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ABSTRACT Recently, deep learning-based image compression has shown significant performance improve-
ment in terms of coding efficiency and subjective quality. However, there has been relatively less effort on
video compression based on deep neural networks. In this paper, we propose an end-to-end deep predictive
video compression network, called DeepPVCnet, using mode-selective uni- and bi-directional predictions
based on multi-frame hypothesis with a multi-scale structure and a temporal-context-adaptive entropy model.
Our DeepPVCnet jointly compresses motion information and residual data that are generated from the
multi-scale structure via the feature transformation layers. Recent deep learning-based video compression
methods were proposed in a limited compression environment using only P-frame or B-frame. Learned
from the lesson of the conventional video codecs, we firstly incorporate a mode-selective framework into
our DeepPVCnet with uni- and bi-directional predictive modes in a rate-distortion minimization sense. Also,
we propose a temporal-context-adaptive entropy model that utilizes the temporal context information of the
reference frames for the current frame coding. The autoregressive entropy models for CNN-based image
and video compression is difficult to compute with parallel processing. On the other hand, our temporal-
context-adaptive entropy model utilizes temporally coherent context from the reference frames, so that the
context information can be computed in parallel, which is computationally and architecturally advantageous.
Extensive experiments show that our DeepPVCnet outperforms AVC/H.264, HEVC/H.265 and state-of-the-

art methods in an MS-SSIM perspective.

INDEX TERMS AVC/H.264, deep learning, frame prediction, HEVC/H.265, and video compression.

I. INTRODUCTION

Conventional video codecs such as AVC/H.264 [45],
HEVC/H.265 [38] and VP9 [29] have shown significantly
improved coding efficiencies, especially by enhancing their
temporal prediction accuracies for the current frame to be
encoded using its adjacent frames. In particular, there are
three coding modes of frames used in video compression:
I-frame (intra-coded frame) mode that is compressed inde-
pendently from its adjacent frames; P-frame mode that is
compressed through the forward prediction using motion
information; and B-frame mode that is compressed with
bi-directional prediction for the current frame. P-frame cod-
ing is suitable for low latency in video compression. In
perceptive of coding efficiency, B-frame coding provides
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the highest coding efficiency compared to the I-frame and
P-frame coding. Therefore, the standard codecs [38], [45] use
both P-frame and B-frame coding methods for video coding.

Deep learning-based approaches have recently shown
significant performance improvement in image processing.
Especially, in the field of low-level computer vision, inten-
sive research has been made for deep learning-based image
super-resolution [12], [18], [20], [24] and frame interpola-
tion [15], [28], [30]-[32]. In addition, there are many recent
studies on image compression using deep learning [5], [6],
[16], [21], [23], [27], [35], [40]-[42] which often incor-
porate auto-encoder based end-to-end image compression
architectures by attempting to improve compression per-
formance. These works showed outperformed results of
coding efficiency compared to the traditional image com-
pression methods such as JPEG [43], JPEG2000 [37], and
BPG [7]. While the image compression tries to reduce only
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spatial redundancy around the neighboring pixels with lim-
ited coding efficiency, traditional video compression can
achieve significant compression performance because it can
take advantage of temporal redundancy among neighbor-
ing frames. Also, by exploiting the temporal redundancy,
deep learning-based video compression has been studied
in two main directions: First, some components (or coding
tools) in the conventional video codecs are replaced with
deep neural networks. For example, Park and Kim [33]
first tried to improve compression performance by replac-
ing the in-loop filters of HEVC with a CNN-based in-loop
filer. In [10], Cui et al. proposed intra-prediction method
with CNN in HEVC to improve compression performance.
In [51], Zhao et al. replaced the bi-prediction strategy in
HEVC with CNN to improve coding efficiency; Second,
there are studies to improve the compression performance by
using auto-encoder based end-to-end neural network archi-
tectures [4], [9], [11], [13], [25], [26], [36], [46], [47].
Although deep learning-based image compression has been
intensively studied, video compression has drawn less atten-
tion. In this paper, we propose an end-to-end deep predic-
tive video compression network, called DeepPVCnet, using
mode-selective uni- and bi-directional predictions based on
multi-frame hypothesis with a multi-scale structure and a
temporal-context-adaptive entropy model. The contributions
of our proposed DeepPVCnet are as follows:

o We first show a mode-selective framework with both
uni- and bi-directional predictive coding structures for
deep learning-based predictive video compression in the
rate-distortion minimization sense, thus achieving the
improved coding efficiency. The selected mode informa-
tion for frame prediction is transmitted to decoder sides
with a negligible amount of bits;

« We propose a temporal-context-adaptive entropy model
that utilizes temporally coherent context information
from the multiple reference frames to estimate the
parameters of Gaussian entropy models for the quan-
tized latent representation of the current frame. While
the autoregressive entropy models for CNN-based image
compression suffer from serialized processing, our
temporal-context-adaptive entropy model allows for
context computation in parallel;

o Our DeepPVCnet tries to jointly compresses motion and
residual information based on a multi-scale structure for
the current frame and its reference frames via learned
feature transformation in encoder sides. This structure
can effectively reduce the coupled redundancy of motion
and residual information;

« Contrary to the deep neural network-based state-of-the-
art (SOTA) methods [26], [46] that reply on a single ref-
erence frame for each prediction direction, our method
improves prediction accuracy for the current frame by
utilizing multiple frames for both uni- and bi-directional
prediction modes.

This paper is organized as follows: Section II introduces

the related work with deep neural network-based image/video
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compression, optical flow estimation and frame interpolation;
In Section III, we introduce the details of our proposed deep
video compression network, called DeepPVCnet; Section IV
presents the experimental results to show the effectiveness of
our DeepPVCnet compared to the conventional video codecs
and SOTA methods [4], [13], [25], [26], [46], [47]; Finally,
we conclude our work in Section V.

