, then used to detect CTCs. 2) The visualization propa-
gation delay technique mainly focused on the idea that servers
which are getting attacked will start being slower on trans-
mitting data than the normal servers. However, the attacker
in this context has no control over the inter-arrival times and
does not leak any information through them. On the other
hand, our contribution focuses on detecting the data leaked
through inter-arrival times. 3) Visualization of the packet
attributes technique was used to detect network traffic threats
by visualizing and analyzing the packet attributes, including
IP addresses, ports, and protocols. However, the contribu-
tion in this technique was designed for CSCs, not CTCs.
Our contribution is mainly focused on CTCs. 4) Visualizing
communication paths technique was used to detect network
threats by finding and visualizing the weak routing nodes
and abnormal network topologies. In this technique a 3D
model was used where different colors were assigned to the IP
addresses nodes in networks. Then, the network performance
was evaluated by measuring the IP forwarding paths to iden-
tify any threats. However, there are no data leaked based on
inter-arrival times in this work. Moreover, in the case of CTC
detection, we are focusing on detecting leaked data using
inter-arrival times. Also, such a 3D model is ineffective for
detecting CTCs because the path between the covert sender
and receiver is unobservable due to using overt traffic for
leaking covert data.

In summary, image processing techniques have been
applied successfully in various applications and domains
in which big data needs to be processed and classified.
Therefore, the integration of image processing techniques
and machine learning algorithms is a strong candidate for
detecting CTCs with high performance. To the best of our
knowledge, image processing techniques and machine learn-
ing have not been applied to detect CTCs.

IlIl. SNAPCATCH: IMAGE-BASED CTC DETECTION

This section presents our CTC detection approach and details
the steps to detect CTCs using image processing and machine
learning techniques.

Our approach can be compartmentalized into three main
processes: 1) traffic dataset generation; 2) converting pack-
ets inter-arrival times into colored images representations;
and 3) feature extraction from images and machine learning
model construction for CTC detection.
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FIGURE 1. Workflow of CTC detection using image processing and machine learning.

Figure 1 overviews the major components of our
approach. First, we design and implement an environment
that contains two systems (sender and receiver) commu-
nicating over the internet from two different countries.
Additionally, we design a malicious agent that injects
(encodes) covert messages into the sender’s traffic flows. This
agent injects covert data based on three different defense eva-
sion techniques with configurations that range from greedy
data exfiltration (i.e., massive uploading of covert data) to
cautious and stealthy exfiltration of the small size of data.
Then, our packet capturing module utilizes Wireshark [10] to
monitor and capture the traffic flows between the sender and
receiver systems. The captured set of traffic flows are com-
prised of both overt (benign) and covert (malicious) traffic.
Next, our approach extracts the packets’ inter-arrival times
from these flows and store them in the flow dataset. The
image processing module ingests inter-arrival times of each
traffic flow and converts them into colored images. Then,
our feature extraction module extracts eight selected features
from the colored images. Finally, our classification module
takes the sets of features as input and constructs machine
learning classifiers to detect the images that contain covert
traffic flows. We describe the details of each module next.

A. RAW DATA GENERATION

In this step, we generate real covert timing channels between
two computers (Sender and Receiver) located in different
countries. These machines have two applications communi-
cating with each other over reliable TCP connections. Then,
the malicious agent creates and encodes covert messages to be
sent to the receiver. This malicious agent aims to send covert
data to the receiver in a way to make it look like overt traffic,
as shown in Figure 2. There are two main configuration
variables of the malicious agent that control its ability to
evade detection: 1) choosing the time-delays of its packets,
and 2) choosing the size of its covert messages. The delay
of transmission times of packets plays a key role in evading
detection by cyber defenses. For example, sending covert
messages without considering (or imitating) benign packet
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time-delays, like using longer time-delays than overt traffic,
will result in the detection of the covert flow. Also, if the
malicious agent greedy sends large covert massages, it will be
easier to detect than agents that use smaller covert messages
(e.g., 8 bits).

