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ABSTRACT Decomposition-based multi-objective optimization algorithms have been widely accepted as a
competitive technique in solving complex multi-objective optimization problems (MOPs). Motivated by the
facts that evolutionary operators are sensitive to the properties of problems, and even different search stages
of an evolutionary operator often pose distinct properties when solving a problem. So far, numerous ensemble
approaches have been designed to adaptively choose evolutionary operators for evolving population during
different optimization stages. Then, during one stage, all the subproblems/subspaces in these existing
ensemble approaches use the same evolutionary operator. But, for a complex MOP, the properties of its
subproblems/subspaces are different. Based on the fact that existing ensemble approaches ignore this point,
this article develops a fine-grained ensemble approach, namely FGEA, to choose suitable evolutionary
operators for different subspaces during one generation. To be specific, the local and global contributions
for each evolutionary operator in each subproblem/subspace are first defined. Then, an adaptive strategy is
designed to encourage evolutionary operators making more contributions to obtain more opportunities to
generate more offspring solutions. When choosing an evolutionary operator for a subspace, the proposed
adaptive strategy considers both the local and global contributions of the evolutionary operators. Finally,
based on 35 complex MOPs, we evaluate the effectiveness of the proposed FGEA by comparing it with
five baseline algorithms. The experimental results reveal the competitive performance of the FGEA, which
achieves the lowest inverted generational distance (IGD) values and the highest hypervolume values on
20 and 19 MOPs, respectively.

INDEX TERMS Evolutionary computation, multi-objective optimization, fine-grained ensemble, complex
Pareto set.

I. INTRODUCTION
Real-world problems in various fields, such as hybrid elec-
tric vehicle control problem [1], optimizing wireless net-
works [2], [3], feature selection for classification [4], service
composition in clouds [5], resource allocation in radar net-
works [6], [7], intelligent traffic management [8], [9], and
resource investment project scheduling [10], usually involve
simultaneously optimizing at least two conflicting objectives.
These problems are known as multi-objective optimization
problems (MOPs) [11]. Their mathematical models can be
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summarized as:{
Minimize F(x) = [f1(x), f2(x), · · · , fm(x)],
S.t. x ∈ �,

(1)

where x = (x1, x2, . . . , xn) denotes a decision vector, � is
the decision space, n and m refer to the number of decision
variables and optimization objectives. Besides, the fj(x), 1 ≤
j ≤ m represents the j-th optimization objective. For the m
optimization objectives, there are at least two objectives that
conflict with each other [12], [13].

Because of the conflicting nature among different opti-
mization objectives, when minimizing one objective of a
solution on the Pareto front, the values on other objectives
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tend to deteriorate [14]. Thus, there exists a set of trade-off
solutions, rather than one single solution optimizing all the
objectives at the same time. A solution x1 is termed to domi-
nate another one x2 (denoted as x1 ≺ x2) if and only if all the
objectives of solution x1 are not worse than that of solution
x2 and solution x1 is superior to solution x2 in at least one
objective. A solution is considered as Pareto-optimal if and
only if no solution can dominate it. All the Pareto-optimal
solutions are called Pareto set (PS) in decision space and
Pareto front (PF) in objective space, respectively.

Population-based evolutionary algorithms are capable of
searching multiple solutions concurrently during each run,
and they are good at getting a set of compromise solu-
tions for MOPs. Thus, multi-objective evolutionary algo-
rithms (MOEAs) have been widely employed to approximate
the PFs of MOPs. The popularity of evolutionary algorithms
in solving MOPs results in a prolific research direction, par-
ticularly, a plethora of MOEAs have been developed until
now [15]–[18].

Based on the environmental selection mechanisms, most
MOEAs can be roughly divided into three categories,
i.e., dominance-based, indicator-based, and decomposition-
based MOEAs [15]. Compared with the previous two
categories, the decomposition-based MOEAs have been
well accepted as a competitive technique in solv-
ing multi-objective optimization problems with complex
PSs [19]–[21]. For decomposition-basedMOEAs, one branch
is to employ a set of weight vectors to transform an MOP
into a series of single-objective sub-problems, and then
solve these sub-problems in a cooperative fashion [18],
[22]. The other branch is the objective space partition-based
MOEAs [20], [22], [23]. The algorithms in this branch, such
as MOEA/D-M2M [20], OPE-MOEA [23], and RVEA [24],
partition the objective space into a series of sub-spaces using
a set of reference vectors, and then search solutions for each
sub-spaces.