Il. RELATED WORK

Both conventional image compression (such as JPEG,
JPEG2000, and BPG) and video compression (AVC/H.264,
HEVC, and VP9) methods have shown high compression
performance. Recently, deep learning-based image and video
compression methods have been actively studied. The key
element that brings up high coding efficiency in video cod-
ing is temporal prediction to reduce temporal redundancy.
Therefore, we also review deep learning-based optical flow
estimation and frame interpolation networks that are essential
elements for predictive coding.

Deep Learning-Based Image Compression: Unlike con-
ventional image compression based on transform coding,
recent deep learning-based image compression methods
often adopt auto-encoder structures that perform nonlin-
ear transforms. First, there are several works on image
compression using Long Short Term Memory (LSTM)-based
auto-encoders [16], [41], [42] where a progressive coding
concept is used to encode the difference between the original
image and the reconstructed image. In addition, there are
studies on image compression using convolutional neural
network (CNN) based auto-encoder structures by modeling
the feature maps of the bottleneck layers for entropy cod-
ing [5], [6], [21], [23], [27], [35], [40]. In [6], Ballé et al.
introduced an input-adaptive entropy model that estimates
the scales of the latent representations depending on the
input. In [21], Lee et al. have proposed a context-adaptive
entropy model for image compression which uses two types
of contexts: bit-consuming context and bit-free context. Their
models in [6], [21] outperformed the conventional image
codecs such as BPG. Our DeepPVCnet also adopts such
an auto-encoder structure used in [6] as the baseline struc-
ture combined with our temporal-context-adaptive entropy
model.

Deep Learning-Based Video Compression: There are two
main directions of deep learning based video compres-
sion research: The first is to replace the existing compo-
nents of the conventional video codecs with deep neural
networks (DNN). For example, there are some works to
replace in-loop filters with deep neural networks [14], [17],
[33], [49], and post-processing to enhance the resulting
frames of the conventional video codecs [22], [48]. The
intra/inter predictive coding modules have also been sub-
stituted with DNN modules for video coding [10], [33];
And, the second direction includes CNN-based auto-encoder
structures without the coding tools of conventional video
codecs involved. In [26], Lu et al. proposed the first end-to-
end deep video compression network that jointly optimizes
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FIGURE 1. Overall architecture of our proposed DeepPVCnet. The notations of the parameters of the convolutional layers are denoted as: number of
filters x filter height x filter width / the up- or down-scale factor, where 1 and | denote the up- and down-scaling, respectively. s denotes bilinear
down-sampling factor for reference frames XR and current frame x,. The ‘Motion compensation’ process is performed by Eq. 2. AE and AD represent an
arithmetic encoder and an arithmetic decoder, respectively. Also, Q represents a quantizer for latent representations y,.

all the components for low-latency scenarios of video com-
pression. Then, Lin et al. in [25] extended it by utilizing
multiple reference frames for low-latency scenarios of video
compression. In [36], Rippel ef al. proposed a novel video
compression framework with propagation of the learned state
and ML-based spatial rate control. In [4], Agustsson et al.
proposed a low-latency video compression model based on
the scale-space flow for better handling disocclusions and
fast motion. However, the methods in [4], [25], [26], [36]
have been proposed for P-frame predictive coding which
only use previously encoded frames to predict the current
frame. In [46], Wu et al. proposed a ConvLSTM-based video
compression method to improve the coding efficiency. How-
ever, this method used conventional block motion estimation
and compression methods, which will degrade the coding
efficiency. In [9], Cheng et al. proposed a frame interpo-
lation network based deep video compression. Since this
work utilized a pre-trained frame interpolation network [32]
from two frames which are far from each other, the predic-
tion performance will be significantly reduced. The method
in [11] uses both an interpolation- and residual-based auto-
encoder for B-frame coding. It shows good performance in
high bit ranges, but not in low or mid bit ranges. In [47],
Yang et al. proposed a hierarchical learned video compression
method with the hierarchical quality layers and a recurrent
enhancement network. The method in [13] incorporates a
3D auto-encoder that does not use the P-frame and B-frame
coding concept. However, it requires lots of memory and
computational complexity. In contrast to the SOTA methods
using a single frame as reference for prediction, our method
utilizes multiple frames as reference to predict the current
frame. While these SOTA methods take either a P-frame or
a B-frame coding structure for video compression, in this
paper, we propose a mode-selective framework with uni-
and bi-directional prediction modes where the best mode is
selected in a rate-distortion optimization sense and is signaled
to the decoder side.

74

Deep Learning-Based Optical Flow Estimation and Frame
Interpolation: Optical flow estimation and frame interpola-
tion can be used for predictive video coding. There have been
many studies related to optical flow estimation using deep
neural networks. In [34], Ranjan et al. introduced SpyNet
that uses a spatial pyramid network and warps the second
image to the first image with the initial optical flow. Also,
the PWC-Net [39] was introduced with a learnable feature
pyramid structure that uses the estimated current optical flow
to warp the CNN feature maps of the second image. Their
model outperformed all previous optical flow methods. Since
they use the feature pyramid structures, the optical flow
estimation is robust to large motion over other deep neural
network-based optical flow methods. Therefore, we incor-
porate the pre-trained PWC-Net as an initial parameters of
the optical flow estimation network into our DeepPVCnet.
Recent CNN-based frame interpolation methods include con-
volution filtering-based [31], [32], phase-based [28], and
optical flow-based [15], [30] approaches. The convolution
filtering-based frame interpolation is based on the frame
prediction between adjacent frames through convolution fil-
tering operation without using optical flow. The phase-based
frame interpolation uses a CNN to reduce the reconstruction
loss in the phase domain rather than in the image domain.
Finally, the optical flow-based interpolation generates the
frames between two frames through a CNN after warp-
ing with optical flow between two frames. In this paper,
we adopt an optical flow-based prediction scheme [15] for
our DeepPVCnet.