We build on the work of Al-Eidi et al. [1], which studied the
effect of time-delays of covert traffic on the detection process.
Their analysis discovered that using packet delays similar
to the delays of overt traffic was a good strategy to evade
detection. Therefore, our agent uses packet time-delays that
are based on inter-arrival times of overt traffic. Furthermore,
we implemented three different time-delay configurations
to emulate three types of attacks with varying complexity:
(1) greedy, (2) cautious, and (3) ultra-cautious CTC attacks.

The second setting for imitating overt traffic is choosing
the size of the covert message. As mentioned earlier, mali-
cious agents can send the stolen data in large or small covert
messages. Using large covert messages cause a quick change
of traffic activity, and therefore, is easier to detect than using
small messages. To examine the effects of different covert
message sizes on the accuracy of the CTC detection, we equip
the malicious agent (the sender) with the capability to use
three different sizes for covert messages: 8, 64, and 128 bits.
The results of these experiments are further discussed in
Section I'V.

In this work, we generated two types of datasets. The first
type is for the channel detection purpose, which contains
4,608,000 inter-arrival times for overt and covert traffic were
collected based on using the three CTC attacks and the three
sizes of covert message. The second type is for the channel
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localization purpose, which contains 1,534,464 inter-arrival
times for covert traffic, were collected based on using three
sizes of covert messages that were injected in three locations:
beginning, middle, and end in the traffic flow. The details of
each dataset shown in Tables 1 and 2, respectively.

TABLE 1. Detection dataset parameters.

8, 64, 128 bits
2u, 0.5u, 0.251
0.0664 seconds
256 inter-arrivals

Covert message size

Delay time

The mean IATs of overt traffic (1)
Sub-flow size

# of dataset versions 9

# of images (all datasets) 18000
# of covert images (all datasets) 9000
# of overt images (all datasets) 9000
# of images per dataset version 2000

# of covert images per dataset version | 1000
# of overt images per dataset version 1000

TABLE 2. Localization dataset parameters.

Covert message size 8, 64, 128 bits
Delay time 20

The mean IATs of overt traffic (1) | 0.0664 seconds
Sub-flow size 256 inter-arrivals

# of dataset versions 3
# of images (all datasets) 5994
# of images per dataset version 1998

Location of covert message Beginning, middle,end

B. CONVERTING INTER-ARRIVAL TIMES INTO COLORED
IMAGES

The previous step produces a dataset containing the packets’
inter-arrival times (IATs) of the traffic flow captured from the
communication between the sender and the receiver. In this
step, our approach coverts these inter-arrival times into col-
ored images based on their values. This enables our approach
to utilize the popular image processing techniques to extract
more robust image-based features for further processing.
To do this, firstly, each sub-flow of inter-arrival times was
placed into a 2D 16 x 16 matrix. Each matrix is filled with
the inter-arrival times in row by row and left to right manner.
Then, the inter-arrival times in each matrix are normalized
into a range of 0 and 255 that represents a color image.
Finally, each matrix is interpreted as a colored image by
converting each of its normalized elements (16 x 16) to a
color pixel. For this purpose, the matplotlib library [21] was
utilized, which can create an image from a 2D array. The
image will have one square for each element of the 2D array
and the color of each square is defined by the value of the
corresponding array element as shown in Figure 3.

C. FEATURE EXTRACTION AND IMAGE CLASSIFICATION
Once the colored images are generated, our approach extracts
eight popular features from these images. These features

VOLUME 9, 2021

IP packet Packet Interarrival Times (IAT)

N — l

3T

AT, IAT, AT, IAT,

Generating Pixels ‘
Ve

Pixely Pixel,

Pixels Pixel,

Rearranging Pixels into 2-D Arrays ‘
Generating Images using

D - - e - Python Imaging Library (PIL)
Pixel(y 1y Pixelz) Pixely3)  Pixely ) i IF E
Pixel (1) Pixely ) Pixelys)  Pixely, ) /

FIGURE 3. lllustration of inter-arrival time images.

are then used to train and construct a machine learning
classifier for covert traffic detection. In this section, first,
we describe these features and the tools used for extraction.
Then, we describe the machine learning algorithms used to
construct and validate the CTC detection classifier.