Different evolutionary operators have distinct capabili-
ties of exploitation and exploration, which leads to dif-
ferent advantages in solving different MOPs [25], [26].
For instance, differential evolution [27], [28] and simulated
binary crossover [29] exhibit qiute different search character-
istics for exploration, while polynomial-based mutation [30]
owns strong local search capacity (exploitation). An MOEA
equipped with one single evolutionary operator often has
good performance on some certain MOPs, but may performs
poorly in other MOPs [25]. Even for the same MOP, an evo-
lutionary operator performs quite differently during differ-
ent optimization stages. Thus, it is difficult for one single
operator to solve various types of MOPs. An intuitive idea
is to integrate multiple evolutionary operators to play their
respective advantages [31].

So far, there exist numerous ensemble approaches adap-
tively choosing evolutionary operators during different
optimization stages, such improving the capability of
decomposition-based MOEAs in coping with MOPs. For
instance, Hitomi et al. recognized the difficulty in defining

a suitable credit assignment for adaptive operator selection,
and experimentally compared nine credit assignment mech-
anisms on benchmark functions [31]. Li et al. employed
the sliding window method to store the fitness improve-
ment rates of each evolutionary operators, and designed
an adaptive operator selection mechanism to select one of
four differential evolution variants for decomposition-based
MOEA during each generation [32]. Wang et al. designed
an ensemble framework to combine multiple evolutionary
operators and selection criteria on the basis of multiple
populations, also employed competition and cooperation
strategies to respectively adjust evolutionary operators for
different populations and select offspring solutions [25].
Zhao et al. employed a learning automaton technique to select
evolutionary operators for decomposition-based MOEAs
based on feedback from the optimization process, also devel-
oped an adaptive strategy to adjust the reference vectors
using the obtained solutions in the external archive [33].
Santiago et al. suggested fuzzy logic to dynamically choose
evolutionary operators during each generation, and pro-
posed a new density estimator with polynomial complex-
ity to decide which solutions should be retained [34].
To enhance the performance of decomposition-based
MOEAs, Lin et al. designed an adaptive mechanism for
dynamically choosing evolutionary operators during the
optimization process [35].Wu et al. reported a bicriteria-based
adaptive operator selection approach to improve the perfor-
mance of decomposition-based MOEAs [36]. However, most
ensemble approaches are limited to selecting an evolutionary
operator during one stage, that is, all the sub-problems or
sub-spaces apply the same evolutionary operator.

The MOPs coming from various real-world applica-
tions [5], [37], [38] have complex relationships among
decision variables, e.g., linear linkage, non-linear linkage,
rotation, epistasis, and alike. Then, different sub-problems or
sub-spaces of an MOP have distinct properties [31], and the
requirements of evolutionary operators should vary from one
sub-space to another. Motivated by this, this article proposes
a fine-grained ensemble approach, namely FGEA, to choose
suitable evolutionary operators for different sub-spaces dur-
ing different optimization stages. In the proposed FGEA, even
for the same generation, different sub-spaces may employ
different evolutionary operators to generate new solutions.
The key contributions of this article can be summarized as
follows.

(1) We define the local and global contributions of evo-
lutionary operators to measure their fitness to subspaces.
(2) A novel adaptive strategy is designed to choose suit-
able evolutionary operators for each sub-space. When
choosing an evolutionary operator for a sub-space, both
local and global contributions of evolutionary operators
are fully considered.

This article is organized as follows. Section II describes the
proposed FGEA, followed by extensive comparison experi-
ments to assess the its performance in Section III. Finally,
Section IV concludes this article with two future directions.
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FIGURE 1. Examples of objective space partition.

II. ALGORITHM DESCRIPTION
In this section, the main process of the proposed FGEA is
first introduced. Then, the core idea of fine-grained ensemble
approach and the adaptive strategy are detailed. Besides,
the time complexity of the FGEA is given.

A. MAIN PROCESS
The objective space partition-based multi-objective evolu-
tionary optimization [20], [23], [39], [40] is one compet-
itive branch of decomposition-based approaches [41]. The
algorithms in this branch employ a set of reference vectors
to partition the objective space of an MOP into a series
of connected and disjoint subspaces, and a reference vector
corresponds to a subspace. During environmental selection
process, each solution is associated to a reference vector with
the minimum acute angle, and then a solution with the best
fitness in each subspace is selected to survive to the next
generation. To visually detail the concepts of objective space
partition strategy and solution fitness, two intuitive diagrams
are given in Fig. 1.