llIl. PROPOSED METHOD

Our proposed DeepPVCnet for both uni- and bi-directional
predictive coding is illustrated in Fig. 1. As depicted in Fig. 1,
our DeepPVCnet uses the neighboring frames as refer-
ence frames to compress the current frame. The reference
frames, denoted as X%, for current frame x are composed of
{x_2,x_1} and {x_3, x_1, x1, X2} for uni- and bi-directional
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FIGURE 2. Compression performance comparison for a single reference frame and multiple reference frames. The bitrates of the
P-frame coding models are about 0.37 bpp and those of the B-frame coding models are about 0.59 bpp for HEVC Class B

dataset [38].

coding, respectively. For X® and x, the bilinear downsam-
pling with a scale index s is performed for multi-scale motion
estimation and compensation as follows:

XS = (Down(x, s) | x € X&)
xy = Down(xo, ) (1

where X®% and x;, denotes the down-scaled reference frames
and the down-scaled current frame with the scale index
s, respectively. Down(-, s) denotes a bilinear downsam-
pling process with a scale factor 2° (s = 0, 1,2 for our
experiments).

Each reference frame in X% is concatenated to Xy
for estimating the optical flow between these frames
using the fine-tuned PWC-Net [39]. The resulting opti-
cal flows F®5 are composed of {F(§_> 5 Fy_,_;} and
{Foo 0 Fos s Fo1» Fy_»} for uni- and bi-directional
coding, respectively. Then, the prediction frames P®* are
calculated by a backward warping function w(-, -) [15] with
XR-s and FR-5. The resulting prediction frames PXS are com-
posed of {py__». Py} and{py. 5. Py 12 Ph1s Pos}
for uni- and bi-directional coding, respectively. The residual
frames R®* can be expressed as follows:

R = 0§ = poci | Phey € P°) @)

where k denote an relative index of the reference frame for
the current frame xj. R®* are composed of {rj_ ,, 5. |}
and {15 5. 751 79> T)p) for uni- and bi-directional
coding, respectively.

The joint information of FR0 and RRO for scale O is
mapped to a latent representation yo through the encoder
network g, with five feature transformation (FT) layers. Simi-
larly, the joint information of %5 and RRS for scales s = 1, 2
are concatenated into the feature maps of the same sizes in the
encoder network g, as depicted in Fig. 1.

After the quantization step, we can obtain the quantized
latent representation yg. Then, the reconstructed optical flows
F R the reconstructed residual frame 7y and the synthesis
coefficients @; are estimated by the decoder network g; with
the entropy model of . The reconstructed frame X is given
by

Fo= ) & wx, Fosi) +Fo 3)

ieNR
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where the set, N®, of reference frame indices are com-
posed of {—2,—1} and {-2,—1,1,2} for uni- and
bi-directional predictive coding, respectively. FR consist
of {Fo—2,Fos—1}) and {Foo—2, Fos_1, Foms1, Foosa)
for uni- and bi-directional predictive coding, respectively.
Finally, the Enhancement Net outputs enhanced frame X
from Xp. The details of the proposed network are described
in Section IIL.A-IILE.

A. MULTIPLE REFERENCE FRAMES

In general, the conventional video codecs like AVC/H.264 and
HEVC/H.265 compress the current frame using multiple
reference frames for each prediction direction. The usage
of multiple reference frames allows to effectively deal with
occlusion problems, thus resulting in accurate prediction for
the current frame. In video compression, the quantization
errors are propagated as subsequent frames are compressed.
By using multiple reference frames, such a quantization error
propagation can be alleviated for the prediction of the current
frame, thus increasing the prediction accuracy and coding
efficiency. By compromising the complexity of incorporating
multiple reference frames, our DeepPVCnet utilizes two
reference frames for uni-directional predictive coding (P2 in
Fig. 2) and four reference frames for bi-directional predictive
coding (B4 in Fig. 2) where two for forward and the other
two for backward prediction, in contrast to the state-of-the-
art methods [9], [11], [26], [46] of deep learning-based video
compression. The effectiveness of using multiple reference
frames is shown in Fig. 2.

B. COMPRESSING JOINT INFORMATION WITH FEATURE
TRANSFORMATION (FT) LAYERS

We incorporate five feature transformation (FT) layers into
the encoder side of the CNN-based auto-encoder structure
g, that jointly compresses the multi-scale motion informa-
tion and residuals. To cope with various amounts of motion
for different video sequences, multi-scale motion estimation
and compensation are performed at the encoder side. Then,
the generated multi-scale motions and residuals are concate-
nated to the output feature maps of each convolution layer,
which are then fed as input into the following FT layer
of the encoder network. By doing so, the multi-scale joint
information of motions and residuals can be effectively fused
for better compression.
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FIGURE 4. GOP structure for our mode-selective framework with uni- and bi-directional predictions.

The recent methods [9], [11], [26], [46] in deep video
compression are designed to compress single-scale optical
flow and residual separately, but our proposed DeepPVCnet
jointly compresses multi-scale motion information and resid-
ual with compactization towards improving coding efficiency
under the assumption that the redundancy between motion
information and residual exists. Also, the FT layers alter
interim feature output by the learned transformation under
the guidance of multiple reference frames, which can help
reducing the coupled redundancy between the multi-scale
motion information and residual. The details of the FT layers
are depicted in Fig. 3-(a). As shown in Fig. 3-(a), the FT
layers serve to perform affine transform of each element of
the input feature map. The parameters of the affine transform
are learned with respect to the reference frames via two
convolutional layers.