1) FEATURE EXTRACTION

As mentioned earlier, each colored image that is generated
by the previous step represents a traffic sub-flow. Our feature
extraction module takes these images as input and extracts
eight popular features from each image. We enlist and explain
each one of these features as follows:

1) Mean gray value, which calculates the average gray
value within the image by taking the sum of the gray
values of all the pixels in the image divided by the
number of pixels.

2) Standard deviation, which calculates the standard
deviation of the gray values used to generate the mean
gray value.

3) Mode, which represents the most frequently occurring
gray value within the image. Corresponds to the highest
peak in the histogram.

4) Center of mass, which calculates the brightness-
weighted average of the x and y coordinates of all pixels
in the image. These coordinates are the first order of
spatial moments.

5) The integrated density, which calculates the area of
one pixel multiplied by the sum of pixel values in the
image.

6) Median, which calculates the median value of the
pixels in the image.

7) Skewness, which calculates the third-order moment
about the mean where the area of the distribution falls,
to the left or right of the mean.
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8) Kurtosis, a distribution measure to describe whether a

distribution is peaked or flat of the mean.

We used the Image] tool [41] to extract these features from
the images. Then, we stored the extracted features in a CSV
file to be used in the classifier training process. We explain
this process next.

2) MACHINE LEARNING MODEL CONSTRUCTION

Our approach’s final step is to construct a machine learning
model to classify the generated images into either covert
or overt. For this task, we train a set of models using the
following machine learning algorithms:

o Support Vector Machine (SVM).

e Decision Tree (DT).

« Naive Bayes (NB).

o Artificial Neural Networks (ANN).

We trained each classification model using the features
extracted from each image. Then, we evaluated the models
using the hold-out validation method. Based on the hold-out
validation method, we split our dataset into 75% for training
and 25% for testing (validation).

To investigate which machine learning algorithm performs
better in this domain, we adopted four machine learning
algorithms: Support Vector Machine (SVM), Decision Trees
(DT), Naive Bayes (NB), and Artificial Neural Networks
(ANN). The SVM classifier works on the dataset by defining
the best hyperplane that divides the best observations (fea-
tures) into two parts representing the two classes (overt and
covert). On the other hand, Using the DT classifier has the
advantage that a human can interpret the resulting decision
tree in terms of which features are the most accurate (i.e.,
have the lowest Gini impurity value). Moreover, the most
useful (determining) features are always used at the top of
the tree, and the irrelevant features are ignored (pruned).
NB and ANN are very popular machine learning algorithms
that continue to achieve high accuracy measures in pattern
recognition due to their ability to discover underlying rela-
tionships in the data.

To construct and validate these models, we use the popu-
lar data mining tool: Waikato Environment for Knowledge
Analysis (WEKA 3.8) [19]. We discuss and present our
experiments and evaluation results next.

IV. EVALUATION

Our evaluation seeks to measure the performance of our
approach in the following terms: (a) the effectiveness of our
approach to detect covert timing channels under different
defense evasion configurations of cyber attacks; (b) the ability
of our approach to pinpoint the covert part (set of packets) of
the traffic sub-flow; and (c) compare and contrast different
machine learning classifiers based on their accuracy and
interpret-ability in detecting CTCs.

A. ACCURACY MEASURES OF CTC DETECTION
In machine learning and information retrieval, there are var-
ious metrics to measure the different aspects of accuracy.
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For example, recall is an accuracy measure that targets
the completeness of detection (i.e., the fraction of the total
CTCs that were detected). On the other hand, precision
measures the quality (or exactness) of detected CTCs.

