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ABSTRACT There are a few dependent multivariate relationships among high dimensional data sets. Then
how to identify these dependent variables from high dimensional data sets is an important issue for data anal-
ysis. Now, the most frequently used method is the enumeration method, that is all multivariate relationships
in the high dimensional data sets are examined. However, the time complexity of the enumeration method
is exponential (2n) and the calculation load is very heavy when the dimension is high. Aiming at solving
this problem, the matrix iteration algorithm with pruning (MIP) is proposed for pinpointing multivariate
dependent relationships in high dimensional data sets without examining all multivariate relationships.
Some not dependent relationships are ignored without examined by the pruning process of the proposed
MIP and the computing burden is reduced. The maximal information coefficient (MIC) is adopted as the
measure of correlations in the proposed MIP algorithm due to the excellent properties, generality and
equitability, of MIC. In the case of the data set with 5 variables, more than 50%multivariate relationships are
pruned without examining. Numerical experiments also show that the calculating burden is greatly reduced.
Compared to the enumeration method, 82.5% calculating time and 98.5% calculating times of multivariate
relationships are saved for the data set with two dependent multivariate relationships among 30 variables in
the experiment. The proposedMIP algorithm is effective for pinpointingmultivariate dependent relationships
from data sets with high dimensions.

INDEX TERMS Correlation, high dimensions, maximal information coefficient, pruning algorithm.

I. INTRODUCTION
Pinpointing correlated stochastic quantities from high dimen-
sional data sets is a very important issue. With the wide
application of information technologies, various information
can be obtained. The era of big data is approaching with
large amount data emerging at the growing rate of fifty per-
cent a year [1]. Besides of the properties of velocity (the
speed of data in and out), variety (range of data types and
resources) and veracity (an indication of data integrity and
the ability for an organization to trust the data and be able
to confidently use it to make crucial decisions) [2], [3],
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the volume, the amount of data, is also an important property
of which high dimension is an important feature of large
volume.

In the exploratory data analysis of data sets with hundreds
or thousands of dimensions (stochastic quantities, variables),
the first step may be to identify promising bivariate or mul-
tivariate correlations for further research. In order to identify
correlations among stochastic quantities, a natural approach,
that is the enumeration method, is to compute a measure
of dependence on all stochastic relationships, and then sort
these stochastic relationships according to these measure
values. The higher ranking relationships are what we want
to identify. For bivariate correlations, the natural approach
may be appropriate, that is all measures of dependence on
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all bivariate stochastic quantities are computed. However, for
multivariate correlations, if the interrelations among differ-
ent multi stochastic quantities are ignored and all measures
are also computed using the natural approach, the computa-
tion workload increases exponentially due to combinations
of variables. For example, given k stochastic variables (the
dimension of the data set is k), C2

k = k(k − 1) bivariate
relationships are examined, while 3C3

k + . . .+ kC
k
k > 3(2k −

C0
k − C1

k − C2
k ) multivariate relationships should be exam-

ined. Then, if the natural approach of identifying bivariate
correlations, that is calculating measures of the dependence
of all bivariate relationships and ranking, is adopted, it is
infeasible to identify multivariate correlations in the data set
with hundreds or thousands of dimensions. The reason is
that every multivariate relationship is examined even if there
are independent variables in the multivariate relationships.
Facing high dimensional data sets, how to avoid calculating
the measures of independent multivariate relationships as
much as possible and how to efficiently identify multivariate
correlations from quite a lot of relationships is an important
work.

There are many measures of correlations. The maximal
information coefficient (MIC) is proposed by Reshef et al. [4]
via employing mutual information [6], [8]. Compared to
other measures, MIC has two excellent properties: general-
ity and equitability. Generality means that, with sufficient
sample size, MIC can discover a wide range of interest-
ing functional and non-functional associations. Equitability
means thatMIC gives similar scores to equally noisy relation-
ships of different types. However, the algorithm proposed by
Reshef et al. [4], [5] can only identify bivariate correlations
and the computation time is much longer. Aiming at these
problems, Shao et al. [10] design a fast algorithm calculating
the MIC of multi variables. In this paper, MIC is adopted
as the measure of dependence of multi variables. Of course,
other measures of dependence can also be adopted replacing
MIC in the designed efficient matrix iteration algorithm with
pruning.

However, if the fast algorithm is directly applied to identi-
fying multivariate correlations in high dimensional data sets,
that is the MIC of every multi-variable relationship is calcu-
lated using the proposed fast algorithm [10], the computation
workload is also very heavy. Aiming at solving this prob-
lem, employing the interrelation of multivariate relationships,
some nonabsolutely correlative multivariate relationships are
filtered out without calculating measurement values and an
efficient algorithm named as the matrix iteration algorithm
with pruning (MIP) is designed for pinpointing multivariate
correlations in high dimensional data sets. The contributions
of this paper are as follows.

Firstly, without calculating measure values of all multivari-
ate relationships, multivariate correlations can be pinpointed
from quiet a lot of multivariate relationships by employing
the proposed MIP algorithm. Many nonabsolutely correlative
multivariate relationships are filtered out (that is the pruning
process).Multivariate correlations can be pinpointed out from

massive relationships and relatively less computation work-
load is needed.

Secondly, besides the pruning operation promoting
computation efficiency, the proposed efficient algorithm
MIP can also give the exact expression of the multivariate
dependent relationship. Given k variables, x1, x2, . . . , xk ,
there are k multivariate relationships which are relation-
ships between variable xi(i = 1, 2, . . . , k) and vari-
ables x1, x2, . . . , xi−1, xi+1, . . . , xk . MIP algorithm can give
the specific form of the multivariate correlations, that is
variable xi can de determined by the algorithm MIP.
Thirdly, in this paper, if other measures of dependence

replaceMIC, the algorithm is also can be used for pinpointing
multivariate correlations. Then the proposed efficient algo-
rithm MIP can be regarded as an algorithmic framework
which has good expansibility and transplantability.

The paper is organized as follows. In section II, some
related research work is reviewed. In section III, employing
the fast algorithm [10] calculating the MIC value of the
multi-variable relationship, the efficient algorithm, named
as the matrix iteration algorithm with pruning (MIP), for
pinpointing multivariate correlations is proposed. A simple
case of the MIP algorithm is given in Section IV. Section V
gives some experimental results. Lastly, some conclusions
and future work are given in section VI.

II. LITERATURE REVIEW
Measures of variable dependence can be roughly divided
into the following four categories: grid-based method, mutual
information estimation, distance/kernel-based statistics and
correlation-based methods [9]. These measures are summa-
rized in Table 1.