Suppose that the population size is N and the set of ref-
erence vectors is R = {r1, r2, · · · , rN }, these N reference
vectors divide a two-dimensional objective space into N sub-
spaces, as illustrated in Fig. 1(a). The boundaries between
subspaces are represented by dashed orange lines. For a
combined population in Fig. 1(a), when each subspace can
preserve a solution, the selected population in Fig. 1(b) of
course have good diversity. But, how to strengthen the pop-
ulation convergence for various MOPs is still a challenging
task.

In this article, the framework of objective space
partition-basedmulti-objective evolutionary optimization [20]
is extended to support a fine-grained ensemble strategy to
adaptively select efficient evolutionary operators for each
subspace during each generation on the basis of evolution-
ary operators’ local and global contributions. For the main
process of the FGEA, its Pseudo-code is illustrated in Algo-
rithm 1.

As shown in Algorithm 1, before running the proposed
FGEA, the user needs to input the multi-objective optimiza-
tion problem (MOP) to be solved, population sizeN andmax-
imum function evaluations (MFE). Once the proposed FGEA
completes the optimization search, it will output a population,
denoted as P, with well convergence and diversity.

Algorithm 1:Main Process of FGEA
Input: An MOP; population size N ; maximum

function evaluations (MFE);
Output: The final population P;

1 R← Obtain a set of uniformly distributed reference
vectors, similar to works [24], [42];

2 P← Initialize a population in a random way;
3 UFE ← |P|;
4 Initialize the number of evolutionary operators and

memory length as K and L;
5 [M1,M2, · · · ,MN ]← 0K×L ;
6 while UFE < MFE do
7 Q← GenerateOffspring(P,M1, M2, · · · , MN );
8 UFE ← UFE + |Q|;
9 Update ideal and nadir points as Zmin and Zmax ;
10 Fit ← Calculate the fitness of each subspace with

population P;
11 P← EnvironmentalSelection(R,P

⋃
Q);

12 NewFit ← Calculate the fitness of each subspace
with new population P;

13 [M1,M2, · · · ,MN ]←
UpdateContributionMatrix(Fit , NewFit);

Before entering the main optimization search, the FGEA
performs the following five initialization operations. Similar
to other decomposition-based algorithms [24], [39], [42],
the method in work [42] is used to generate a set of uniformly
distributed reference vectors (line 1). Also, a population with
N solutions is initialized in a random way (line 2), and the
used function evaluations (UFE) is initialized (line 3). Then,
the FGEA initializes the number of available evolutionary
operators K and the memory length L (line 4). After that,
one K × L memory matrix M is initialized for a subspace,
and each element in each matrix is initialized as zero (line
5). The matrix M i is created for the i-th subspace. Assume l
denotes the index of generation, the element M i(k, l) stores
the contribution of the k-th evolutionary operator in the i-th
subspace to the population in the previous (L + 1 − l)-th
generation.

After the above initialization, the FGEA continues to
perform the following four main operations: 1) generate a
new offspring population; 2) update ideal and nadir points;
3) update the population using environmental selection;
4) update the memory matrix for each subspace. Since how
to integrate multiple evolutionary operators to improve the
population convergence is our main focus, the first and fourth
operations are detailed in Algorithm 2 and Algorithm 3,
respectively.

In FGEA, all the non-dominated solutions in the com-
bined population P ∪ Q are employed to update the
ideal and nadir points (line 9), where P and Q are the
parent and offspring population, respectively. Assuming
that the subpopulation D ⊆ P ∪ Q contains all the
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FIGURE 2. Examples of fitness calculation.

non-dominated solutions in the combined population, then
the ideal point Zmin and nadir point Zmax are updated as
Zmin = [minp∈D f1(p),minp∈D f2(p), · · · ,minp∈D fm(p)] and
Zmax = [maxp∈D f1(p),maxp∈D f2(p), · · · ,maxp∈D fm(p)],
respectively.

For a subspace, it may contain multiple associated
solutions, then the penalty-based boundary intersection
method [41] is employ to sort these solutions. Then, the fit-
ness Fit(xj) of a solution xj, which is associated to the i-th
subspace, is defined as:

Fit(xj) =‖ F ′(xj) ‖ ×(cos(F ′(xj), ri)+ sin(F ′(xj), ri)), (2)

where F ′(xj) represents the normalized objective vector of
solution xj, i.e., F ′(xj) = (F(xj) − Zmin)/(Zmax − Zmin); the
ri denotes the reference vecotors corresponding to the i-th
subspace.

