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ABSTRACT Underwater quiet object detection and recognition by the target echo method is based
on prediction and cognition of acoustic scattering characteristics. Spherical shell is a kind of common
underwater quiet object whose scattering characteristics vary with the material, radius, and shell thickness.
According to the acoustic scattering theory, we analyze the backscattering characteristics of vacuum
spherical shell under different parameters and propose a method based on deep convolution neural network
trained by backscattering morphological function to classify the objects and estimate the parameters. For the
performance of shell material estimation, we compare the proposed deep learningmethod with the traditional
classification method based on feature engineering, and the proposed method has better performance. For
objects with different geometric scales, the estimation results of outer radius and shell thickness conform to
the fitting formula based on medium frequency enhancement effect. The deep learning classification method
based on acoustic scattering morphological function covers a large number of parameters by establishing a
stable object feature library, and realize the accurate classification of underwater spherical shell objects.

INDEX TERMS Underwater objects, spherical shell, backscattering characteristics, deep convolutional
neural network, classification.

I. INTRODUCTION
Underwater quiet object detection and recognition is a
challenging problem in underwater archeology and seabed
exploration. In the process of sonar detection, there will
be acoustic phenomena such as reflection and scattering
when the transmitted signal meets the target. The mecha-
nism of target acoustic scattering is complicated whereas
researchers summarized it as a mathematical problem for
physics described by wave equation and boundary condi-
tions [1]. Research has shown that in the frequency range
where the wavelength is equivalent to the target scale,
the measured acoustic scattering characteristics can provide
information for target recognition [2].
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For objects with simple shapes, the complete theoretical
solution of scattering field can be calculated bywave equation
and boundary conditions [3], whereas it is difficult to obtain a
strict theoretical solution for structures such as a finite-length
cylinder or other complex shapes affected by the boundary
conditions of cross-sectional [4]. Researchers often used the
theoretical solution based on thin elastic shells to analyze
the acoustic scattering phenomenon of a cylinder with finite
length [5]. Since the acoustic scattering characteristics are
related to the material, size, and structure of the object, and
vary with the incident angle of sound waves as well as the
environment where the target is located, it is necessary to
extract the characteristics related to the object attributes as the
basis for detection and recognition in practical applications.
In this sense, it is significant to research the acoustic scatter-
ing characteristics of underwater objects. The time series and
spectrum characteristics of target acoustic scattering signal
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are the most basic characteristics [6]. With the development
of resonance scattering theory, identifying resonance features
in frequency spectrum has become an effective means for
analyzing acoustic scattering signals [7].

With the improvement of calculation and experiment,
it becomes possible to obtain the characteristics of scat-
tered echoes under different incident angles of sound waves.
By comparing the consistency between the experimental and
calculated results in the time and the frequency domain,
researchers used the time-angle spectrum and frequency-
angle spectrum to analyze the scattering characteristics of the
target [8]. Since the backscattered echo varies with the inci-
dent angle of the sound wave, different components appears
under the condition of different incident angles, thereby the
type of echo component can be identified according to the
transformation law [9]. Li et al. studied an underwater water-
filled cylindrical shell characteristics by the structural finite
element coupled with acoustic finite element method [10].
Based on the highlight model, Wu et al. proposed a tar-
get scattering extraction and classification method based on
Wigner-Ville distribution [11]. Dmitrieva1 identified materi-
als based on the time delay of the secondary reflection using
broadband sonar pulses [12].

The deep learning method forms the category or feature
which represents the target attribute by characterizing the
internal law of the sample data, which originated from the
neural networks [13] in early stage. Due to the defect of
local optimal value [14], the development of deep learning is
limited until Hinton proposed the deep belief network (DBN),
which set off the upsurge of deep learning development. Since
then, convolutional neural network (CNN), recurrent neu-
ral network (RNN), and other network structures appeared.
Deep learning has achieved research results in computer
vision [15], speech recognition and natural language process-
ing [16], [17], acoustic scene analysis [18], and other fields.
In recent years, researchers have introduced deep learning
methods into the classification and recognition of underwater
target acoustic signals. Kamal et al. applied the DBN to the
classification and recognition tasks of underwater passive
targets, and achieved a higher recognition rate than tradi-
tional methods [19]. Jin proposed a method to realize accu-
rate multiclass underwater target recognition by connecting
sonar-echoscope and CNN. The mini-batch gradient descent
in his research based on transfer learning performed better
than traditional feature-based method [20]. Song combined
the image enhancement and region-based CNN to recognize
underwater creatures, and improve the performance on a
small dataset [21]. Cao et al. combined the second-order
pooling with CNN to obtain classification information from
the time-frequency representation of acoustic signals [22].
The pattern of combining the research in the field of underwa-
ter acoustics with deep learning provides inspiration for the
research content of this article.