Grid-based method. The grid-based method explores the
space of all possible grids drawing on the sampled data,
assigns a score to each grid, and aggregates these scores.
Normally, the value of the correlation coefficient is equal to
the maximal value of the aggregated scores. The maximal
information coefficient (MIC) [4] is the maximal value of the
metric of normalized mutual information scores. However,
it is difficult to compute the MIC value efficiently over all
grids. Then fast approximate algorithms computing the MIC
values of bivariate and multivariate relationships is proposed
by Shao et al. [10], [11]. Albanese et al. [12] develop a prac-
tical tool for detecting associations in big data sets. HHG [13]
explores the three-by-three grids defined by pairwise and uses
as its score Pearson’s χ2 test statistic computed on two-by-
two contingency tabels derived from the three-by-three grids.
However, the HHG is not distribution free. The coefficient
SDDP [15] explores much more grids and its score is the
normalized mutual information.

Mutual information estimation. Due to its information the-
oretic background, mutual information differs from the other
measures of dependence of random variables. The theoretical
advantages of mutual information derived from the reason
that it is closely tying to Shannon entropy. Then the aim
is to estimate mutual information only from the data set
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TABLE 1. Summary of measures of dependence.

without knowing the densities of random variables (includ-
ing joint density of variables). The easy and very crude
approximations to mutual information is based on cumulate
expansions [6]. However, these approximations are valid for
distributions close to Gaussians alone. It is more robust for
expressions obtained by entropy maximization using aver-
ages of functions of the data set [6]. The estimations based
on explicit parametrization of densities are useful but are
less efficient [7]. The promising methods is based on kernel
density estimators [6], and Kraskov et al. estimate mutual
information from k−nearest neighbor statistics [6].
Distance/kernel-based statistics. The distance correlation

(dCor) [16], which is defined analogously to ordinary correla-
tions, uses the distance variance/covariance based on pairwise
distances between points. Going a step further, the distance
covariance is developed as the metric spaces of negative type
of which Euclidean spaces are a special case [17]. In addition
to distance criteria, there are kernel-basedmeasures which are
formulated based on embedding of probability distributions
into reproducing kernel Hilbert spaces [18]. Hilber-Schmidt
information criterion (HSIC) is a more general statis-
tic in kernel Hilbert spaces of which dCor is a special
case [19].

Correlation-based methods. Pearson’s correlation coeffi-
cient is the first coefficient. After that, many kinds of coef-
ficients are proposed. The maximal correlation [20] may
be the best-known correlation-based method which searches
for arbitrary measurable functions such that the coefficient
is maximized, and it is hard to be computed in general.
However, the approximate method of alternating conditional
expectations is widely used [21]. The recent method, random-
ized dependence coefficient (RDC) [22] which is the esti-
mation of the Hirschfeld-Gebelein-Rényi Maximum Corre-
lation Coefficient (HGR), is the largest canonical correlation
between random non-linear projections of their respective
empirical copula-transformations.

Besides the above taxonomy, the statistical correlation
coefficient can also divided as the two categories: bivariate
correlation coefficient and multivariate coefficient. All above
correlation coefficient can be as a measurement of depen-
dence between two random variables. However, there are
much more multivariate correlations in big data and there are
relatively few correlation coefficient can be used to detect
multivariate correlations [14], [23], [24].

Compared to other measures, the maximal information
coefficient (MIC) has two excellent properties: generality
and equitability. Generality means that with sufficient sample
size, MIC can capture a wide range of interesting associa-
tions, not limited to specific functional types. Equitability
means that MIC gives similar scores to equally noisy rela-
tionships of different types. Reshef et al. (2011) [4], [25]
firstly proposed MIC which can only detect bivariate corre-
lations. Shao et al. [10] further defined MIC of multi random
variables and designed an approximate fast algorithm for cal-
culating theMIC value of multi variables. However, if the fast
algorithm is directly applied into identifying dependent mul-
tivariate relationships in data sets with thousands of variables
or much more, that is the enumeration method is adopted,
dependent multi-variable relationships cannot be effectively
pinpointed from data sets.

III. THE MATRIX ITERATION ALGORITHM WITH PRUNING
It is infeasible to examine all multivariate relationships in data
sets with hundreds of or thousands of dimensions in limited
time. Then in III-B, aiming at avoiding calculating some not
dependent multivariate relationships (the pruning process),
the efficient matrix iteration algorithm with pruning (MIP) is
designed to reduce the computation load in the procedure of
detecting multivariate correlations. In this paper, the maximal
information coefficient (MIC) is selected as the measure of
dependence of variables due to its two excellent properties:
generality and equitability. In III-A, the definition and related
algorithms of MIC are introduced.

A. INTRODUCTION TO THE MAXIMAL INFORMATION
COEFFICIENT (MIC)
In this subsection, the definition of MIC [4], the approximate
algorithm [4] calculating MIC values of bivariate relation-
ships and the fast algorithm [10] calculating MIC values of
multivariate relationships are introduced.

Given a finite data set D with two variables, x, y, the
x-value of D is partitioned into s bins and the y-value is
partitioned into t bins. Then an s-by-t grid G is obtained.
D|G is the distribution induced by the points of D in the cells
ofG. Given a fixed data setD, different grids with the same or
different numbers of partitions of the x-value and y-value will
result in different distributions. Specifically, in reference [4],
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the maximal information coefficient of two random variables
is given in definitions III.1-III.3.
Definition III.1 [4] Given a finite data set D ⊂ R2 and

positive integers s, t , define

I∗(D, s, t) = max I (D|G)

where the maximum is over all grids with s columns and
t rows, that is the first variable in the data set D is divided
into s partitions and the second one is divided into t parts.
I (D|G) is the mutual information of D|G.
Definition III.2 [4] The characteristic matrix M (D) of the

data set D ⊂ R2 is a finite matrix with entities

M (D)s,t =
I∗(D, s, t)
logmin{s, t}

Definition III.3 [4] The MIC of the data set D ⊂ R2 with
sample size n and grid size less than B(n) is given by

MIC(D) = max
st<B(n)

{M (D)s,t }

where ω(1) < B(n) ≤ O(n1−ε) for some 0 < ε < 1
From the above definitions, it can be found that the most

important work is calculating the mutual information of the
distribution D|G. The space of grids that must be searched
grows exponentially with the increasing of the number of
data points. Then, considering the computational efficiency,
an approximate algorithm [4] is designed to calculate the
approximateMIC value via employing the dynamic program-
ming algorithm. To be specific, intuitively, equal division
of axes may lead to the maximal value of MIC [4]. Hence,
the approximate algorithm firstly partitions a variable of the
data set equally. For the other axis, some candidate partition
clumps are given to reduce the computation load and then
the partitions of the other axis are obtained by employing
the dynamic program algorithm. With the partitions of the
two axes, the gird on the scatter plot of the two variables is
obtained. Another important problem in the above definitions
is the maximal grid size B(n) = nα . If B(n) is set too
high, that can lead to non-zero scores even for random data.
While setting B(n) too low means that only simple patterns
are searched for. To balance these competing considerations,
the parameter α is usually set to be 0.6 according to the
practical experience [4].