In order to visually illustrate how to calculate the fitness for
a solution, Fig. 2(a) gives an example. Assuming that solution
x1 is associated to the second subspace, the normalized objec-
tive vector of solution x1 is represented as a red dot, and its
projection on the reference vector r2 is shown as a blue dot,
then the fitness value of the solution is Fit(x1) = d1 + d2,
where d1 =‖ F ′(xj) ‖ × sin(F ′(xj), r2) and d2 =‖ F ′(xj) ‖
× cos(F ′(xj), r2).
For a subspace, its fitness value corresponds to the fitness

value of its associated solution. The symbol Fit in line 10 is a
1×N array recording the fitness values of all theN subspaces
before environmental selection, and the Fit(i) corresponds
to fitness of the i-th subspace. Similarly, the array NewFit
in line 12 represents the fitness for all the subspaces after
environmental selection.

For the environmeantal selection approach (line 11), it is
not the main contribution of this paper, and we employ
the classical objective space partition-based environmeantal
selection approach [20]. All the solutions in the combined
population are first associated to different subspaces, and
one solution with the minimal fitness is selected from each
subspace.

B. ADAPTIVE STRATEGY
Assuming that the solution x is generated by the k-th evolu-
tionary operator in the i-th subspace, the contribution Ci,k of
the k-th evolutionary operator in the i-th subspace is defined

as the fitness improvement of the subspace associated with
solution x.

Fig. 2(b) gives an example to illustrate how to calculate
the contribution. Assume that the solution x1 is previously
associated with the second subspace defined by reference
vector r2. Since the solutions associated with a subspace are
not necessarily generated in this subspace, we assume that
the solution x2 is generated by the first evolutionary operator
in the sixth subspace and is also associated to the second
subspace. Then, the contribution C(6, 1) of the first evolu-
tionary operator in the sixth subspace can be calculated as
C(6, 1) = Fit(x1)− Fit(x2) = (d1 + d2)− (d3 + d4).

When selecting an evolutionary operator for a subspace,
both the local and global contributions of this evolutionary
operator are considered, and the aggregation of local and
global conributions is called overall conribution. The local
contribution of an evolutionary operator refers to the sum
of its contribution values in this space during the past L
generations, while its global contribution is defined as its con-
tributions in all the subspaces during this generation. Assume
that k and i are respectively indexes of evolutionary operator
and subspace, and then the overall conribution OCi,k of k-th
evolutionary operator in i-th subspace is defined as follows.

OCi,k = LCi,k + GCk , (3)

where LCi,k and GCk denotes the local and global contribu-
tion of the k-th evolutionary operator, respectively. They can
be calculated as:

LCi,k =
∑L

l=1
M i(k, l), (4)

GCk =
∑N

i=1
M i(k,L), (5)

where M i represents the memory matrix for storing the
contributions of different evolutionary operators in the i-th
subspace.

With the overall contribution of each evolutionary operator
in each subspace, the selection probability pi,k of the k-th
evolutionary operator for the i-th subspace is defined as:

pi,k =
Ci,k +4/K∑K
k=1 Ci,k +4

, (6)

where 4 is a very small positive number, e.g., 1 × e−6,
to avoid the case that the denominator is 0. This definition
can guarantee that the sum of selection probabilities of all the
K evolutionary operators is 1 for a subspace. That is,

K∑
k=1

pi,k =
K∑
k=1

Ci,k +4/K∑K
k=1 Ci,k +4

=

∑K
k=1 Ci,k +

∑K
k=14/K∑K

k=1 Ci,k +4

=

∑K
k=1 Ci,k +4∑K
k=1 Ci,k +4

= 1. (7)

On the basis of the selection probability of each evolu-
tionary operator for each subspace, we design an algorithm
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Algorithm 2: GenerateOffspring()
Input: Current population P; memory matrix for each

subspace, i.e.,M1, M2, · · · , MN ;
Output: An offspring population Q;

1 Q← ∅;
2 for i = 1→ N do
3 r ← Generate a random number between 0 and 1;
4 t ← 1;
5 for k = 1→ K do
6 if r ≤

∑t
k=1 pi,k then

7 t ← k;
8 BREAK;

9 q← Generate a new solution using the t-th operator
on solutions in i-th subspace and its
neighbourhood;

10 Q← Q
⋃
{q};

to generate an offspring population, which is described in
Algorithm 2.