According to the theoretical solution for the scattering field
of a simple underwater object, this paper proposes a clas-
sification method for spherical shell objects based on deep

learningmethod by analyzing themorphological function and
establishing the relationship between signal characteristics
and target characteristics. First, we simulate the scattering
characteristics of the underwater spherical shell’s acoustic
scattering. Then, we generate the object scattering data under
different parameters according to the acoustic scattering the-
ory and build a deep neural network model. Classify the
materials and estimate the radius and thickness of underwater
spherical shell. Finally, we evaluate the performance of the
model proposed in the article and compare with the baseline
method.

This paper is organized as follows: Section II describes
the basic acoustic scattering theory. Section III provides the
simulation analysis of underwater spherical shells. Section IV
describes the model structure and data generation progress.
In Section V, we explain the details of model training, metric
evaluation, and the baseline method. This paper ends with
concluding remarks in Section VI.

II. BASIC THEORY OF UNDERWATER
SPHERICAL SHELL OBJECTS
Spherical objects (including rigid spheres, flexible spheres,
elastic spheres and spherical shells with different fillings and
thicknesses) are the typical underwater target shapes whose
acoustic scattering characteristics have been deeply studied.
Due to the simple shape of spherical shell, the rigorous
theoretical solution of acoustic scattering is easy to obtain.
Through the study of basic shapes, we can explain the phys-
ical mechanism of acoustic scattering from elastomers, and
clarify the fluctuation phenomenon of fluid-solid interface
involved in scattering. We can use the obtained rigorous
solution as a benchmark for other rigorous or approximate
methods. This section first introduces the rigorous theoretical
solution of elastic spherical shell scattering. We can use the
normal series solution to calculate the scattering field of a
vacuum spherical shell and elaborate the basic characteristics
of acoustic scattering echoes.

FIGURE 1. The schematic diagram of the scattering from a spherical
object.

Fig. 1 reveals the acoustic scattering of a sphere with a
plane wave incidence. The center of the sphere to be analyzed
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is set as the origin of the spatial spherical coordinate system,
where the radius of the sphere is a. The plane wave is incident
on the sphere along the axis z, and the acoustic scatter-
ing echo varies with the change of the receiving position
r(r, θ, ϕ). Both the incident wave and the scattering wave
are independent of azimuth angle ϕ and symmetrical with θ .
Without considering the effect of amplitude and time delay,
the incident plane wave can be expressed as eikz = eikr cos θ ,
according to the spherical wave decomposition, we can obtain
the following expression:

pi = eikr cos θ =
∞∑
n=0

in (2n+ 1) jn (kr)Pn (cos θ) (1)

where jn(·) is the spherical Bessel function of order n and
Pn(·) is the Legendre function of order n. For the scattering
wave, the solution dependent on r in the spherical coordinate
takes the first kind of spherical Hankel function h(1)n (kr).
Without considering the time delay, the scattering wave can
be expressed as:

ps =
∞∑
n=0

in (2n+ 1) bnh(1)n (kr)Pn (cos θ) (2)

where bn is the undetermined scattering coefficient, which
will be determined by the boundary conditions of the sphere.