The difficulty of directly applying the approximate algo-
rithm [4] to detecting multivariate correlations is how
to divide partitions of multi variables. Aiming at solv-
ing this problem, the MIC definition of multi variables is
firstly given, and then the difficulty of dividing partitions
of multi variables is solved via employing the clustering
algorithm in the fast adaptive-MIC algorithm proposed by
Shao et al. [10]. Compared to the approximate algorithm [4],
the fast adaptive-MIC algorithm can calculate MIC values of
bivariate and multi-variable relationships in a very short time.

However, if the fast adaptive-MIC algorithm [10] is
directly applied to detecting multivariate correlations in data
sets with hundreds of or thousands of dimensions, that is

the enumeration method is adopted, the computation time is
much longer since the most time is spent on random relation-
ships. Then thematrix iteration algorithmwith pruning (MIP)
is proposed for efficiently detecting multivariate correlations
from high dimensional data sets.

B. THE PROPOSED MATRIX ITERATION ALGORITHM
WITH PRUNING (MIP)
In this paper, the matrix iteration algorithm with prun-
ing (MIP) can precisely and efficiently identify the existent
multivariate correlations, and it is proposed based onMIC and
the fast adaptive-MIC algorithm [10]. Of course, if there are
new better measures of dependence appear, MIC and the fast
adaptive-MIC algorithm can be replaced by other measures
and corresponding algorithms, respectively.

The fast adaptive-MIC algorithm [10] can calculate MIC
values of relationships with VN (VN ≥ 2) variable in the
data set D. Firstly, select a variable Y from the data set D and
then the remaining VN −1 variables, X1,X2, . . . ,XVN−1, are
as the whole. Secondly, the variables X1,X2, . . . ,XVN−1 and
variable Y are clustered into x, y partitions via employing the
bisecting k-means clustering algorithm, respectively. Thirdly,
according to the definition of MIC, calculate the MIC value
of the VN−variable relationship.

There are at least two problems if the adaptive-MIC algo-
rithm is directly applied to detecting multivariate correlations
in big data with hundreds of thousands of variables (that
is the enumeration method). Firstly, the number (more than
3(2k − C0

k − C1
k − C2

k )) of the examined multi-variable
relationships exponentially increases with the increasing of
the number (k) of variables in the data set. As a consequence,
the computation time is very long when the number of
variables in the data set is large. Secondly, some multivari-
ate correlations with relatively lower MIC values may be
missed. The reason is as follows. AlthoughMIC gives similar
scores to equally noisy relationships of different types (the
equitability property), there is a slightly difference among
MIC values of relationships of different types and MIC
values of multivariate relationships may be less than that of
bivariate relationships. For example, the MIC value of the
linear relationship might be higher than that of the sine/linear
relationship for data sets with the same scale. Given two
relationships y = sin(4πx21x

2
3 ) + x1 + x3 (sine/linear), x4 =

5x2 + 1 (linear), x1, x2, x3 are mutually independent random
variables generated in domain [0, 1]. The data set D with
5 variables, x1, x2, x3, x4, y, is generated according to defini-
tions of these two relationships, and the scale of the data setD
is 20000. If the enumeration method is adopted, that is the
adaptive-MIC algorithm [10] is directly applied to detecting
multivariate correlations in the data set D, the MIC values of
all C2

5 +3C3
5 +4C4

5 +5C5
5 = 65 multi-variable relationships

in the data set D are calculated. The highest MIC values
of relationships, (x2, x4), (x4, (x1, x2)) and (y, (x1, x3)), are
0.9988, 0.9769 and 0.9178, respectively. According to these
calculated MIC values, it is obvious that the multi-variable
relationship (x4, (x1, x2)) is more important than the
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relationship (y, (x1, x3)). However, the obvious conclusion
is not correct. In fact, according to the data set generating
process, the relationships (x2, x4) and (y, (x1, x3)) are themost
important and these two relationships should be identified.
The relationship (x4, (x1, x2)) should be excluded. From this
example, it can be found that, if only rank all relationships
according to MIC values, some not important relationships
may be paid more attention to and a lot of time is squandered
on calculating MIC values of these not important relation-
ships. An efficient algorithm is needed to exclude these not
important relationships and to precisely identify the exist
multivariate dependent correlations.

Aiming at solving these problems, the matrix iteration
algorithm with pruning (MIP) is designed and the intuitions
of the designed efficient MIP algorithm are as follows.

Firstly, pruning. The new relationship which is obtained
by adding independent variables into the exist dependent
relationship will be given a lower MIC value than that of
the exist dependent relationship, and the new relationship
which is obtained by adding variables into the independent
relationship also is not the relationship we are looking for,
even though the MIC of the new relationship is high. For
example, if the variable y is dependent on the variables
(x1, x3), that is the relationship (y, (x1, x3)) is dependent,
the MIC value of the relationship (y, (x1, x3)) is higher than
these of the relationships (y, (x1, x2, x3)), (y,(x1, x3, x4)) and
(y, (x1, x2, x3, x4)), where the variables x2, x4 are independent
of the variables y, x1 and x3. The relationship (y, x2) is the
relationship of independent variables x2, y. The relationship
(y, (x1, x2)) can be seen as adding the variable x1 into the
relationship (y, x2).
Secondly, identifying dependent multivariate correlations.

Given a multivariate relationship, new relationships can be
obtained by adding one of the remaining variables into the
given relationship. If these MIC values of the obtained new
relationships are lower than that of the given multivariate
relationship, the given multivariate relationship is regarded
as a multivariate correlation.

For clearness, these symbols are introduced. (xi, (xj,
xj+1, . . . , xj+k−1)) is the multivariate relationship between
the variable xi and k variables xj, xj+1, . . . , xj+k−1, and
its corresponding MIC, which is calculated by the fast
adaptive-MIC algorithm [10], is MIC(xi,(xj,xj+1,...,xj+k−1)). The
symbol MIC(x1,x2,...,xk ) = max

1≤i≤k
MIC(xi,(x1,xi−1,xi+1,..,xk ). For

clarity, relationships with k (in this table, k = 2) variables
and corresponding MIC values are added above the designed
matrix IA, and relationships are also added on the left of the
matrix IA. Elements IAp,q of the table body (the matrix IA) are
MIC values of relationships with k+1 variables (see Table 2).