As shown in Algorithm 2, the inputs of function Genera-
teOffspring() are the current population and the N memory
matrices. Since this function is used to generate an offspring
population based on the contributions of different evolution-
ary operators, its output is naturally this offspring population,
denoted as Q. First of all, the population Q is initialized to an
empty set (line 1). Then, all the subspaces are checked to gen-
erate new solutions (lines 2-10). When checking a subspace,
this function makes use of roulette-wheel approach [43] to
select one evolutionary operator based on the selection proba-
bilities (lines 3-8). The symbol r represents a random number,
and t denotes the index of evolutionary operators. The process
from line 3 to 8 seems to be complex, an example is given to
detail it. Suppose there are three evolutionary operators, their
selection probabilities are respectively pi,1 = 0.1, pi,2 =
0.6, and pi,3 = 0.3. When the random number r satisfying
0.1 < r ≤ 0.7, the second evolutionary operator will be
selected since r > pi,1 and r ≤ pi,1+ pi,2. Then, the selected
evolutionary operator will be applied to the solutions coming
from the subspace and its neighborhoods to generate a new
solution (line 9).

In each generation, according to the fitness value of each
subspace before and after environment selection, the pro-
posed FGEA updates memory matrices storing contribution
of each evolutionary operator in each subspace, which is
shown in Algorithm 3.
As shown in Algorithm 3, the main inputs of Function

UpdateContributionMatrix() are the fitness of each subspace
before and after environmental selection, and memory matrix
for each subspace.

The Function UpdateContributionMatrix() consists of two
steps. The first step checks each subspace to retain the
contributions of each evolutionary operator from the first to
the (L − 1)-th generation (lines 2-4), and initialize the con-

Algorithm 3: UpdateContributionMatrix()
Input: Fit and NewFit; memory matrix for each

subspace, i.e.,M1, M2, · · · , MN ;
Output: Updated memory matrix for each subspace,

i.e.,M1, M2, · · · , MN ;
1 for i = 1→ N do
2 for k = 1→ K do
3 for l = 1→ L − 1 do
4 M i(k, l)← M i(k, l + 1);

5 M i(k,L)←0;

6 meanF ← 1
N

∑N
i=1 Fit(i);

7 for i = 1→ N do
8 if NewFit(i) > 0 then
9 if Fit(i) > 0 then
10 Con← Fit(i)− NewFit(i);
11 else
12 Con← meanF ;

13 Is← Get the index of source space of xi;
14 Io← Get the index of operator of xi;
15 M Is (Io,L)← Con;

tribution of each evolutionary operator in the current genera-
tionto 0 (line 5). Then, on the basis of the fitness improvement
of each subspace, the second step updates the contributions
of corresponding evolutionary operators in corresponding
subspaces (lines 7-15). When a subspace has an associated
solution, its fitness value will be larger than zero (line 8).
In this case, the contribution generated by this new asso-
ciated solution is calculated (lines 9-12). Then, the indexes
of the subspace and evolutionary operator are found
(lines 13-14). After that, the contribution of the correspond-
ing evolutionary operator in the corresponding subspace is
updated (line 15).

C. TIME COMPLEXITY ANALYSIS
From Algorithm 1, we can observe that the time complexity
of the proposed FGEAmainly comes from three parts: 1) gen-
erate offspring population (line 7, Algorithm 1); 2) environ-
mental selection operator (line 11, Algorithm 1); 3) update
contribution matrix (line 13, Algorithm 1). Next, we analyze
these three parts respectively.

The main process of the first part is shown in Algorithm 2.
The time complexity of choosing an evolutionary operator
is O(K ) (lines 5-8, Algorithm 2), where K is the number
of evolutionary operators. Selecting offspring solutions for
generating a new solution takesO(N ), where N is the number
of sub-spaces. Generating a new solution using an evolution-
ary operator takes O(n), where n is the number of decision
variables. Then, the time complexity of generating a new
solution isO(K+N+n), which results inO(N ·K+N 2

+N ·n)
for Algorithm 2 to generate an offspring population.
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TABLE 1. Main parameters of the five comparison MOEAs.