Different factors may be considered when adopting the
accuracy measure(s). Prioritizing the recall measure indicates
a cautious detection approach: leaning towards the complete-
ness of detected CTCs rather than precision (false positives).
This strategy minimizes missed CTCs at the expense of
falsely classifying overt traffic as covert. Some situations
may require prioritizing precision rather than recall: leaning
towards keeping false alarms low at the expense of missing
some CTCs.

Our evaluation aims at providing a comprehensive analysis
of various classifiers and accuracy measures to provide the
flexibility to select the classifier whose accuracy specifica-
tions that are most relevant to users (stakeholders). Therefore,
we use the most popular accuracy measures in machine learn-
ing and information retrieval domains. We list these measures
and explain each one next.

o Accuracy (A): calculates the number of correctly classi-
fied instances of both classes (overt and covert) over the
total number of instances using the following equation:

B (TP + TN)
~ (TP + TN + FP + FN)

ey

o Precision (P): calculates the number of correctly
detected class members by the classifier over the total
number of correctly and incorrectly detected members
using the following equation:

TP

P=——
TP + FP

@)
o Recall (R): calculates the number of correctly detected

class members over the total number of class members
using the following equation:

TP

R=—— 0 3)
TP + FN

o Fp score: provides a score that balances both the con-
cerns of precision and recall in one measures using the
following equation:

2 X (precision x recall)
F =

“)

(precision + recall)

where True Positive (TP) is the number of segments (images)
that are correctly classified as CTCs. True Negative (TN)
is the number of segments that are correctly classified as
non-CTC (overt) channels. False Positive (FP) is the number
of segments that are incorrectly classified as CTC channels.
False Negative (FN) is the number of segments that are
incorrectly classified as non-CTC channels while, in fact,
they are CTCs.
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FIGURE 4. The impact of the covert message size on the detection accuracy of Greedy CTCs.

B. EXPERIMENTAL RESULTS

To validate the accuracy and efficiency of our proposed
approach, we present our experimental results and com-
pare them with three popular baseline CTC detection
approaches. These detection approaches are: (1) the regu-
larity test [8], (2) entropy test, and (3) corrected conditional
entropy [17], [44].

In addition, to measure and compare our approach’s effec-
tiveness in detecting different types of covert channels,
we consider different configurations of covert channels that
range from simple to stealthy CTCs that utilize advanced
defense evasion techniques.

For this reason, we designed the experiments using three
types of CTC attacks driven from real-world scenarios:
(1) Greedy Covert Timing Channels (GCTC), this type of
channels does not consider the normal time-delays of overt
traffic when sending packets. Therefore, it is considered
the easiest type of attack to detect. (2) Cautious Covert
Timing Channels (CCTC) attempts to partially imitate the
delay-times of overt traffic, making this type of covert chan-
nels harder to detect. (3) Ultra-Cautious Covert Timing Chan-
nels (UCCTC) are the most advanced and hardest type of
covert channels to detect. This type of channel restricts the
malicious sender from exhibiting behavior that deviates from
overt traffic at the expense of the time and the stolen infor-
mation’s quality. We provide more details about these attacks
and present our approach’s evaluation results for each attack
next.

1) GREEDY COVERT TIMING CHANNELS (GCTC)

Our first set of evaluation results shows our approach’s
performance in detecting Greedy Covert Timing Channels
(GCTC). GCTC is the simplest type of covert channels as
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it does not seek to overlap with (imitate) the time-delays of
overt traffic. Therefore, it often causes abnormality in traffic
when compared to overt traffic. This detectable abnormality
makes this type of channel easier to detect.

To simulate the GCTC attack, the packet time-delay con-
figuration was set to be equal to the double mean inter-arrival
time of overt traffic. Also, to test our approach’s effectiveness
in detecting the different sizes of covert messages for this
attack, we ran our experiments using three covert message
sizes: 8, 64, and 128 bits. In each experiment, these covert
messages were injected into traffic flow of 256 packets that
were transmitted from the sender to the receiver.