When the target is an elastic spherical shell, we must
consider the boundary conditions of the inner wall, and at
the same time, the acoustic field of the spherical shell will
contain the spherical Neumann function yn(·). Under different
filling conditions, the boundary conditions are different. If the
spherical shell is filled with fluid, there will be 6 boundary
conditions for the inner and outer walls. If the inside of the
spherical shell is vacuum, the number of boundary conditions
will be reduced to 5. The radius of the shell is set as b, suppose
that the inner space of r < b is filled with fluid. Then we can
express the acoustic field in the spherical shell as:

8 =

∞∑
n=0

in(2n+ 1)Pn(cos θ ) [cnjn(kd2r)+ dnyn (kd2r)]

ψ =

∞∑
n=0

in(2n+ 1)Pn(cos θ ) [enjn(ks2r)+ fnyn (ks2r)] ,

b ≤ r ≤ a (3)

The coefficients cn and dn as well as en and fn are dual
in spherical shell solution, the difference is only that the
functions jn(·) and yn(·) are interchanged. Then the inner field
of the spherical shell will be:

p1 =
∞∑
n=0

in(2n+ 1)Pn(cos θ )gnjn(k1r), r < b (4)

where k1 = ω/c1, kd2 = ω/cd2, ks2 = ω/cs2, cd2, cs2 are
the longitudinal wave velocity and transverse wave veloc-
ity of the elastic spherical shell respectively. The scattering

coefficient bn solved from the boundary conditions can be
expressed as:

bn = −Bn/Dn (5)

In the case that the inside of the spherical shell is vacuum,
Bn, Dn are the 5 order determinant [23].
In order to eliminate the influence of object relative dis-

tance and propagation phase factor in acoustic scattering
analysis, we can use the morphological function to describe
the far-field scattering characteristics of objects, which is
defined as follows:

f (x, θ) =
(
2r
a

)1/2 ps (x, θ)
pi (x)

e−ikr (6)

Morphological function is the response of the object to the
incident wave. When the polar angle θ = π , we can obtain
the backscattering morphological function. According to the
definition, the far field backscattering morphology function
of spherical objects can be described as:

|f (x, π)| =
2
x

∣∣∣∣∣
∞∑
n=0

(−1)n (2n+ 1) bn

∣∣∣∣∣ (7)

where bn is determined by the boundary conditions of the
sphere. In this paper, we mainly discuss the backscattering
characteristics of elastic spherical shells.

III. SIMULATION ANALYSIS OF UNDERWATER
SPHERICAL SHELL OBJECTS
In this section, we discuss the influence of parameter changes
on the characteristics of target scattering signals. For the
spherical elastomer whose material and parameter of geo-
metric size are given. According to (7), we can calculate
the backscattering characteristics by the normal series solu-
tion. Table 1 gives the physical parameters of the materials
involved in the theoretical calculation in this paper. Suppose
that he inside of the shell is filled with air.

TABLE 1. The physical parameters of the simulation materials.

Taking the stainless steel spherical shell as an example,
the outer radius of the shell is 0.25m, the shell thickness is
5mm, and the observation frequency range of 0-100 kHz are
separated by the step size of 100 Hz. Through the theoreti-
cal simulated calculation, Fig. 2(a) shows the backscattering
morphology function of a stainless steel elastic spherical shell
with a radius of 0.25m and a shell thickness of 5 mm. The
abscissa of Fig. 2(a) represents the dimensionless frequencies
ka, where k is the wavenumber of the incident sound and
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FIGURE 2. The simulation result of the simulated objects.
(a) Backscattering morphology functions. (b) The waveform.

a is the sphere radius. In addition, the ordinate represents the
target strength by normalized amplitude.

For the Fig. 2 (a), in the low frequency range (marked by
the black rectangular), the backscattering morphology func-
tion has an approximately periodic formants, and the ampli-
tude of the formants is small, which is mainly composed of S0
waves (low-order symmetric Lamb waves) cause. In the mid-
frequency (marked by the red rectangular), the backscattering
morphology function shows the mid-frequency enhancement
effect, mainly caused by the leakage of the shell surface (low-
order subsonic asymmetric Lamb wave) [24]. The change
of the backscattering morphology function is more compli-
cated, and the amplitude has obvious maximum and mini-
mum changes with frequency. In addition, as the frequency
increases, the amplitude of the morphology function changes
more drastically.