For the environmental selection operator [20], the time
complexity of associating a solution to a reference vector is
O(N · m), where m is the number of objective. Then, asso-
ciating all the N solutions takes O(N 2

· m). It takes O(N ) to
select one solution for a sub-space, which results in O(N 2) to
update all the N sub-spaces. Therefore, the time complexity
of the environmental selection operator is O(N 2

·m+N 2) =
O(N 2

· m).
As shown in Algorithm 3, the time complexity of moving

the memory values in the N memory matrices is O(N · K ·
L) (lines 1-5, Algorithm 3). Then, it takes O(N ) to record
the new contributions of the N new solutions (lines 7-15,
Algorithm 3). Therefore, the time complexity of updating the
memory matrix for each sub-space is O(N · K · L).

III. EXPERIMENTAL STUDIES
In this section, to validate the performance of our pro-
posal, we compre it with five state-of-the-art MOEAs
on widely-used benchmarks in multi-objective opti-
mization community. The five comparison MOEAs are
FRRMAB [32], MOEA/D-M2M [20], IM-MOEA [44],
NSGA-III [42], MOEA/D-AM2M [39].

A. EXPERIMENT DESIGN
Benchmarks: 35 MOPs with complex Pareto sets from four
test suites, includingMOP1-MOP7 [20], BT1-BT9 [21], IF1-
IF10 [44], LF1-LF9 [19], are employed to compare the pro-
posal with the five peer algorithms. These MOPs challenge
theMOEAswith complex linkages among decision variables,
which make them harder than the other MOPs.

Stop condition: As is frequently done, the stop condition
in comparison experiments is set as maximal function evalu-
ations (MFE). The MFE for MOPs from test suites MOP [20]
and BT [21] are set as 4 × 105, and that for MOPs from test
suites IF [44] and LF [19] are set as 1× 105.
Population size: Referring to existing works [39], the set-

tings of population size N only consider the number of opti-
mization objectives. For the 2- and 3-objective MOP, we set
the population size as 200 and 300, respectively.

Comparison indicator: The indicators inverted genera-
tional distance (IGD) [45] and hypervolume (HV) [46] can
simultaneously measure both convergence and diversity of
the output population. They have been frequently employed
to examine the performance of MOEAs. Based on this,
we also employ these two indicators to compare the perfor-
mance of the proposed FGEA and the five peer MOEAs.

1) IGD: For an output population P, calculation formula of
indicator IGD is as follows:

IGD(P) =

∑
q∈P∗ minp∈PD(F(q),F(p))

|P∗|
, (8)

where P∗ denotes a set of uniformly distributed solutions on
the true PF, D(F(q),F(p)) represents the Euclidean distance
between objective vectors of the two solutions q and p. From
the definition of indicator IGD in (8), it can be derived that a
smaller IGD value of an output population means the corre-
spondingMOEAs having better performance in terms of both
convergence and diversity. In the experiments, the number
of solutions in the set P∗ is set to about 8000 for each
MOP.

2) HV: Suppose r = {r1, r2, . . . , rm} is a reference point.
For an output population P, the indicator HV corresponds to
the volume of space consisting of the objective vectors of all
the solutions in P and the reference point, which is defined as
follows.

HV (P) = L(
⋃
p∈P

[f1(p), r1]× · · · × [fm(p), rm]), (9)

where L(4) denotes the Lebesgue measure. For each MOP,
the reference point is set as 1.2 times of the nadir point of its
PF. From the definition of indicator HV in (9), a larger HV
value of an output populationmeans better performance of the
corresponding MOEA with respect to both the convergence
and diversity.

Evolutionary operator pool for FGEA: The simu-
lated binary crossover (SBC) [29] and differential evolution
(DE) [47] have distinct search patterns and have been widely
employed in multi-objective optimization. In the proposed
FGEA, the simulated binary crossover [29] and two clas-
sical variants of differential evolution (i.e., DE/rand/1 and
DE/rand/2) are choosed to construct evolutionary operator
pool.

The main parameters for the evolutionary operators are
set as follows. The simulated binary crossover employs a
distribution index as 20. For the DE/rand/1 and DE/rand/2,
the crossover constant and weighting factor are set as
CR = 1.0 and F = 0.5. Similar to the work [32], after
applying these evolutionary operators, each new generated
solution also performs the polynomialmutation operator [30].
For the polynomial mutation (PM) operator, we set η = 20
and pm = 1/n.
The main parameters of the five comparison MOEAs are

summarized in Table 1. For the DE operator, T represents the
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TABLE 2. In terms of IGD, comparison results of the six algorithms on various MOPs.

neighborhood size of reference vectors, δ corresponds to the
probability to choose parent solutions from T neighbors, and
nr denotes the maximal number of solutions can be replaced
by a new solution. For MOEA/D-M2M, IM-MOEA, and
MOEA/D-AM2M, K denotes the number of subpopulations,
and S represents the number of solutions in a subpopulation.
The symbol L in IM-MOEA denotes the model group size.
The parameter G in MOEA/D-AM2M means the number of
generations for adjusting subregions.