Based on the above intuitions, the designedmatrix iteration
algorithm with pruning (MIP) is presented in Algorithm 2.
In MIP, the most important procedure is the pruning process
which is presented in Algorithm 1.

In Algorithm 1, RS is the set of relationships with i − 1
variables in the first line above the matrix IA and IV is the

Algorithm 1 PrunPro(RS, IV ): the pruning process of the
proposed MIP algorithm
Require: The set of relationships RS, the set of independent

relationships IV .
1: Select the p-th and q-th relationships, Rp, Rq, from RS.
2: if the number of different variables in Rp, Rq is equal to

0, or equal to or larger than 2 then
3: IApq = −, does not need to be calculated.
4: else
5: /* There is only one different variable in relation-

ships Rp = (xi1 , xi2 , . . . , xik−1 , xik+1 ) and Rq =
(xi1 , xi2 , . . . , xik ). */
Case 1. Completely prune. Rp ∈ IV and Rq ∈ IV ,
IApq = −, does not need to be calculated.
Case 2. Partly prune. Rp /∈ IV&Rq ∈ IV or Rp ∈
IV&Rq /∈ IV . If Rp /∈ IV&Rq ∈ IV , IApq =
MIC(xi1 ,xi2 ,...,xik ,xik+1 )

= MIC(xik+1 ,(xi1 ,...,xik ))
. If Rp ∈

IV&Rq /∈ IV , IApq = MIC(xi1 ,xi2 ,...,xik ,xik+1 )
=

MIC(xik ,(xi1 ,...,xik−1 ,xik+1 ))
.

Case 3. No pruning. Rp /∈ IV&Rq /∈ IV .
IApq = MIC(xi1 ,xi2 ,...,xik ,xik+1 )

= max{
MIC(xij ,(xi1 ,...,xij−1 ,xij+1 ,...,xik ,xik+1 ))

, j = 1, 2, . . . , k}.
6: end if
7: return the matrix IA.

set of dependent relationships with i − 1 variables. Select
two relationships, Rp, Rq, from the set RS. If the number of
different variables in Rp, Rq is equal to 0, or equal to or larger
than 2, there is no new relationships generated according to
Rp, Rq. The element IApq = does not need to be calculated
(line 2-3). If the number of different variables in Rp, Rq is
equal to 1, new relationships can be generated according to
Rp, Rq. There are three cases (line 5).
No loss of generality, the p−th and q−th relation-

ships are (xi−1, (x1, x2, . . . , xi−2)), (xi, (x1, x2, . . . , xi−2)),
respectively.
Case 1. If (xi−1, (x1, x2, . . . , xi−2)) ∈ IV and

(xi, (x1, x2, . . . , xi−2)) ∈ IV , completely prune. The MIC
values of relationships (xj,(x1, x2, . . . , xj−1, xj+1, . . . , xi)),
j = 1, 2, . . . , i do not need be calculated and the element
IApq does not need to be calculated.
Case 2. If (xi−1, (x1, x2, . . . , xi−2)) /∈ IV and

(xi, (x1, x2, . . . , xi−2)) ∈ IV , partly prune. Only calculate the
MIC value of the relationship (xi−1, (x1, . . . , xi−2, xi)) which
is the value of the element IApq, and the other MIC values of
the remained i− 1 relationships need not be calculated. That
is, IApq = MIC(x1,...,xi) = MIC(xi−1,(x1,...,xi−2,xi)).
Case 3. If (xi−1, (x1, x2, . . . , xi−2)) /∈ IV and

(xi, (x1, x2, . . . , xi−2)) /∈ IV , no pruning. Calculate MIC
values of all relationships with i variables. Then the maximal
MIC value, which is the value of the element IApq, is the MIC
value of the i-variable relationship (x1, x2, . . . , xi−1, xi)) and
the corresponding relationship is the specific form of the i
variables.
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TABLE 2. The form of iteration matrix IA which is a symmetric matrix.

Algorithm 2 presents the whole MIP algorithm. The data
set D is with n points and v variables. VR is the maximal
number of variables in the detected relationships. The critical
variable ε is used for measuring the dependence of relation-
ships. If the MIC value of the relationship is less than ε,
the relationship is independent.DR and IV are the set of iden-
tified dependent relationships and independent relationships,
respectively. The count number i is the number of variables
in the current relationships.

In Algorithm 2, the initialization process is presented in
lines 1-7. All MIC values of bivariate relationships are cal-
culated and independent bivariate relationships are identi-
fied. The RS and IV are obtained, and then the initialization
matrix IA is obtained by employing the pruning process Prun-
Pro(RS,IV). The specific procedure is as follows. Select two
relationships, the p-th and q-th bivariate relationships Rp,Rq,
fromRS. If there is two different variables betweenRp andRq,
the element IApq does not need to be calculated. If there is
only one different variable between the p-th and q-th bivariate
relationships in the set RS, such as (xl, xm) and (xl, xs), this
situation can be divided into three cases.

Case 1. If (xl, xm) ∈ IV and (xl, xs) ∈ IV , com-
pletely prune. The MIC values of relationships (xl, (xm, xs)),
(xm, (xl, xs)) and (xs, (xl, xm)) do not need be calculated and
the element IApq does not need to be calculated.
Case 2. If (xl, xm) /∈ IV and (xl, xs) ∈ IV , partly prune. The

MIC values of relationships (xl, (xm, xs)) and (xs, (xl, xm)) do
not need be calculated and only theMIC value of the relation-
ship (xm, (xl, xs)) is calculated. And IApq = MIC(xl ,xm,xs) =

MIC(xm,(xl ,xs)).
Case 3. If (xl, xm) /∈ IV and (xl, xs) /∈ IV ,

no pruning. Calculate MIC values of all three-variable rela-
tionships (xl, (xm, xs)), (xm, (xl, xs)) and (xs, (xl, xm)). And
IApq = MIC(xl ,xm,xs) = max{MIC(xl ,(xm,xs)),MIC(xm,(xl ,xs)),

MIC(xs,(xl ,xm))}.
After the initialization procedure, the next step is the iter-

ative loop for calculating the matrix IA in lines 8-25. The
set DR of dependent relationships are updated in lines 8-9.
And the k-th relationship Rk of the first row above IA is
added into DR if the MIC of Rk is larger than all MIC
values (IA.k ) in the k-th column. In lines 12-17, the set IV
of independent relationships is updated. With sets RS and IV ,
the Algorithm 2 is called to calculate the iteration matrix IA.