C. TEMPORAL-CONTEXT-ADAPTIVE ENTROPY MODEL

We propose a temporal-context-adaptive entropy model for
the quantized latent representation yo. Our proposed entropy
model adopts the basic structure [6] with the hyperprior
Zo and the hyper encoder-decoder network pair (h,, k) as
shown in Fig. 1. The output feature map of the hyper
encoder-decoder network is the context information ¢, of
current frame xp. Since there exists a contextual similarity
between xo and XX, we propose a Context-Net to estimate
the mean u and standard deviation o of a Gaussian model for
vo as follows:

S0 ~ N(u, o?)
(u, o) = Context-Net(X%, ¢.) 4)

76

where our proposed Context-Net extracts the context infor-
mation c. of xy and the temporal context information ¢; of
XX Then, it concatenates ¢, and ¢; to obtain the u and o
as the same spatial size as y9. The Context-Net is illustrated
in Fig. 3-(b). As shown in Fig. 3-(b), ¢; is generated using the
reference frames via four convolutional layers. Then, © and
o are estimated for ¢; and c. via three convolutional layers.
More details of the entropy coding model are represented in
Appendix B.

D. MODE-SELECTIVE FRAMEWORK

The SOTA deep learning-based video compression meth-
ods [4], [9], [11], [25], [26], [36], [46] tend to have a limita-
tion that only compresses all of the frames in either a P-frame
or a B-frame coding structure. Fig. 4 depicts a GOP (Group
of Pictures) structure for our mode-selective framework with
uni- or bi-directional predictions in a similar way as tradi-
tional video codecs. In our mode-selective framework, each
frame can be encoded with an intra-mode, a uni-directional
prediction mode or a bi-directional prediction mode. The
uni-directional prediction mode has two sub-modes: M,J:m. for
forward prediction and M fni for backward prediction, and the
bi-directional prediction mode is denoted as Mj,;. For the GOP
structure in Fig. 4, I and I3 are encoded as the intra-mode
using a pre-trained image compression network [21] while all
other frames between I; and /13 are encoded in either Mim-,
Mfm. or Mp;. It should be noted in Fig. 4 that the frame I is
encoded by referencing I; which is encoded a priori. Next, I
is compressed, followed by I1¢. Depending on the availability
of neighboring encoded frames, one or two encoded frames
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TABLE 1. Coding order and reference frames of our method in a test
phase.

Frame index Reference frames  Reference frames

1/P/B

(Coding order) (previous) (future)
1 1 - -
13 1 - -
4 P 1 -
7 P/B 1,4 13
10 P/B 4,7 13
2 P/B 1 4,7
3 P/B 1 4,7
5 P/B 1,4 7,10
6 P/B 1,4 7,10
8 P/B 4,7 10, 13
9 P/B 4,7 10, 13
11 P/B 7,10 13
12 P/B 7,10 13

are referenced to encoded each frame between /1 and I3
as shown in Fig. 4. I3 and Ig may use the same reference
frames as I and Is, respectively. I and Iy have the same
referencing structures as /¢ and I5, respectively. Also, I
and /1> have the same referencing structures as /3 and Iy,
respectively. The details of the coding order and the selection
rule of the reference frame for our proposed method in a
test phase are represented in Table 1. Note that for frames
in which the reference frames are not multiple, duplicated
reference frames are utilized as the inputs of deepPVCnet in
our experiment.

The selected mode information is sent to the decoder sides
as two-bit data which is a negligible bit amount. Based on
this mode-selective framework, we train each deepPVCnet
for M’ and My,; where the DeepPVCnet trained for M s

uni uni

b .
also used for M, . by changing the reference frame order. The

mode selection can be determined by:

Rn,p + Am

m= arg min
me{M!  MP . My

uni>" uni’

~ 2
=l ©®

where R, ,, and i,,, n denote the bitrate and the reconstructed
frame of 1,, with mode m, respectively.

E. ENHANCEMENT NET

To further improve the qualities of the reconstructed frames,
the Enhancement Net shown in Fig. 1 is incorporated into
the decoder side of our DeepPVCnet to enable the role of
an in-loop filter as in the traditional video codecs. We utilize
the residual dense network (RDN) [50] which consists of five
residual dense blocks (RDB) with three convolution filters
per each block for our Enhancement Net which is described
in details in Appendix C.

IV. EXPERIMENTS

A. EXPERIMENTAL CONDITIONS

To show the effectiveness of our DeepPVCnet, extensive
experiments are carried out to measure the performance of
coding efficiency, and our method is compared with other
video coding methods. For intra coding, we used a pre-trained
CNN-based image compression model in [21]. For uni- and
bi-directional predictive coding, we train our DeepPVCnet
models for different bitrate ranges and test the trained models
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for each bitrate range. Note that we set the GOP size G to
12 for all experiments.

Datasets: We train the DeepPVCnet with the UGC
dataset [1]. For pre-processing, we excluded HDR, vertical
video, interlaced video and the video that are smaller than
720p from the UGC dataset. The number of frames used for
training is about 466K. For evaluation, we test the DeepPVC-
net on the raw video datasets such as Ultra Video Group
(UVG) [2] and the HEVC Standard Test Sequences (Class
B, C, D and E) [38]. The UVG dataset contains seven videos
of size 1920 x 1080. The videos in the HEVC dataset have
different sizes depending on their class types.