Unless otherwise specified, other parameters of MOPs
and peer algorithms use default values in the experimental
platform PlatEMO.1

1https://github.com/BIMK/PlatEMO

B. COMPARISON RESULTS AND ANALYSIS
For each MOP, the proposed FGEA and the five comparison
MOEAs run 30 times independently. For indicators IGD and
HV, we summarize their average values and standard devia-
tions in Tables 2 and 3, respectively.

To ensure statistical significance, the two-sidedWilcoxon’s
rank sum test with significance degree as 0.05 is conducted to
compare the results of the FGEA with each peer MOEA. The
marks +, −, and ≈ in Tables 2 and 3 respectively represent
that the peer MOEA performs better than, worse than, and
similar to the FGEA. Regarding each MOP, the best average
value among the six MOEAs is emphasized using the gray
background.

From the results with gray backgrounds in
Tables 2 and 3, we can notice that the proposed FGEA ranks
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TABLE 3. In terms of HV, comparison results of the six algorithms on various MOPs.

first in more than half of theMOPs. In terms of indicator IGD,
as shown in Table 2, the proposed FGEA significantly out-
performs all the five comparison algorithms (i.e., FRRMAB,
MOEA/D-M2M, IM-MOEA, NSGA-III, and MOEA/D-
AM2M) in 18 out of the 35 MOPs. Similarly, as shown
in Table 3, the proposed FGEA has better performance than
all the five comparison algorithms in 19 out of the 35 MOPs
with respect to the indicator HV. As summarized in the last
row of Table 2, among the 35 MOPs, the FGEA generates
significantly lower IGD values than FRRMAB, MOEA/D-
M2M, IM-MOEA, NSGA-III, and MOEA/D-AM2M on 24,
24, 28, 30, and 32 MOPs, respectively. As summarized in
the last row of Table 3, compared with the five compara-
tion algorithms, the algorithm FGEA as before has obvious

advantages in obtaining output populations with higher HV
values. To sum up, the proposed FGEA has competitive over-
all performance with respect to both IGD and HV indicators.

The excellent performance of the proposed FGEA is two-
fold. Firstly, the proposed FGEA employs the objective space
partition strategy to maintain population diversity. Although
the comparison algorithm FRRMAB also includes an ensem-
ble strategy to integrate multiple evolutionary operators, its
performance on the functions MOP1-MOP7 is far worse than
the proposed FGEA. As the analysis in the work [23] that
the populations of these functions are outwardly divergent,
except for the objective space partition strategy, it is difficult
for other strategies to maintain good diversity. Secondly,
the FGEA considers both local and global contributions
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FIGURE 3. Pareto front approximations of the six algorithms on MOP1.

of evolutionary operators when selecting evolutionary
operators for each subspace. The comparison algorithms
MOEA/D-M2M and MOEA/D-AM2M also employes an
objective space partition strategy, but their performance is
far behind the algorithm proposed in this article. The main
difference between the proposed FGEA and these two com-
parison algorithms is that the FGEA includes a fine-grained
ensemble strategy. By comparing the proposed FGEA and
these two comparison algorithms, we can contribute to
the advantages of the FGEA to its fine-grained ensemble
strategy.

Although both IGD and HV indicators can simultane-
ously measure the convergence and diversity of populations,
the comparison results in Tabele 2 and Tabele 3 are not always
consistent according to these two indicators. Taking MOP
BT5 as an example, algorithm NSGA-III ranks first based on
the indicator IGD, while the algorithm ranked first by HV is
our proposed FGEA. The reason lies in the way these two
indicators are calculated. The IGD is computed based on the
distance between output population and true PF, while the
HV is calculated using a predefined reference vector and the
non-dominated solutions in output populations.

It is easy to notice that in some MOPs, the HV values
of some algorithms are 0, for instance, the HV value of
algorithm MOEA/D-M2M in MOP BT1. This is because the
convergence of corresponding algorithm is not good enough,
and there is no solution in its output population dominating
the reference vector.