If the relationships above the new matrix IA is empty, stop
and return the dependent relationships inDR and independent
relationships in IV ; otherwise, calculate the element IApq of
the matrix IA with pruning.
If the number of different variables between the p−th

and the q−th relationships in the first row of the table
header is equal to 0 or larger than 2, there is no need to
calculate the element IApq. Otherwise (the number of dif-
ferent variables between the p−th and the q−th relation-
ships is equal to 1), the element IApq is calculated with
pruning which is similar to Step 1.4. No loss of generality,
the p−th and q−th relationships are (xi−1, (x1, x2, . . . , xi−2)),
(xi, (x1, x2, . . . , xi−2)), respectively. There are also three
cases.

Case 1. If (xi−1, (x1, x2, . . . , xi−2)) ∈ IV and
(xi, (x1, x2, . . . , xi−2)) ∈ IV , completely prune. The MIC
values of relationships (xj,(x1, x2, . . . , xj−1, xj+1, . . . , xi)),
j = 1, 2, . . . , i do not need be calculated and the element
IApq does not need to be calculated.
Case 2. If (xi−1, (x1, x2, . . . , xi−2)) /∈ IV and (xi, (x1,

x2, . . . , xi−2)) ∈ IV , partly prune. Only calculate the MIC
value of the relationship (xi−1, (x1, . . . , xi−2, xi)) which is the
value of the element IApq, and the other MIC values of the
remained i − 1 relationships need not be calculated. That is,
IApq = MIC(x1,...,xi) = MIC(xi−1,(x1,...,xi−2,xi)).
Case 3. If (xi−1, (x1, x2, . . . , xi−2)) /∈ IV and (xi, (x1,

x2, . . . , xi−2)) /∈ IV , no pruning. Calculate MIC values
of all relationships with i variables. Then the maximal
MIC value, which is the value of the element IApq, is the
MIC value of the i-variable relationship (x1, x2, . . . , xi−1, xi))
and the corresponding relationship is the specific form
of the i variables. That is, IApq = MIC(x1,...,xi) =

max
1≤j≤i

MIC(xj,(x1,...,xj−1,xj+1,...,xi)).

There is the pruning process in the proposed MIP algo-
rithm. The relationships, obtained by adding a variable into
the exist dependent (independent) relationships in the set
DR(IV ), are pruned. At last, the dependent multi-variable
relationships and independent relationships are pinpointed
from the data set D.
In the proposed MIP Algorithm 2, there are two important

parameters i, ε. The integer i is used to count the number of
variables in the current calculated relationships. The integer
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Algorithm 2 The Matrix Iteration Algorithm With Pruning
(MIP)
Require: The data set Dn×v is with n points and v variables

(xi, i = 1, 2, . . . , v). DR = {} is the set of dependent
relationships and IV = {} is the set of independent
relationships. VR is the maximal number of variables
in detected multivariate relationships. The number i is
the number of variables among current detected relation-
ships. The critical variable ε.
/* Step 1 Initialization. */

1: i = 2 (Step 1.1).
2: Calculate MIC(xp,xq)(p, q = 1, 2, . . . , v, p 6= q). (Step

1.2)
3: if MIC(xp,xq) < ε (Step 1.3) then
4: IV = IV ∪ {(xp, xq)}
5: end if
6: i = i+ 1 (Step 1.4 ).
7: Calculate the initialization matrix. (Step1.5 )

The set of relationships with two variables, RS =
{(xl, xm), 1 ≤ l < m ≤ v}.
IA = PrunPro(RS, IV ).

8: while i < VR (Step 2) do
/* Step 2.1 Exam the matrix IAmn and update the set
DR. */

9: if the k-thMIC value of thematrix header is larger than
max{IAjk , j = 1, 2, ..,m} then

10: The k-th relationship Rk of the matrix header is
added into the set DR

11: end if
/* Step 2.2 Update the set IV . */

12: IV t
= IV , IV = {}

13: Select two elements (relationships) from IV t , Rp =,
Rq =.

14: if variables in the first part of Rp, Rq are the same and
there is only one different variable between the sec-
ond parts, for example, Rp = (xk1 , (xk2 , xk3 , . . . , xki )),
Rq = (xk1 , (xk2 , xk3 , . . . , xki−1 , xki+1 )) then

15: NR = (xk1 , (xk2 , xk3 , . . . , xki−1 , xkixki+1 )).
16: IV = IV ∪ {NR}
17: end if
18: i = i+ 1. (Step 2.3)

/* Step 2.4 Update the iterationmatrix IAwith pruning.
*/

19: RS is the set of relationships of the header of IA
excluding relationships in IV .

20: if RS == {} then
21: Stop
22: else
23: IA = PrunPro(RS, IV ).
24: end if
25: end while
26: return (Step 3) The precisely identified relationships

in the set DR and the independent relationships in the
set IV .

VR is the biggest number of variables in the relationships we
want to detect. Another important parameter is ε. If ε is set
too large, many not independent relationships are added into
the independent relationship set IV . Then this will lead to
that all relationships are independent and dependent relation-
ships can not be identified. However, if ε is set too small,
the independent relationship set IV will be empty at last,
and all independent relationships are deemed to be a certain
dependent. Then this will lead to that the MIP algorithm will
have no pruning. In our opinion, the parameter ε should be
set to be a little higher than the MIC value of two random
variables under the same scale. And the reference values of ε
under different scales are given in Table 3.

TABLE 3. The reference values of ε.

The time complexity of MIP is related to the number of
independent relationships in the detected data set. If there
are many dependent relationships, that is the ratio of the
number of dependent relationships to that of independent
relationships is relatively higher, the computational complex-
ity of MIP is high and if all relationships are dependent in
the data set, the complexity of MIP is equal to 2n which
is the time complexity of enumeration method. However,
if dependent relationships is sparse in the data set, that is
the ratio of the number of dependent relationships to that of
independent relationships is close to 0, the complexity ofMIP
is much lower than 2n. In reality, the number of dependent
relationships is very small in data sets with high dimensions.
And the proposed MIP algorithm is scalable and suitable for
pinpointing dependent relationships from data sets.

The MIP algorithm has the following advantages. Firstly,
the MIP algorithm has the procedure of pruning and MIC
values of some not important relationships are avoided to be
calculated. The calculation workload is reduced. Secondly,
the MIP algorithm can precisely identify the dependent and
independent relationships from data sets with many variables.
And the relationships, which can be regarded as adding one
or more variables into dependent (independent) relationships,
are excluded although theseMIC values of these relationships
are relatively higher (lower). Thirdly, the dependent and inde-
pendent relationships are identified at the same time.