Implementation: The proposed DeepPVCnet is trained
in an end-to-end manner, based on the rate-distortion loss
L as:

L = E[—10g; psy 150, x8FolZ0, xRy
—log, ps,(Zo) + A - d(x0, %0)]  (6)

where A controls the trade-off between rate and distortion
terms, and d is the distortion measure, e.g. (1 - MS-SSIM).
In Eq. 6, the first term indicates the conditional entropies
of o given Zo and X, and the second term is the entropy
of Zg. For several bitrate ranges, we train the DeepPVCnet
separately for different values of A where the number of
channels of the convolution filters is N except the convolution
layer that has M filters to output the latent representation.
We set N = 128 and M = 256 for three lower bitrates
and N = 192 and M = 384 for two higher bitrates. Our
DeepPVCnet is trained from scratch with the fixed PWC-
Net [39] for 1M iterations using ADAM [19] with the initial
learning rate 0.0001. Then, we fine-tune the PWC-Net with
other components of our DeepPVCnet for additional 0.5M
iterations. In addition, we used a batch size of 8 and a patch of
256 x 256 randomly cropped from the 466K training frames
extracted from the UGC video dataset.

Evaluation: We measure both distortions and bitrates
simultaneously. The multi-scale structural similarity index
(MS-SSIM) [44] for an RGB color space, which is known
to as a better metric for subjective image quality than PSNR,
are used to measure the distortions in our experiments. We use
bits per pixel (bpp) to measure the bitrates.

B. EXPERIMENTAL RESULTS

The DeepPVCnet is compared with the conventional video
codecs such as AVC/H.264 and HEVC/H.265, as well as three
deep learning-based video compression methods in [4], [13],
[25], [26], [46], [47]. For fair comparison, the GOP size of
the conventional video codecs is fixed to 12. We used the
[ffmpeg coding tool [38] and x265 [3] for H.264 and H.265,
respectively. We use several settings of the conventional
video codecs where the details of settings are described in
details in Appendix A. Fig. 5 shows the rate-distortion (R-D)
curves produced by our DeepPVCnet, H.264 and H.265, Wu’s
method [46], DVC [26], Habibian’s method [13], M-LVC
[25], Yang’s method [47] and Agustsson’s method [4] for
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FIGURE 5. MS-SSIM performance comparison of our DeepPVCnet, H.264 [45], H.265 [38], and CNN-based SOTA methods [4], [13], [25], [26], [46], [47] for

the UVG dataset, HEVC Class B and E dataset.

TABLE 2. Bjentegaard Delta bitrate (BD-rate) values with the anchor of
H.264 (P_veryfast) with respect to MS-SSIM. Bold values indicate the best
results.

Dataset | Sequence name (B_I;In.zgitm) (B_I;Iﬁezgisum) Ours
Beauty -28.11% -5.52% -68.77 %
Bosphorus -30.35% -53.53% -69.82 %
HoneyBee -31.38% -54.31% -87.68 %
UvG Jockey -24.57% -47.65% -19.41%
ReadySetGo -28.30% -42.37% 2.08%
ShakeNDry 2321% -32.06% -77.36%
YachtRide -25.78% -39.14% -59.07%
Average -25.57% -40.60% -57.12%
BasketballDrive -30.41% -48.50% -61.32%
BQTerrace -28.83% -40.42% -37.01%
HEVC Cactus -26.76% -37.68% -75.56%
Class B Kimono -28.88% -42.34% -71.65%
ParkScene -34.70% -45.66% -64.84%
Average -29.82% -42.30% -63.19%
vidyol -20.12% -46.88% -77.44%
HEVC vidyo3 -26.27% -39.06% -68.40%
Class E vidyo4 -17.91% -39.93% -47.91%
Average -21.36% -41.87% -64.98 %

the UVG and HEVC datasets (Class B and E). It can be
seen in Fig. 5 that our DeepPVCnet outperforms all the
methods over most of the bitrate ranges while other SOTA
methods in [13], [25], [26], [46], [47] show the limited results
at only low bitrate ranges. In particular, our method shows
significantly better compression performance than the other
methods for the medium or high bitrate range. More exper-
imental results for the HEVC datasets (Class C and D) and
analysis are provided in Appendix D.

Table 2 compares the compression performances of H.264,
H.265 and our DeepPVCnet for all test video sequences.
In Table 2, we provide the Bjgntegaard Delta bitrate (BD-
rate) [8] of the H.264 (B_medium), the H.265 (B_medium)
and our DeepPVCnet with the anchor of H.264 (P_veryfast).
We calculate the BD-rate values by MS-SSIM where smaller
negative values mean that the method uses fewer bits than
the anchor. As shown in Table 2, our DeepPVCnet utilizes
smaller sizes than H.264 and H.265 to compress the UVG
dataset, HEVC Class B and E in average.
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C. ABLATION STUDY

For our DeepPVChnet, ablation study is performed for some
key components: the multi-scale motion estimation and
compensation, the fine-tuned PWC-Net, the multiple refer-
ence frames, the temporal-context-adaptive entropy model
using the multi-frame hypothesis, mode-selective frame-
work, FT layers and Enhancement Net. In order to demon-
strate the contribution of each component, we performed the
experiments by excluding the key components one by one
from the entire structure of the DeepPVCnet. Fig. 7 repre-
sents the resulting MS-SSIM performances of the ablation
study.

Multi-Scale

Motion Estimation and Compensation: In order to effec-
tively cope with various motions of different video sequences,
we perform motion estimation and compensation based on
a multi-scale structure. As can be seen in Fig 7, the multi-
scale motion estimation compensation improves the coding
gain compared to the single-scale case.

Fine-Tuned

PWC-Net: In [39], the pre-trained PWC-Net has been
trained to obtain only high accuracy of optical flows
between frames. However, for the video compression prob-
lem, the motion estimation network must be trained not only
to increase the accuracy of motion estimation, but also to
compress the generated motion with high coding efficiency.
Therefore, we fine-tuned the PWC-Net to be optimized for
video compression in the rate-distortion optimization sense.
As shown in Fig. 7, our DeepPVCnet with the fine-tuned
PWC-Net outperforms that with the pre-trained PWC-Net for
the whole bitrate range.