We can obtain the waveform of object backscattering echo
by calculating the inverse Fourier transform on the backscat-
tering morphology function, as shown in Fig. 2(b). When
the target is an elastomer, there would be a series of elastic

acoustic scattering echoes after the specular reflection echo.
The first one that appears is the strong specular reflection
echo, followed by several wave packets. In the time domain,
the S0 waves appear at equal intervals, but the amplitude is
much smaller than that of the specular reflection echo. The
S0 waves will easily submerge in the ambient noise in actual
observation. Therefore, we cannot use the S0 wave as an
effective component in observing backscatter characteristics.
The wave packets of the A0− wave appear in order, and the
amplitude is constantly weakened due to the attenuation of
energy during the propagation, but it is still greater than the
amplitude of the S0 wave. In practical applications, the energy
contained in these wave packets is relatively large, which can
provide the most obvious signal characteristics available for
detection and identification except for the mirror reflection
echo, and is an effective radiation mode for underwater target
acoustics scattering.

The backscattering morphology function of the elastic
spherical shell is related to the material, radius and shell
thickness of the spherical shell. Fig. 3 shows the compar-
ison results of backscattering morphology functions under
different parameters. Referring to the parameters in Fig. 3(a),
the thickness, material, and radius of the shell are respectively
changed, and the results are in Fig. 3(b)-3(d). The abscissa
represents the dimensionless frequencies ka, where k is the
wavenumber of incident sound and a is the sphere radius.
Compared with Fig. 3(a), the acoustic scattering morphol-

ogy function in Fig. 3(b) shows that when the outer radius
of the spherical shell remains unchanged and the thickness
increases, the formants aroused by the A0− wave becomes
narrower andmoves toward the low frequency.When the geo-
metric parameter is fixed and the object material is aluminum,
the resonant structure caused by the S0 wave and A0− wave
will change. The resonant structure of the A0− wave moves to
the high frequency direction, as shown in Fig. 3(c). When the
object radius increases to 0.5m, only the presence of the S0
wave resonance structure can be observed, and the A0− wave
formants disappears in Fig. 3(d).

Theoretical and experimental have proved that the mid-
frequency enhancement in the morphological function is an
effective acoustic characteristic related to the inherent prop-
erties of the object. In practical applications, it can provide
obvious characteristics available for detection and recogni-
tion except for specular reflection echo. The frequency range
of mid-frequency enhancement is related to the shell material.
That is, in case of different object parameters, the backscat-
tering morphology functions will appear in different spec-
tral characteristics, therefore we can use the backscattering
morphology function as the basis for material classification
and parameter estimation. In addition, we can apply the deep
learning methods to discover the high-level abstract charac-
teristics of the target acoustic scattering function.

IV. DEEP CONVOLUTIONAL NEURAL NETWORKS
In this paper, we used the one-dimensional (1D) back-
scattering morphology function as the input of the network.
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FIGURE 3. Comparisons of backscattering morphology function with different parameters. (a) Stainless steel shell with r = 0.25m and
t = 0.005m. (b) Stainless steel shell with r = 0.25m and t = 0.01m. (c) Aluminum shell with r = 0.25m and t = 0.005m. (d) Stainless steel with
r = 0.5m and t = 0.005m.

Although fully connected neural networks have demonstrated
superior results in dealing with 1D input, considering the
number of parameters of the network model, we applied the
1D-CNN to complete the classification and estimation tasks.
Fu pointed out that it is difficult to learn the weights in fully
connected layers to generate high and low frequency parts of
a waveform simultaneously, while fully convolutional layers
can preserve the local information and spatial arrangement
of previous features well [25]. At present, some waveform-
in and waveform-out models such as SEGAN [26] and
GlotNet [27] adopt CNN structure to enforce the network to
focus on temporally close correlations of the input signal.

Although the backscatteringmorphology function does not
appear as a waveform in the time domain, its formant inter-
vals and fluctuation changes between adjacent formants are
similar to the variations of neighbor points in the waveform.
Thus, 1D-CNN can be applied to extract formant features
under different parameters well. Furthermore, researchers
found that 1D-CNN has a better performance of inhibiting

over-fitting than fully connected layers in lower signal-to-
noise ratio (SNR) cases in the training process. In addition,
the number of training parameters and training time can be
reduced as well.

A. DATA GENERATION
The backscattering characteristics of elastic objects are
strongly dependent on the incident sound waves, which can
excite more formants at higher frequencies. In order to obtain
more object characteristic information and facilitate signal
processing, it has great advantages to use extremely narrow
pulse signals as transmitted signals. However, the energy of
extremely narrow pulses is finite, which limits the working
distance and has high requirements for transducers. There-
fore, it has not been widely used in actual sonar engineering.