IV. CASE STUDY
The validity of the proposed MIP algorithm is verified
through a simple case in this section. The data set D has five
variables (attributes), x1, x2, x3, x4, y, where x1, x2, x3 are
mutually independent variables. There are two relationships
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TABLE 4. The MIC of all relationships in the data set D.

in the data set D: x4 = 5x2 + 1 (linear relationship) and
y = sin(4πx21x

2
3 ) + x1 + x3(sine/linear relationship). The

scale of the data set D is 20000, that is n = |D| = 20000.
Obviously, there are two dependent relationships, (x2, x4)
and (y, (x1, x3)). And the aim of the MIP algorithm is to
precisely identify these two dependent relationships from the
data set D.

If the enumeration method is directly used to detect
multi-variable relationships in the data setD via rankingMIC
values of relationships, sort C2

5 + 3C3
5 + 4C4

5 + 5C5
5 =

10+30+20+5 = 65MIC values, which are shown in Table 4,
of all relationships in the data set D. There are at least two
problems. Firstly, every relationship is examined, even if this
relationship is definitely not dependent. Secondly, because
MIC values are slightly different for different types of rela-
tionships under the same noise level [4], the MIC values
of some not dependent relationships by adding independent
variables into dependent relationships may be higher than
that of some dependent relationships. For example, the MIC
value of (x2, (x1, x4)) is higher than that of (y, (x1, x3)).
And if only according to MIC values in Table 4, these rela-
tionships (x2, (x1, x4)), (x2, (x3, x4)), (x2, (x1, x3, x4)), . . .,
(x4, (x1, x2, x3, y)) are more important than the relationship
(y, (x1, x3)). However, this result has biggish error with the
fact.

Now, the MIP algorithm is applied to pinpoint the
dependent relationships (x2, x4), (y, (x1, x3)) in the data
set D.

- Step 0: Initialization. There are five variables x1, x2,
x3, x4, y in the data set D. V = 5, n = |D| =
20000,DR = {}, IV = {}, ε = 0.01 (refer to Table 3).

- Step 1: Initialization of the iteration matrix IA.

Step 1.1: i = 2.

Step 1.2: C2
5 MIC values of all bivariate relationships

in the data set D are calculated which are
listed in Table 5.

Step 1.3: Select independent pairs. If MIC(xi,xj) < ε,
(i, j = 1,2,. . .,5, i 6= j), (xi, xj) is added into
the set IV . IV = {(x1, x2), (x1, x3), (x1, x4),
(x2, x3), (x2, y), (x3, x4), (x4,y)}.

Step 1.4: i = i+ 1 = 3.
Step 1.5: Calculate the initialization iteration

matrix IA.
A C2

5 × C2
5 (10 × 10) matrix IA is created in Table 6. Two

rows, these calculated bivariate relationships and correspond-
ing MIC values, are added above IA, and the column of
relationships is added on the left of IA.
∗ Because there are two different variables between (x1,

x2) and (x3, x4), then the corresponding element IA81 is
ignored. Similarly, elements IA18, IA19, IA1,10, IA26, IA27,
IA2,10, IA35, IA36, IA39, IA45, IA46, IA48, IA53, IA54, IA5,10,
IA62, IA64, IA69, IA72, IA73, IA78, IA81, IA84, IA87, IA91,
IA93, IA96, IA10,1, IA10,2, IA10,5 are also ignored. Elements
IAii,i = 1, . . . , 10 are also ignored, because the variables of
the corresponding two bivariate relationships are the same.
∗ There are only one different variable between the corre-

sponding two relationships of the element IApq in the matrix
IA, and then it can be divided into three cases.

Case 1. Because (x1, x2) ∈ IV , (x1, x3) ∈ IV , completely
prune. The MIC of three-variable relationships (x1, (x2, x3)),
(x2, (x1, x3)) and (x3, (x1, x2)) need not to be calculated. That
is, the element IA12 needs not be calculated. Similarly, ele-
ments IA13, IA15, IA17, IA21, IA23, IA25, IA28, IA31, IA32, IA38,
IA31, IA51, IA52, IA57, IA58, IA71, IA75, IA7,10, IA82, IA83,
IA85, IA8,10, IA10,3, IA10,7, IA10,8 needs not be calculated.

Case 2. Because (x1, x2) ∈ IV and (x1, y) /∈ IV , partly
prune. The MIC of relationships (x1, (x2, y)), (x2, (x1, y))
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TABLE 5. The MIC values of bivariate relationships in the data set D.

TABLE 6. Iteration matrix (i = 3) in the data set D.

TABLE 7. Iteration matrix (i = 4) in the data set D.

TABLE 8. P values of t-test of deviations of calculating time of the MIP algorithm under different dimensions.

need not be calculated and only calculate the MIC of rela-
tionship (y, (x1, x2)). MIC(y,(x1,x2)) = 0.300628 and IA14 =
MIC(x1,x2,y) = MIC(y,(x1,x2)) = 0.300628. Similarly, elements
IA16, IA24, IA29, IA34, IA36, IA3,10, IA29, IA41, IA42, IA43,
IA47, IA4,10, IA56, IA59, IA61, IA63, IA29, IA65, IA67, IA68,
IA6,10, IA74, IA76, IA79, IA86, IA89, IA92, IA94, IA95, IA97,
IA98, IA9,10, IA10,4, IA10,6, IA10,9 are also calculated.
Case 3. Because (x1, y) /∈ IV and (x3, y) /∈ IV , no prune.
IA49 = MIC(x1,x3,y) = max{MIC(x1,(x3,y)) = 0.912997,
MIC(x3,(x1,y)) = 0.910849, MIC(y,(x1,x3)) = 0.915383} =
0.915383.

- Step 2(1): i = 3 and i < VR = 5.

Step 2.1(1): Exam the iteration matrix IA and update the
set DR.
Exam every column of the matrix IA

in Table 6. The MIC of the relationship
(x2, x4), MIC(x2,x4) = 0.999741, is larger
than any element of the 6-th column of the
matrix IA. Then DR = DR ∪ {(x2, x4)}.

Step 2.2(1) : Update the set IV .
IV = IV ∪ {(x1, (x2, x3)), (x1, (x2, x4)),
(x2, (x1, x3)), (x2, (x1, y)), (x1, (x3, x4)), (x3,
(x1, x2)), (x3, (x1, x4)), (x4, (x1, x3)), (x4, (x1,
y)), (x2, (x3, y)), (x3, (x2, y)), (x3, (x2, x4)),
(y, (x2, x4)), (x4, (x3, y))}.

Step 2.3(1): i = i+ 1 = 4.
Step 2.4(1): Update the iteration matrix IAwith pruning.