Multiple Reference Frames: As shown in Figs. 2 and 7,
the multiple reference frames contribute to gain high coding
efficiency. This gain is achieved thanks to effectively dealing
with object occlusions, thus reducing the propagation error.
In particular, the multi-frame hypothesis shows better perfor-
mance in the high bitrate range because our DeepPVCnet can
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FIGURE 6. Visualization of intermediate feature maps and intermediate outputs of our DeepPVCnet with a B-frame predictive
model for Beauty sequences of UVG dataset.

TABLE 3. The numbers of parameters for each component of our DeepPVCnet.

(gas gs) | (ha, hs) | Context-Net | FT layers | Enh. Net | PWC-Net [39] Total
Low | 3.4M 3.0M 4.6M 0.12M 0.29M 14.1M 255M
High 7.7M 6.8M 10.4M 0.27M 0.29M 14.1M 39.6M
Ablation Study In addition, the proposed entropy model has a struc-
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FIGURE 7. Ablation study on the effectiveness of (a) the multi-scale
motion estimation and compensation, (b) fine-tuned PWC-Net,

(c) multiple reference frames, (d) a mode-selective framework, (e) feature
transformation layers, (f) a temporal context-adaptive entropy model, and
(g) an Enhancement Net for HEVC Class B dataset. We have the
experiments of excluding these components one by one in a row from the
DeepPVCnet.

fully utilize neighboring information from multiple reference
frames in removing temporal redundancy.
Mode-Selective

Framework: It improves the coding gain especially for low
and mid bitrate range as depicted in Fig. 7. Poor prediction
in a low bitrate range can be compensated by selectively
performing the prediction based on the best prediction mode
with our proposed mode-selective framework by Eq. 5. As
shown in Fig. 7, our proposed mode-selective framework is a
key component to gain high coding efficiency along with the
multiple reference frames.

Temporal-Context-Adaptive Entropy Model: As shown
in Fig. 7, our DeepPVCnet with the temporal-context-
adaptive entropy model achieved coding effiency improve-
ment by reducing the redundancy of the latent representation

with the temporal context information of the reference frames.
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tural advantage that it can be computed in parallel in
contrast to the autoregressive-based video compression
methods [11], [13].

Other Components: The FT layers and an the Enhancement
Net have a few parameters compared to those of the entire
network. Nevertheless, a slightly improved coding gain has
been achieved. In particular, the FT layers allow the encoder
to compress joint information effectively.

D. COMPUTATIONAL COMPLEXITY

As shown in Table 3, the total numbers of parameters of
our DeepPVCnet are about 25.5M and 39.6M for low and
high bitrate models, respectively. For testing, the runtime
of our DeepPVCnet was measured in a platform with Intel
19-9900X CPU, 128GB RAM and a single Titan™ RTX
GPU. For sequences of sizes 416 x 240, 832 x 480, 1280x 720
and 1920 x 1080, the encoding and decoding speeds of
our DeepPVCnet are (5.9 fps, 44.2fps), (3.9 fps, 15.0fps),
(2.2 fps, 6.7fps) and (1.1 fps, 3.2fps), respectively. Especially,
the decoding speed is considerably faster than other autore-
gressive based entropy coding model methods [11], [13]. This
is because parallel processing is not possible on the decoder
side for these methods [11], [13].

E. VISUAL COMPARISONS
In this section, we visualize the interim results by our Deep-
PVCnet. Then, we visualize the pre-trained and fine-tuned
optical flows by PWC-Net. Also, some reconstructed frames
by the H.264, H.265 and our DeepPVCnet are presented for
subjective comparison.

Visualization of Feature Maps and Reconstructed Frames:
Fig. 6 visualizes the optical flow maps, the output residual
frame, a reconstructed frame and an enhanced frame for an
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FIGURE 8. Visual comparison of optical flows from a pre-trained PWC-Net and a fine-tuned PWC-Net. The pre-trained
PWC-Net generates a lot of smooth area of optical flows because it is trained to only accurately obtain motion between
frames, not the direction in which the frame is compressed well. However, since the fine-tuned PWC-Net is trained in the
direction in which the frame is well compressed, it also generates the optical flows with the texture area.

Ground truth H.265 (0.002 bpp)

H.264 (0.003 bpp) Ours (0.002 bpp)

Ground truth H.265 (0.048 bpp)

H.264 (0.040 bpp) Ours (0.051 bpp)

FIGURE 9. Visual comparison on the compression results for cropped frames of a HoneyBee sequence (left) obtained by H.264
(0.003 bpp), H.265 (0.002 bpp) and our method (0.002 bpp) and cropped frames of a YachtRide sequence (right) obtained by H.264
(0.040 bpp), H.265 (0.048 bpp) and our method (0.051 bpp). (Best viewed in screen).

input frame of a Beauty sequence obtained via the pipeline of
our DeepPVCnet. The optical flow Fp_, _» in Fig. 6 is an input
to the encoder network of the DeepPV Cnet, which is obtained
from the PWC-Net. Fo_, _ is the output optical flow of the

80

decoder network, which is used to synthesize the current
input frame for reconstruction. The output residual frame 7
is the difference between the output Xy and the blended output
(Xo — 7o in Eq. 3) of warped frames, as shown in Fig. 1.
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Ground truth H.265 (0.007 bpp) Ground truth H.265 (0.038 bpp)

H.264 (0.006 bpp) Ours (0.007 bpp) H.264 (0.034 bpp) Ours (0.033 bpp)

FIGURE 10. Visual comparison on the compression results for cropped BQTerrace sequences (left) obtained by H.264 (0.006 bpp), H.265
(0.007 bpp) and our method (0.007 bpp) and cropped Cactus sequences (right) obtained by H.264 (0.034 bpp), H.265 (0.038 bpp) and our
method (0.033 bpp). (Best viewed in screen).