As explained earlier, we utilized Wireshark to capture
the generated traffic and used our image construction tech-
nique to convert the traffic flows into colored images. Then,
we extracted the eight features from these images and utilized
them for training four different classifiers (SVM, DT. NB,
ANN) using 75% of the data, and we tested the classifiers
using the other 25% of the dataset.

Figure 4 shows the detection results for the GCTC attack
using the three covert message sizes: 8, 64, and 128 bits.
As shown by the Figure, the highest CTC detection accu-
racy of the GCTC attack was achieved by the SVM classi-
fier trained by our approach, which achieved the accuracies
0f99.83%, 100%, and 100% for the covert message sizes of 8,
64, and 128 bits respectively.

The second highest CTC detection was achieved by the
CCE, which reached 82%, 85.5%, and 89.83% for the
covert message sizes of 8, 64, and 128 bits, respectively.
The entropy-based approach achieved the third place with
the accuracies of 72%, 77.33%, and 81.33%, where the
regularity-based approach achieved fourth place with the
accuracies of 70.2%, 74.83%, and 78.83% for the covert
message sizes of 8, 64, and 128 bits respectively.
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FIGURE 5. The impact of the covert message size on the detection accuracy of Cautious CTCs.

2) CAUTIOUS COVERT TIMING CHANNELS (CCTC)

Our second set of evaluation results shows our approach’s
performance in detecting Cautious Covert Timing Channels
(CCTC). CCTC is a more advanced cyberattack that seeks to
imitate the overt traffic behavior (packet inter-arrival time)
to a certain degree. This type of covert channel exhibits
near-overt traffic behavior using packet inter-arrival times
that are partially similar to overt traffic. Because of its sim-
ilarity to overt traffic, CCTC is a more challenging type of
covert channel to detect.

To simulate the CCTC attack, the packet delay was set
to be equal to half of the mean inter-arrival time of overt
traffic. This delay, when combined with the delay enforced
by the network, exhibits less abnormality in the traffic, which
makes it harder to detect by the security detection measures.
We ran the experiments for the CCTC attack using the three
covert message sizes: 8, 64, and 128 bits. Figure 5 shows
the detection results for the CCTC attack using the different
covert message sizes. As shown by the Figure, our approach
outperforms the three other approaches: CCE, entropy, and
regularity. The ANN classifier trained by SnapCatch achieved
74.33%, 91.36%, and 95.83% for the covert message sizes
of 8, 64, and 128 bits, respectively.

As expected, the accuracy of the detection methods is
mostly affected by the cover message size. This is because
smaller covert messages (e.g., 8 bits) cause less change to
otherwise normal traffic behavior. We found that the detection
accuracy of SnapCatch gradually increases when the size of
covert messages increases.

The second highest detection accuracy was achieved by
CCE, which reached detection accuracy of 63%, 76.83%, and
81.66% for the covert message sizes of 8, 64, and 128 bits.
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The entropy-based approach achieved the third place with
the accuracies of 60.33%, 71.17%, and 77.33%, where the
regularity-based approach achieved fourth place with detec-
tion accuracies of 56.83%, 64.83%, and 72.33% for the covert
message sizes of 8, 64, and 128 bits respectively.

3) ULTRA-CAUTIOUS COVERT TIMING CHANNELS (UCCTC)
Our third set of evaluation results shows the performance
of our approach for detecting Ultra-Cautious Covert Timing
Channels (UCCTC). UCCTC is one of the most advanced
cyber-attacks which restricts covert channels from exhibiting
behaviors (packet inter-arrival times) that deviate from overt
traffic. This restriction often sacrifices the stolen informa-
tion’s quality by force-changing the packets to occur within
a reduced time frame. However, this restriction makes this
type of cover channels the most difficult to detect due to
the high similarity to overt traffic behavior generated by
non-malicious applications.