All of the relationships are (x1, (x2, y)),
(y, (x1, x2)), (x1, (x4, y)), (y, (x1, x4)),
(x3, (x4, y)), (y, (x3, x4)), (y, (x1, x3)),
(x1, (x3, y)), (x3, (x1, y)), (y, (x2, x3)),
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FIGURE 1. The calculating time of the fast Adaptive-MIC algorithm.

(x3, (x2, y)), (x2, (x3, x4)), (x4, (x2, x3)),
(x2, (x4, y)), (x4, (x2, y)), (x4, (x1, x2))
in the last iteration matrix IA. Because
the relationship (x2, x4) is added into the
set DR, then the relationships in the col-
umn of (x2, x4), that is (x4, (x2, x3)),
(x2, (x4, y)), (x4, (x2, y)), (x4, (x1, x2)),
in the last iteration matrix IA are excluded
from all relationships in the last iteration
matrix IA. Then the remained relationships
are {(x1, (x2, y)), (y, (x1, x2)), (x1, (x4, y)),
(y, (x1, x4)), (x3, (x4, y)), (y, (x3, x4)), (y, (x1,
x3)), (x1, (x3, y)), (x3, (x1, y)), (y, (x2, x3)),
(x3, (x2, y)), (x2, (x3, x4)), (x4, (x2, x3))}.
And MIC(x1,x2,y) = max{MIC(x1,(x2,y)),
MIC(y,(x1,x2))}. MIC(x1,x4,y) =

max{MIC(x1,(x4,y)), MIC(y,(x1,x4))}.
MIC(x3,x4,y) = max{MIC(x3,(x4,y)),
MIC(y,(x3,x4))}. MIC(x1,x3,y) =

max{MIC(x1,(x3,y)), MIC(y,(x1,x3)),

MIC(x3,(x1,y))}. MIC(x2,x3,y) = max
{MIC(x3,(x2,y)), MIC(y,(x2,x3))}. Then the first
row above IA and the column on left of IA
are relationships (x1, x2, y), (x1, x4, y), (x3,
x4, y), (x1, x3, y), (x2, x3, y) and the second
row above IA are these corresponding MIC
values.
The updated matrix IA is shown in Table 7.
c1 = MIC(y,(x1,x2,x3)) = 0.794157, c3 =
MIC(y,(x1,x3,x4)) = 0.657815. Because (x1,
(x4, y)) ∈ IV , the MIC value of the relation-
ship (x1, (x2, x4, y)) need not be calculated.
Similarly, these MIC values of relationships
(x2, (x1, x4, y)), (x4, (x1, x2, y)), (y, (x1,
x2, x4)) also need not be calculated. Then
the element IA31 is ignored. Similarly, ele-
ments IA13, IA15, IA34, IA43, IA45, IA51,
IA54 are also ignored. Because variables
in the corresponding two relationships of
IAii, i = 1, 2, . . . , 5, are the same, these
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FIGURE 2. The comparison of calculation times between the proposed MIP algorithm and the enumeration method.

elements IAii, i = 1, 2, . . . , 5, are also
ignored.

- Step 2(2): i = 4 and i < VR = 5.
Step 2.1(2): Exam the iteration matrix IA and update the

set DR.
Exam every column of the matrix IA. The
MIC value of the relationship (y, (x1, x3)),
MIC(y,(x1,x3)) = 0.915383, is larger than
any element of the 2-th (the corresponding)
column of the matrix IA. DR = DR ∪
{(y, (x1, x3))} = {(x2, x4), (y, (x1, x3))}.

Step 2.2(2): Update the set IV .
IV = IV∪{(x1, (x2, x3, x4)), (x2, (x1, x3, y)),
(x3, (x1, x2, x4)), (x4, (x1, x3, y))}.

Step 2.3(2): i = i+ 1 = 5.
Step 2.4(2): Update the iteration matrix IAwith pruning.

In the Step 2.3(1), the MIC of relationships
(y, (x1, x2, x3)) and (y, (x1, x3, x4)) are cal-
culated. But (y, (x1, x3)) ∈ DR, the rela-
tionships (y, (x1, x2, x3)) and (y, (x1, x3, x4))

are ignored. And the iteration matrix IA is
blank, that is IA = [ ].
Goto Step 3.

- Step 3: Output.
The dependent relationships in the data set D are
relationships (x2, x4) and (y, (x1, x3) in the set DR.
The independent relationships are in the set IV .
Stop.

The pinpointed dependent relationships are in the set DR,
DR = {(x2, x4), (y, (x1, x3))}. The other MIC values of rela-
tionships calculated in the MIP algorithm can be stored as a
reference. The results agree well with the reality.

Besides, the calculation workload is reduced. The number
of relationships, of which MIC values are calculated, is C2

5 +

17+2 = 29. However, the number of relationships is 65 if the
enumerationmethod is employed.More than 50% calculation
is saved. The proposed MIP algorithm not only can pinpoint
the exist dependent relationships in big data, but also can
reduce calculation workload compared to the enumeration
method.
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FIGURE 3. The comparison of calculating time between the MIP algorithm and the enumeration method.

V. EXPERIMENTAL RESULTS
In the enumeration method, MIC values of relationships
are calculated by the Adaptive-MIC algorithm proposed by
Shao et al. [10] which is implemented in C programming
language and parameters are default, that is, α = 0.6 and
C = 15. The proposed MIP algorithm is also implemented
in C programming language. The computing platform of
the two C programs is personal notebook computer and its
configuration is as following. Win 8 Operating System; CPU:
Intel(R) Core(TM) i7− 4510U , 2.60GHz; RAM: 8.00GB.

In order to compare calculating time between the pro-
posed MIP algorithm and the enumeration method, the time
of the fast Adaptive-MIC algorithm, which is used in the
MIP algorithm and the enumeration method, calculatingMIC
values of three-variable and five-variable relationships under
different scales [10], is firstly shown in Fig. 1. With the
increasing of the scale, the calculating time increases for
three-variable and five-variable relationships. When scales
are the same, the calculating time of three-variable relation-
ships is slightly lower than that of five-variable relationships

overall. However, the difference of calculating time between
three-variable relationships and five-variable relationships is
extremely tiny under the same scale. The calculating time of
the Adaptive-MIC algorithm for relationships with different
variables is almost equal under the same scale. Then, in the
enumeration method, the time of calculating an MIC value
of a relationship, no matter the number of variables in the
relationship, is approximated as the time of calculating the
MIC value of the relationship with five variables.