In object detection and recognition of active sonar, chirp
signal is a kind of common signal form. Because of its large
time-bandwidth product, it can obtain higher gain when using
traditional pulse compression for signal detection, so it is
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widely used in ranging, direction finding and some other
applications. For underwater objects, stronger acoustic scat-
tering will occur in a certain frequency band. Therefore,
by studying the signals covering the specific frequency band,
we can explain the scattering characteristics clearly and
improve the detection and recognition performance effec-
tively. Chirp signal can satisfy the above characteristic and
it is easy to implement.

The entire observation frequency band is from 100 Hz to
100 kHz, which is wide enough to observe the resonance
structure of the objects studied in this paper. The bandwidth
of the transmitted signal is fixed at 50 kHz, whereas the initial
frequency starts at 1000 Hz and increase in steps of 1000 Hz.
The scanning method above can cover the entire observation
frequency band and increase the amount of data. In this paper,
we divided the material of the objects into two types. The
radius varies from 0.24m to 0.52m with a step of 0.02m and
the thickness varies from 3mm to 32mm with a step of 1mm.
Then the amount of sample dataset will be 15 × 30 × 100.
Furthermore, we add noise with different SNR to each dataset
to improve the noise generalization ability of the model.

TABLE 2. Network configuration.

B. MODEL STRUCTURE
When we use a deep neural network for training, as the
number of network layers increases, the weights, thresholds
and parameters in the network will increase sharply, resulting
in a corresponding increase in the complexity of the model.
The layered training mechanism can reduce the time com-
plexity of the model. In this paper, we designed the 1D-CNN
network model to train the generated data. Table 2 shows the
details of the network configuration in this paper. The model
consists of six convolutional layers and uses a rectified linear
unit (ReLU) as the activation function. The ReLU function
alleviates the gradient disappearance of neural network to
a certain extent, and accelerates the convergence speed of
gradient descent. Among the convolutional layers of the net-
work, the first five layers are with the same kernel, stride, and
padding, whereas the feature channels will double in the next
layer. The channel, kernel size, and stride are all set as one in
the sixth convolutional layer to reduce the feature dimension.

For the last layer, we use the fully connected (FC) layer with
linear activation to get the final output of size N, where N
is the number of classes (Regression, N = 1; Classification,
N = 2). Moreover, for the classification model, the output
layer uses sigmoid activation to classify more than one class.

During training progress, the over-fitting is easy to occur
in the lower SNR cases. Thus, we also incorporated the reg-
ularization method in the network to prevent over-fitting by
introducing the dropout layers and L2 weight regularization.
Fig. 4 shows the schematic diagram of the mode designed in
this paper.

FIGURE 4. Spherical shell target classification model based on the
convolutional neural network.

V. EXPERIMENTAL RESULT
In the designed deep neural network, we apply the backscat-
tering morphological function as the input of the model.
Each dataset consists of 45000 noise-free samples with
1024 sampling points. In the designed network, the cross-
entropy loss function and the adam optimizer are applied.
Research found that a small learning rate is necessary in order
to ensure the model converges smoothly Therefore, the initial
learning rate is set to 0.0001. The dropout probability is set
to 0.5. In order to test the model performance that varies with
the SNR, we add random noise from 0dB to 20dB to the
clear dataset by a step of 5dB, and finally generate 5 group of
datasets with different SNR. We divide each dataset accord-
ing to the proportion of 60% training dataset, 20% validation
dataset and 20% test dataset.

There is a strategy to train the model in this paper. We use
the dataset with SNR 20dB to train the first model, and
initialize the weights of all the layers by Xavier initialization.
When the network converges stably, the model parameters
will be saved as the initial parameters of other models trained
by datasets under lower SNR, which is similar to the weight
pre-training process. The advantage of the strategy is that the
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model will have thememory of learning the primitive features
of clear samples when we train the model with dataset in case
of lower SNR. It can ensure certain stability of the features
learned by the model, even if the sample is in larger noise.
In addition, the losses are easier to converge at low SNR.

A. MATERIAL CLASSIFICATION
In this paper, wemainly consider two kinds of materials of the
elastic spherical shells, which are the stainless steel and the
aluminum. Therefore, we can regard the problem as a binary
classification task. According to the analysis in Section II,
the backscattering morphology function has different struc-
tures for objects under different parameters, so we can use
the one-dimensional backscattering morphology function as
the model input.