To simulate the UCCTC attack, The packet delay was set
to be equal to the quarter of the mean inter-arrival time of
overt traffic. We ran the UCCTC attack experiments using
the three covert message sizes: 8, 64, and 128 bits. As shown
in Figure 6, the highest detection accuracy for the UCCTC
attack was achieved by the DT classifier trained by our
approach, which laid the detection accuracies of 61.33%,
74.5%, and 76.83% for the covert messages with sizes 8§,
64, and 128 bits. The second highest CTC detection was
achieved by the CCE, which achieved 58%, 63%, and 66.5%.
The entropy approach (third place) achieved accuracy values
of 52.83%, 60.33%, and 64.83%, and finally, the regularity
approach (fourth place) achieved 52.17%, 57.5%, and 63%,
respectively.
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FIGURE 6. The impact of the covert message size on the detection accuracy of Ultra-Cautious CTCs.
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FIGURE 7. Performance of SnapCatch and the other baseline detection methods against varying sizes of covert messages.

Figure 7 shows the accuracy comparison among Snap-
Catch and the other approaches using the neural network clas-
sifier and varying sizes of covert messages, see the appendix
for more accuracy measures (e.g, F| score).

C. PINPOINTING THE LOCATION OF COVERT MESSAGES
IN TRAFFIC FLOWS

As explained earlier, detecting covert messages is very
important to prevent malicious applications from stealing
sensitive data from a given network. Upon successfully
detecting covert messages, the traffic flow is dropped to dis-
rupt the malicious data exfiltration process. Although drop-
ping traffic flows that contain covert messages is an effective
cyber defense against covert channels, however, it is also very
disruptive to the QoS of the overt traffic of legitimate appli-
cations that might have most of the packets in the dropped
flows. Discovering the segments of traffic flows (i.e., set of
packets) that contain the covert message(s) is an extremely
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important objective as it provides the ability to drop only
the malicious part of traffic flows while allowing the rest
of the traffic flow to pass through. This precise detection
significantly reduces the disruptions of overt traffic initiated
by non-malicious applications.

In this part, we investigate and present our approach’s
performance in pinpointing the location (i.e., the sequence of
packets) of covert messages within traffic flows. To do this,
we designed an experiment in which the covert messages are
injected into all traffic flows in one of three locations (seg-
ments): beginning, middle, and end. Then, we investigated
our approach’s performance to find the correct traffic flow
segment (beginning, middle, or end) that contained the covert
message(s). First, we trained the classifiers using new labels:
(1) beginning, (2) middle, and (3) end. Each of these labels
corresponds to the relevant location of the covert message
in given traffic flow. These labels are generated automati-
cally using the setting of the malicious agent. For example,
if the malicious agent was set to inject the covert message
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FIGURE 8. The accuracy of pinpointing the location of covert messages within a traffic flow using different

message sizes.

into the beginning of traffic, it will also provide the label
beginning to that traffic flow. Further, it does the same
with the other two labels middle and end. This labeled set
of covert traffic flow is then used for training and testing.

We trained the classifiers using 75% of the labeled data,
and we use the other 25% for testing. Figure 8 shows the
accuracies of detecting the malicious traffic flow segment
(beginning, middle, and end) that contains the covert
message.

As shown by Figure 8, our approach’s SVM classifier
successfully detected the segments within traffic flows that
contained the covert message with accuracies of 97.83%,
100%, and 100% for covert message size of 8, 64, and
128 bits, respectively. To provide a baseline for comparison,
we also ran the CCE, entropy, and regularity. Interestingly,
the regularity achieved second place with the detection accu-
racy of 40.83%, 49%, and 53.83% for the covert message
size of 8, 64, and 128 bits. CCE achieved third place with
the accuracies 40.17%, 45.55%, and 48.17%. Entropy came
in last place with the accuracies of 33.33% for all sizes of
covert messages.

V. DISCUSSION

Our study shows that SnapCatch makes an important step
toward accurate and automated covert channel detection. This
is significant not only for the detection of covert channels
but also for precise locating of covert messages within traffic
flows which enables thwarting these messages without a
significant loss of QoS, as demonstrated by our measurement
study. With the rapid increase of cyber attacks that implement
and utilize covert channels to exfiltrate sensitive information,
the proposed approach can quickly detect CTCs. On the other
hand, the proposed approach is still generic and needs to be
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tuned to adhere to the organization’s security mission and
constraints. In this section, we discuss the tuning required to
achieve the best results using SnapCatch.