From the simple example in Section IV, it can be found that
the proposed MIP algorithm can significantly reduce calcula-
tion times of MIC values of multivariate relationships in the
procedure of detecting dependent multivariate relationships
in data sets. In all data sets of experiments in Fig. 2, there are
two dependent multivariate relationships, x3 = 3x2 + 5x1,
x4 = x25−6, and the other variables are independent. With the
increasing of the number of variables in the data set, the cal-
culation times of MIC values of multivariate relationships
are increasing. However, the calculation times of MIC values
of the proposed MIP algorithm is considerably lower than
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FIGURE 4. The standard deviations of calculating time of the MIP algorithm.

that of the enumeration method, and the increasing speed of
calculation times of the proposedMIP algorithm is also much
slower than that of the enumeration method. The calculation
times of the proposed MIP algorithm is much lower than that
of the enumeration method. If the dimension of the data set
is lower than 15, the calculating time of MIP is longer than
that of the enumeration method. And if the dimension of the
data set is equal to or higher than 20, the calculating time of
MIP is much shorter than that of the enumeration method.
When the dimension of the data set is high, for example
larger than 30, about 1 order of magnitude of time cost is
reduced by the MIP algorithm compared to the enumeration
method. If there are 30 variables in the data set, compared
to the enumeration method, 4 orders of magnitude of cal-
culation times are reduced in the proposed MIP algorithm.
The MIP algorithm can significantly reduce the calculation
times of MIC values in the procedure of detecting dependent
relationships in data sets and the MIP algorithm is suitable
for detecting multivariate dependent relationships in high
dimensional data sets.

In Fig. 3, the calculating time of MIP algorithm is the
average time. In order to further investigate the variation of
calculating time, the standard deviations of calculating time is
given in Fig. 4. From Fig. 4, it can be found that the variation
of deviations of the calculating time varies very small and
the proposed MIP algorithm is relatively stable in the aspect
of calculating time. And the further investigate is analyzed
by the t-test. In the t-test, the null hypothesis is that the
two deviations are equal. The p-value of the t-test of any
two deviations is shown in Tab. 8. From Tab. 8, it can be
found that these p-values are all less than confidence level
0.01. Then it can be concluded that there is no significant
differences between any two deviations. That is all deviations
of calculating time are equal under different dimensions. And
the variation of calculating time of the MIP algorithm is the
same for different dimensions.

In Fig. 2, the comparison of calculation times of MIC
values between the MIP and enumeration method is shown.
Because there are some other operations in theMIP algorithm
besides calculating MIC values of multivariate relationships

5162 VOLUME 9, 2021



F. Shao et al.: Matrix Iteration Algorithm With Pruning for Pinpointing Multivariate Correlations From High Dimensional Data Sets

FIGURE 5. The ratio of the calculation times of MIP to that of enumeration and the ratio of the calculating time of MIP to that of enumeration.

by employing the Adaptive-MIC algorithm, the comparison
of calculating time between theMIP and enumerationmethod
is also shown in Fig. 3. The scale of the data set in experiments
is 100 and the calculating time of the enumeration method
is equal to the product of calculation times and the time of
calculating an MIC value of five-variable relationships with
100 data points. The calculating time of the MIP algorithm is
the CPU time. When the dimension is low (10, 15), the calcu-
lating time of the MIP algorithm (168.69, 1154.51 seconds)
is higher than that of the enumeration method (15.16, 580.64
seconds). However, when the dimension is high (20), the cal-
culating time of MIP (5776.9 seconds) is much lower than
that of the enumerationmethod (10185.33 seconds), and if the
dimension is higher than 20, about 1 order ofmagnitude of the
calculating time is reduced in the MIP algorithm compared
to the enumeration method. The proposed MIP algorithm is
suitable for detecting dependent relationships in high dimen-
sional data set and much calculating time can be saved.

In order to make the comparison of calculation times and
calculating time more intuitively, the ratio of the calculation

times of the MIP algorithm to that of the enumeration method
and the ratio of the calculating time of the MIP algorithm to
that of the enumeration method are displayed in Fig. 5. Both
the ratio of the calculation times of the MIP algorithm to that
of the enumeration method and the ratio of the calculating
time of the MIP algorithm to that of the enumeration method
decrease with dimension. The ratio of the calculation times
of the MIP algorithm to that of the enumeration method is
very small even when the dimension is very low. And the
ratio of calculation times declines with dimensions. However,
the ratio of calculating time of the MIP algorithm to that of
the enumeration method is very large when the dimension
is very low. With the increasing of dimension, the ratio of
calculating time rapidly declines to less than 1 and the ratio
of calculating time is close to zero when the dimension is
large. When dimension is large in the data set, both ratios are
very low which is close to zero. That is, when dimension is
large, the the calculating time and calculation times of the
MIP algorithm are much lower than the calculating time and
calculation times of the enumeration method, respectively.
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However, there a big difference between the ratio of the cal-
culation times and the ratio of the calculating time. No matter
how large the dimension, the ratio of the calculation times of
the MIP algorithm to that of the enumeration method is very
low. That is, the calculation times of the MIP algorithm is
much lower than that of the enumeration method. When the
dimension is lower than 20, the ratio is larger than 1. That
is, the calculating time of the MIP algorithm is much longer
than that of the enumeration method. When the dimension
is equal to 10, the ratio of the calculating time is equal to
11.12, that is, the calculating time of the MIP algorithm is
about 11 times of that of the enumeration method. There
is a big difference of the calculating time between the low
dimension and the large dimension. The reason is as follows.
When the dimension is low, the saved time of calculation
of MIC of multivariate relationships is not longer than the
time of increased processes. Andwhen the dimension is large,
the saved time of calculation of MIC is much longer than the
time of increased processes. The proposed MIP is suitable
for detecting dependent multivariate relationships in high
dimensional data sets.

VI. CONCLUSION
The matrix iteration with pruning algorithm (MIP) is
proposed for pinpointing a small amount of multivariate
dependent relationships from high dimensional data sets.
TheMIP algorithm can also be seen as a framework, in which
other excellent coefficients can replace the maximal infor-
mation coefficient (MIC) as the measure of correlations in
future. In MIP, there is a pruning process by which some not
dependent relationships with relatively higher correlation val-
ues are discarded. Then the calculation load is significantly
reduced.With the increasing of sparsity, that is the ratio of the
number of variables in dependent relationships to the number
of all variables in data sets, of data sets, the ratio of the number
of correlation values calculated by the MIP algorithm to that
of the enumeration method is decreasing and the calculating
time of the MIP algorithm is greatly reduced. Without calcu-
lating all correlation values of all multivariate relationships,
the proposed MIP algorithm can pinpoint correlations among
high dimensional data sets.
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