Ground truth H.265 (0.015 bpp) Ground truth H.265 (0.077 bpp)

H.264 (0.016 bpp) Ours (0.014 bpp) H.264 (0.078 bpp) Ours (0.079 bpp)

FIGURE 11. Visual comparison on the compression results for cropped frames of a Bosphorus sequence (left) obtained by H.264
(0.016 bpp), H.265 (0.015 bpp) and our method (0.014 bpp) and cropped frames of a Kimono sequence (right) obtained by H.264
(0.078 bpp), H.265 (0.077 bpp) and our method (0.079 bpp). (Best viewed in screen).

It is noted in Fig. 6 that the optical flows Fo_. > and it possible to reconstruct the areas that are difficult to

Fos 5 look significantly different because Foos» are gen- recover by optical flows only. Finally, the enhanced frame
erated to improve compression efficiency. Then, Foos 2 Xo is generated from the reconstructed frame Xy by the
includes more texture parts than Fp_._». Also, the out- Enhancement Net, which is visually much closer to the input
put residual frame 7y contains texture parts, which makes frame xp.
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Visualization of Pre-Trained and Fine-Tuned Optical
Flows: Fig. 8 presents visual comparison of motion
information for the pre-trained PWC-Net and the
fine-tuned PWC-Net. As shown in Fig. 8, the motion infor-
mation from the pre-trained PWC-Net contains large-sized
fields of smooth motion since the pre-trained PWC-Net
does not consider compression efficiency, only focusing
on motion information between frames. Also, the pre-
trained PWC-Net is trained with a smooth motion con-
straint. However, the motion information from the fine-tuned
PWC-Net contains both smooth and textured motion fields
since it extracts motion information in a rate-distortion
sense. Therefore, the optical flow with the texture parts
that are generated by the fine-tuned PWC-Net is more
suitable for video compression than the optical flow with
the smooth parts that are generated by the pre-trained
PWC-Net.

Subjective Visual Comparisons: Fig. 9 shows some
cropped regions of decoded frames of HoneyBee and
YachtRide sequences by H.264, H.265 and our method for
visual comparisons. Our method yields decoded frames with
higher contrast and less artifact than H.264 and H.265. The
decoded results by H.264 and H.265 show that the wing
and leg of the honey bee are poorly reconstructed, but our
DeepPVCnet reconstructs those with a higher contrast and
less artifacts. Also, similar results in a low bitrate range
are observed for BQTerrace and Cactus sequences as shown
in Fig. 10. Similarly, Fig. 11 shows some cropped regions
of decoded frames of Bosphorus and Kimono sequences
by H.264, H.265 and our method for visual comparisons.
As shown in Fig. 11, while the H.264 and H.265 produce the
the decoded regions with blocking artifacts in a low bitrate
range, our method yields the decoded region of higher fidelity
without such artifacts.

V. CONCLUSION

We propose an end-to-end deep predictive video compression
network, called DeepPVCnet, based on multi-frame hypoth-
esis with a multi-scale structure and a temporal-context-
adaptive entropy model. Our DeepPVCnet incorporates a
mode-selective framework with uni- and bi-directional pre-
dictive codings in a rate-distortion optimization sense by
jointly compressing optical flows and residual data that are
generated from the multi-scale structure via the FT layers
in an encoder side. In addition, our DeepPVCnet with the
temporal-context-adaptive entropy model has a much faster
decoding speed because it can be performed in parallel
unlike the recent video compression methods [11], [13] using
the autoregressive-based entropy coding model. Based on
these advanced components in a combination, the DeepPVC-
net shows better compression performance than the exist-
ing video standard compression codecs (AVC/H.264 and
HEVC/H.265) and recent SOTA methods in terms of MS-
SSIM. In our future work, our DeepPVCnet is extended to
learn a fully automatic selection of the best prediction modes
during training.
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APPENDIX A

THE COMMANDS OF CONVENTIONAL VIDEO CODECS
For the implementation of H.264 [45] and H.265 [38] with

several options, we used ffmpeg and x265 [3] to compress the

sequences, respectively, as follows:
o P_veryfast (P-frame with veryfast)

> ffmpeg -s:v HxW —-framerate FR
-1 input.yuv -vcodec 1ibx264 -crf QP
-bf 0 -b_strategy 0 —-sc_threshold 0
—-preset veryfast —-tune zerolatency
-g G -keyint_min G -pix_fmt yuv420p
output .mp4

> x265 —--profile main --level 5
-p veryfast —--tune zerolatency
—-—crf QP —--keyint G —--min-keyint G
——input-res HxW —-—-fps FR
——input input.yuv -o output.mp4

o P_medium (P-frame with medium)

> ffmpeg —-s:v HxW —-framerate FR
-1 input.yuv -vcodec 1ibx264 -crf QP
-bf 0 -b_strategy 0 -sc_threshold 0
—-preset medium -g G -keyint_min G
—pix_fmt yuv420p output.mp4d

> x265 —-profile main --level 5
-p medium --bframes 0 —--crf QP
——keyint G —--min-keyint G
——input-res HxW —-—-fps FR
——input input.yuv -o output.mp4

o B_veryfast (B-frame with veryfast)

> ffmpeg —-s:v HxW —-framerate FR
-1 input.yuv -vcodec 1ibx264 -crf QP
—-preset veryfast -g G -keyint_min G
-pix_fmt yuv420p output.mp4

> x265 ——profile main —--level 5
-p veryfast —--crf QP —--keyint G
—-min-keyint G —--input-res HxW
—-—fps FR ——-input input.yuv
—0 output.mp4

o B_medium (B-frame with medium, default)