A. SELECTING THE BEST MACHINE LEARNING CLASSIFIER
The evaluation of SnapCatch shows that it achieves high
accuracy and coverage. However, our approach still intro-
duces some false positives (overt traffic being falsely
detected) and some false negatives (malicious traffic being
falsely missed/allowed). We have experimented with various
machine learning classifiers and calculated their results in
terms of precision and recall, as shown in Table 3. Different
factors maybe are considered when selecting the most appro-
priate classifier based on the stakeholder defense strategy.
For example, selecting the ANN classifier lays the maximum
precision value (98.7%) for detecting UCCTC attack with the
covert message size of 128 bits. This classifier leans towards
accurately detecting only covert time channels at the cost of
missing about 47% of the covert channels (false negatives).
On the other hand, selecting the ANN classifier lays the
maximum recall value (92.3%) for the same attack. This
classifier prioritizes detecting the highest number of covert

TABLE 3. Accuracy and coverage comparison of SnapCatch classifiers for
UCCTC attack (covert message size = 128 bits).

classifier | Precision | Recall
ANN 98.7% 53%

NB 90.5% 92.3%
SVM 79.7% 72%
DT 73% 37%
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TABLE 4. Results of Precision, Recall, and F; score of image-based method: GCTC.

Covert traffic Overt traffic

Size Measure | SVM | DT NV | ANN | SVM DT NV | ANN
Precision | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 0.997 | 1.000 | 0.984

8 bits Recall 1.000 | 0.997 | 1.000 | 0.980 | 1.000 | 1.000 | 0.997 | 1.000
Fy score | 1.000 | 0.998 | 0.998 | 0.995 | 0.9987 | 0.998 | 0.998 | 0.994

Precision | 0.999 | 1.000 | 0.998 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000

64 bits Recall 1.000 | 0.999 | 1.000 | 1.000 | 0.998 | 0.999 | 1.000 | 0.998
Fy score | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Precision | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

128 bits | Recall | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000
Fy score | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

TABLE 5. Results of Precision, Recall, and F; score of image-based method: CCTC.
Covert traffic Overt traffic

Size Measure SVM DT NB ANN | SVM DT NB ANN
Precision | 0.703 | 0.699 | 0.820 | 0.963 | 0.784 | 0.782 | 0.776 | 0.668

8 bits Recall 0.820 | 0.820 | 0.333 | 0.513 | 0.653 | 0.647 | 0.670 | 0.980
Fy score | 0.757 | 0.755 | 0.474 | 0.670 | 0.713 | 0.708 | 0.719 | 0.795

Precision | 0.902 | 0.894 | 0.896 | 0.905 | 0.922 | 0.921 | 0.922 | 0.922

64 bits Recall 0.923 | 0.923 | 0.925 | 0.926 | 0.901 | 0.891 | 0.894 | 0.904
Fyscore | 0.913 | 0.908 | 0.910 | 0.914 | 0.911 | 0.906 | 0.908 | 0.913

Precision | 0.946 | 0.937 | 0.937 | 0.972 | 0.934 | 0.937 | 0.94 | 0.924

128 bits | Recall | 00.938 | 0.936 | 0.940 | 0.920 | 0.947 | 0.938 | 0.937 | 0.973
Fy score | 0.950 | 0.935 | 0.938 | 0.945 | 0.940 | 0.939 | 0.938 | 0.948

channels at the cost of falsely detecting 9.5% of overt traffic
(false positives).