The baseline method uses auditory features such as
Mel-Frequency Cepstral Coefficients (MFCC), Gammatone
Cepstral Coefficients (GtCC), spectral centroid, spectral
decrease, spectral crest, and spectral entropy to train an sup-
port vector machine (SVM) classifier. The total dimension of
the features is 30. We use the classification accuracy as the
evaluation index of the model. The classification accuracy
rate varied with SNR presented in Fig. 5 shows the perfor-
mance of the proposed network model.

FIGURE 5. Material classification accuracy varied with SNR.

We can observe from Fig. 5 that the baseline method
achieves a relatively higher classification accuracy rate of
the object material varied with the increase of SNR. Even if
the SNR is 0dB, the accuracy rate can reach 80%. Whereas
in comparison, the proposed CNN method achieves a better
and more stable accuracy rate overall, especially at 20dB,
the accuracy rate reaches 100%.

B. RADIUS AND THICKNESS ESTIMATION
Radius and thickness are important geometric features that
represent the physical properties of spherical shells. In the
early research of the ray acoustics theory, the relationship
between the backscattered echoes of the object incident with

continuous short pulses was discovered [3]. Researchers have
proved that the incident wave frequency fc with the maximum
amplitude of the first A0− wave is related to the radius-
thickness-ratio, which can be used to estimate the radius
and thickness of the object, whereas it is difficult to obtain
the fc in practical application. In response, Li proposed two
approximate equations to evaluate the radius and thickness of
a thin spherical shell [28] as shown in (8) and (9).

a =

√
F2
2 + 4F1ωp1t0l − F2

2F1ωp
(8)

h =
ac

E1ωpa+ E2c
(9)

where E1 = 0.8001, E2 = 2.9587, F1 = 4.6514 × 10−3,
and F2 = 4.2544. These values will depend on the material
of object shell and the surrounding medium. These two equa-
tions need to measure the frequency of greatest enhancement
ωp and the echo delay 1t0l in practice.

In this section, we train the regression model based on
CNN to estimate the radius and thickness of the object, and
compare the performance to the baseline method [28]. The
parameters in (8) and (9) need to satisfy two conditions:

(1). The object is stainless stain thin spherical shell;
(2). There should be completemid-frequency enhancement

formants in the backscattering morphology function.

FIGURE 6. The error of radius varied with SNR.

Thus, we use the samples that satisfy the conditions to
test the performance of the baseline method. Fig. 6 and
Fig. 7 show the estimation error curve of radius and thickness
varied with SNR in respectively. We use the absolute error to
evaluate the estimation performance and use (10) to calculate
the estimated error e,

e =
∣∣x − x̂∣∣ (10)

where x is the real thickness or radius value of test dataset,
and x̂ is the estimated value.

We can observe from Fig. 6 and Fig. 7 that the whole
error of the baseline method is higher than that of the
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FIGURE 7. The error of thickness varied with SNR.

proposed CNN method. The reason is that for the baseline
method, there would be extra errors introduced by extracting
the values of ωp and 1t0l , especially at low SNR cases.
In addition, the accuracy of thickness is also influenced by the
accuracy of the radius, and there will be error accumulation
in estimating the thickness. The method based on proposed
CNN structure achieves superior performance to the baseline
method and it is more robust to noise.

VI. CONCLUSION
Aiming at the problem of classification and recognition of
underwater spherical shell objects, this paper proposes a
convolutional neural network to train the acoustic scattering
morphological function and estimate the radius and thickness
of the elastic spherical shell. Through theoretical simulation,
the backscatteringmorphological function of the target model
is calculated and used as the input of the neural network to
extract the deep characteristic information in the backscatter-
ing morphological function. Construct datasets with different
SNR to evaluate the model. Whether the classification of
material or the estimation of parameter, the performance of
proposed classification method based on CNN is better than
the baseline method, and it is robust to noise. Therefore,
the model trained by neural network can be used as a stable
and reliable feature library to characterize underwater spher-
ical shell objects with different parameters, and provide the-
oretical and technical support for underwater target detection
and recognition.
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