To visualize the convergence and diversity of the six algo-
rithms, i.e., FRRMAB,MOEA/D-M2M, IM-MOEA, NSGA-
III, MOEA/D-AM2M, and FGEA, their Pareto-front approx-
imations for MOP1 and MOP5 with the smallest IGD values
among 30 runs are given in Figs. 3 and 4. In these figures,
the PFs ofMOPs are represented by red curves. For a solution
in the output populations, its objective vector is denoted as a
blue circle.

As illustrated in Figs. 3(a), (d), and (e), the output popu-
lations of the FRRMAB, NSGA-III, and MOEA/D-AM2M
mainly concentrates near the two extreme solutions, and
cannot well approximate the Pareto-front of MOP1, showing
poor diversity. Compared with the above three algorithms,
the comparison algorithm IM-MOEA has relatively good
diversity, as shown in Fig. 3(c). But, many solutions dis-
tributed in the middle region are still far away from the
Pareto-front of MOP1, and the convergence of IM-MOEA
can be further improved. Among the five comparison algo-
rithms, the MOEA/D-M2M shows the best convergence and
diversity, as shown in Fig. 3(b). Compared the output pop-
ulations in Fig. 3(b) and Fig. 3(f), we can observe that the
proposed FGEA and MOEA/D-M2M have similar diversity,
but the FGEA has better convergence.

Fig. 4 depicts the distributions of output populations for
the six algorithms. It is obvious that the diversity of the
comparison algorithms FRRMAB, IM-MOEA, NSGA-III,
and MOEA/D-AM2M is very poor. Compared to the results
in Figs. 4(b) and (f), we can see that the proposed FGEA
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FIGURE 4. Pareto front approximations of the six algorithms on MOP5.

FIGURE 5. The decreasing trend of IGD metric of six algorithms in MOP1-MOP6.

is capable of acquiring a better approximation for the PF
of MOP1.

To further compare the behaviors of the six algorithms,
the downtrends of their IGD values in solving MOP1-
MOP6 are provided in Fig. 5. The horizontal axis represents

the number of iteration generations, and the vertical axis
represents the IGD values of the output populations from the
six algorithms. On each MOP, each algorithm run 31 times,
and the change of its average IGD values with the advance of
iterations is plotted.
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As can be observed from Fig. 5, as the optimization
progresses, the IGD values of the algorithms FRRMAB,
MOEA/D-M2M, IM-MOEA,NSGA-III, and FGEAdecrease
gradually. This is easy to understand. With the progress of
optimization search, the populations of these algorithms keep
approaching the Pareto-fronts, resulting in lower IGD val-
ues. For the comparison algorithm MOEA/D-AM2M, it has
an abnormal situation, first falling and then rising. This is
because the algorithm MOEA/D-AM2M adjusts the refer-
ence vector according to the obtained population. When the
obtained population can not well cover the Pareto-fronts,
the adjusted reference vector can not cover the Pareto-fronts,
resulting in poor diversity.

Comparing with the five comparison algorithms, the pro-
posed FGEA appears to contribute significantly to the out-
standing convergence speed. Especially before 1000 genera-
tions, the convergence speed of the FGEA has an overwhelm-
ing advantage. These comparison results visually demon-
strate that the fine-grained ensemble mechanism in FGEA is
capable of effectively improving the convergence speed.

IV. CONCLUSION AND FUTURE WORK
This article focuses on the properties of complex
multi-objective problems that vary throughout both the deci-
sion and objective spaces, and develops a fine-grained ensem-
ble approach to choose a suitable evolutionary operator
for a subspace during each generation. When choosing an
evolutionary operator for a subspace, we design an adaptive
strategy to consider both the local and global contributions
of the evolutionary operators. To assess the effectiveness of
the proposed ensemble approach, extensive experiments on
35 complex MOPs are carried out to compare the FGEA with
five baseline algorithms. The numeral experiments demon-
strate that the proposed FGEA performs the best overall
performance in terms of both convergence and diversity.

Applying the proposed fine-grained ensemble approach to
solving real-world MOPs coming from various fields, such
as internet of things [48]–[50] and collaborative robots [51],
worths future direction. Also, the MOPs from real-world
applications often have a large number of decision vari-
ables, terms as large-scale MOPs [52]–[56]. It is interesting
and challenging to research new techniques for large-scale
MOPs.
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