B. BALANCING QoS AND SECURITY

Our study shows that SnapCatch achieves higher accuracies
not only in detecting CTCs but also in segmenting traffic
flows and pinpointing the correct traffic segment that contains
covert messages. SnapCatch outperforms the second-best
approach, regularity, by approximately 57%, 54%, and 46%
for covert message sizes of 8, 64, and 128 bits. This means
that SnapCatch is very effective in detecting a traffic flow
segment that contains the covert message which enables pre-
cise dropping of that traffic segment rather than the entire
flow. This means the loss of QoS caused by dropping entire
traffic flows that contain covert messages can be significantly
reduced when using our approach by up to 66%. Therefore,
with the average accuracy of 99.2% to find the correct traf-
fic flow segment, out of three possible segments containing
covert message(s), we believe SnapCatch is the best candidate
tool to provide a balance resolve the contention between
usability (QoS) and security.

VI. CONCLUSION AND FUTURE WORK

In this article, we present SnapCatch, a novel technique
for automate and accurate detection of covert timing chan-
nels. SnapCatch is designed to specialize image processing
and machine learning techniques for covert traffic detection.
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First, the system converts the the inter-arrival times of traffic
into colored images using an innovative mechanism that cap-
tures the concrete features of network traffic an represents
them in colored images. By extracting robust and accurate
features from the colored images, SnapCatch trains various
machine learning classifiers to efficiently detect covert chan-
nels based on a tunable defense strategy that prioritizes (or
balances) accuracy and completeness.

In addition, we propose a mechanism to pinpoint the covert
messages (i.e., set of packets) within a traffic flow to allow
of dropping only a segment of the traffic flow that contains
the covert message rather than the entire flow. Our evaluation
of SnapCatch shows that it outperforms the corrected con-
ditional entropy, entropy, and regularity approaches. Further,
our approach shows the least performance loss in detecting
small (e.g., 8 bits) covert messages and the ultra-cautious
covert channels (UCCTC), the most advanced type of covert
cyber attacks. SnapCatch vastly outperforms the baseline
approaches in detecting the segments within traffic flows that
carry covert messages, which significantly reduces the loss of
the quality of service caused by dropping covert traffic flows.
Finally, we provide various scenarios and use cases for tuning
SnapCatch to implement a defense strategy that fits the tool
users’ resources and security objectives.

A potential direction for further improving SnapCatch is
to incorporate the deep learning algorithm, Convolutional
Neural Network (CNN) is most commonly utilized to
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TABLE 6. Results of Precision, Recall, and F; score of image-based method: UCCTC.

Covert traffic Overt traffic

Size Measure | SVM DT NB ANN | SVM DT NB ANN
Precision | 0.608 | 0.550 | 0.553 | 0.582 | 0.983 | 0.983 | 0.983 | 0.685

8 bits Recall 0.560 | 0.997 | 0.997 | 0.807 | 0.397 | 0.393 | 0.193 | 0.420
Fy score | 0.585 | 0.711 | 0.711 | 0.676 | 0.328 | 0.3230 | .324 | 0.521

Precision | 0.653 | 0.650 | 0.652 | 0.738 | 0.997 | 0.995 | 0.996 | 0.753

64 bits Recall 0.997 | 0.998 | 0.996 | 0.760 | 0.465 | 0.458 | 0.462 | 0.730
F score | 0.790 | 0.780 | 0.789 | 0.749 | 0.635 | 0.628 | 0.632 | 0.741

Precision | 0.797 | 0.730 | 0.905 | 0.987 | 0.745 | 0.819 | 0.922 | 0.680

128 bits Recall 0.720 | 0.370 | 0.923 | 0.530 | 0.817 | 0.840 | 0.904 | 0.954
Fy score | 0.757 | 0.491 | 0914 | 0.693 | 0.779 | 0.831 | 0.913 | 0.810

analyzing visual images. CNN takes an input image and
assigns importance to the objects (shapes) in the image,
which makes it detect one from the other. The pre-processing
required in a CNN is much lower compared to other classifi-
cation algorithms. Moreover, we have a plan to extend the
SnapCatch model into a reliable detection model that can
detect CTCs over real-time using online machine learning
approaches with minimal lag between the start of covert
activity and the point of detection.

APPENDIX A
See Table 4-6.
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