> ffmpeg -s:v HxW —-framerate FR
-1 input.yuv -vcodec 1ibx264 -crf QP
-preset medium -g G -keyint_min G
-pix_fmt yuv420p output.mpéd

> x265 ——-profile main —--level 5
-p medium --crf QP —--keyint G
—--min-keyint G —--input-res HxW

—-—fps FR ——-input input.yuv
-0 output.mp4

e SSIM (B-frame with medium, ssim)

> ffmpeg —-s:v HxW —-framerate FR
—-i input.yuv -vcodec libx264 -crf QP
-preset medium -tune ssim -g G
—keyint_min G -pix_fmt yuv420p
output .mp4

VOLUME 9, 2021



W. Park, M. Kim: Deep Predictive Video Compression Using Mode-Selective Uni- and Bi-Directional Predictions

IEEE Access

=

conv 32x1x1
conv 32x3

Concat
N2
conv 32x1x1

conv 32x1x1
conv 3x1x1

conv 32x3x3

FIGURE 12. The Enhancement Net for our DeepPVCnet.
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FIGURE 13. MS-SSIM performance comparison of our DeepPVCnet, H.264 [45] and H.265 [38], and DVC [26] for the HEVC Class C

and D dataset.

> x265 ——-profile main —--level 5
-p medium --tune ssim —--crf QP
—-—keyint G —--min-keyint G
——input-res HxW --fps FR
——input input.yuv -o output.mp4

where (H, W), FR, QP and G denote the spatial resolutions,
the framerate, the quantization parameter and the GOP size,
respectively.

APPENDIX B

THE IMPLEMENTATION OF OUR PROPOSED ENTROPY
CODING MODEL

For more details of the implementation of our proposed
entropy coding model, we follow the same concept and nota-
tions in the CNN-based image compression methods [6],
[21]. In the main paper, we provided the training loss L as the
rate-distortion optimization problem for video compression.
Since the quantization of the latent representation is discrete,
we substitute additive uniform noise for the quantization
process during training. Then the approximated latent repre-
sentations yo and zo are used instead of the quantized latent
representations yo and Zo, respectively, in the training loss L
as follows:

L~ Exy~p, By 20~q[— 1082 P51 zo.x8) (01 (20, X%y

—log, pz,(Z0) + A - d(x0, X0)],  (7)

where xg, X0 and X® denote the current frame to be encoded,
the reconstructed frame and the reference frames for xg,
respectively. The joint factorized posterior with the additive
uniform noise for the quantization process as in [6], [21] can
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be expressed as follows:

4o, Zolx0, bg. dn) = [ [UG0.il50. — 3,50 + 3)
i
'HU(ZOJIZO,[ — 5 Z0i+3)
i

with y = g4(x0; @g), 2 = ha(yo; dn),
(®)

where U, ¢, and ¢, denote a uniform distribution, the param-
eters of g, and h,, respectively. Our proposed entropy cod-
ing model approximates the required bits for yo and Zg as
in Eq. 7. The entropy coding model for y¢ is based on
Gaussian model with mean u; and standard deviation o;.
Our proposed Context-Net C and the hyper encoder-decoder
network pair (h,, hs) with the multiple reference frames X R
estimate the values of i; and o;. The Context-Net C generates
the temporal context information c; from X® and the hyper
encoder-decoder network generates the context information
cc from yp. Then the Context-Net concatenates c¢; and c,
to estimate the values of w; and o;. The expression for this
process is as follows:

P50tz FolZo, X&, 6c, 64)
= [ [WN(wi. o) xU(=%. 3)Go.0)
i
with w;, 03 = C(X®, ¢.; 6,),
cc = hy(Zo; On),

C))

where 6, and 6), denote the parameters of the Context-Net C
and the hyper decoder network hg. Note that our proposed
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entropy coding model can estimate mu and sigma in parallel
during decoding process since the entropy coding model
with the multiple reference frames is not autoregressive. We
utilized the same entropy coding model for zo which follows
a zero-mean Gaussian model with standard deviation o as
in [6]. Since Zo has little effect on the total bit-rate of the
current frame coding, we use a simpler entropy coding model
for zg than the entropy coding model of 3o as follows:

PzGo) = [ [W(0. 0Py * U= INGo).  (10)

APPENDIX C

THE ARCHITECTURE OF ENHANCEMENT NET

In the main paper, we described the overall structure of
our DeepPVCnet that consists of an encoder-decoder net-
work pair (g4, gs) with the feature transformation layer,
a hyper encoder-decoder network pair (A, k), the pre-trained
PWC-Net [39], a Context-Net and an Enhancement Net.
The Enhancement Net is incorporated into the decoder side
of our DeepPVCnet to enhance the image quality of the
reconstructed frame Xo. Fig. 12 shows the details of the
Enhancement Net that consists of the residual dense net-
work (RDN) [50]. As depicted in Fig. 12, the Enhancement
Net consists of five residual dense blocks (RDB) with three
convolution filters per each block.

APPENDIX D

THE EXPERIMENTAL RESULTS FOR HEVC CLASS C AND D
IN MS-SSIM

In the main paper, we showed the results of the rate-distortion
(R-D) curves for our DeepPVCnet, H.264, H.265, Wu’s
method [46], DVC [26] and Habibian’s method [13] with the
UVG [2] and HEVC datasets [38] (Class B and E) that are
consist of high-resolution sequences. Additionally, Fig. 13
shows the results of the R-D curves in terms of MS-SSIM for
the HEVC datasets (Class C and D) that are low-resolution
sequences. Our DeepPVCnet outperforms H.264, H.265 and
DVC for most bitrate ranges in terms of MS-SSIM. Note that
the experimental results for the HEVC datasets are provided
only by DVC [26] among the recent deep video compression
methods.
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