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ABSTRACT Medical segmentation is an important but challenging task with applications in standardized
report generation, remote medicine and reducing medical exam costs by assisting experts. In this paper,
we exploit time sequence information using a novel spatio-temporal recurrent deep learning network to
automatically segment the thyroid gland in ultrasound cineclips. We train a DeepLabv3+ based convolu-
tional LSTM model in four stages to perform semantic segmentation by exploiting spatial context from
ultrasound cineclips. The backbone DeepLabv3+ model is replicated six times and the output layers are
replaced with convolutional LSTM layers in an atrous spatial pyramid pooling configuration. Our proposed
model achieves mean intersection over union scores of 0.427 for cysts, 0.533 for nodules and 0.739 for
thyroid. We demonstrate the potential application of convolutional LSTM models for thyroid ultrasound
segmentation.

INDEX TERMS Deep learning, semantic segmentation, thyroid nodule, thyroid volume, ultrasound,
recurrent neural networks.

I. INTRODUCTION
The incidence of thyroid cancer has been growing across
the world for the last 30 years. Incidence rates vary from
country to country with an average rate of 9.3 cases per
100,000 in women and 3.1 cases per 100,000 in men [1].
The increase in incidence is attributed to increased access to
healthcare [2]. The United States Preventative Services Task
Force states the risks of screening asymptomatic adults likely
outweighs potential benefits and recommends more conser-
vative strategies including monitoring [1]. Risks associated
with thyroidectomy include hypoparathyroidism, infection,
and permanent hoarseness or weakness of the voice due to
nerve damage [3]. Ultrasonography is the most commonly
used diagnostic tool for thyroid cancer as it is inexpensive,
non-invasive, portable and widely available [4]. A typical
ultrasound thyroid exam involves the creation of a cineclip,
a video recording of a full sweep of the ultrasound transducer
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on each side of the neck viewing the transverse plane of the
thyroid. Any lesions detected in the cineclip will be noted,
mapped, imaged in different planes and scored. Ultrasonic
features of nodules and cysts are quantified to arrive at a
numerical estimation of malignancy known as the Thyroid
Imaging Reporting and Data system (TI-RADS) [5]. The
TI-RADS score helps the physician decide whether to moni-
tor the lesions or to pursue a biopsy. Sonographic features that
are suggestive for malignancy include hypoechoic nodules,
solid nodules without cystic components, nodules that are
taller than wide, irregular margins and presence of calcifi-
cations. Sonographic features suggesting a benign pathology
include the presence of peripheral vascularity, a round shape,
hyper- or iso- echogenicity, spongiform appearance, smooth
margins and cystic composition [6]. Estimating scores asso-
ciated with these features can be subjective and operator
dependent. Approximately, 24% of fine needle aspiration
(FNA) biopsies of thyroid nodules are indeterminate or non-
diagnostic [7]. Following an inconclusive biopsy, a surgical
biopsy involving a partial or total thyroidectomy may be
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recommended. Thus, accurately and consistently measuring
the size, volume, and shape of nodules plays a crucial role in
optimally recommending treatment.

This paper is organized as follows. Section II introduces
several deep learning approaches to 3D datasets. Section III
provides an overview of creation of the proposed model;
including dataset, model architecture and training details.
Section IV discuses model results and finally, Section V
provides the conclusion.

II. BACKGROUND
Video segmentation is a relatively new area of interest in
deep learning due to the limitations of high quality labeled
video datasets and of memory that compound when moving
from static images to video. Early deep learning approaches
for handling video data included using top performing
2D models on individual frames. Clocknet proposes a 2D
convolutional model adapted for video segmentation by
scheduled processing of layers to account for temporal con-
sistency across frames [8]. Models like 3D-Unet and Vnet
extend 2D models by replacing 2D convolutional layers with
3D convolutions and depending on the data, treat the time
component as a spatial dimension [9]–[15]. Fully 3D mod-
els typically must decrease the input size or total number
of filters relative to 2D models to conserve memory. The
novel MaskTrack model inputs predictions from the previous
frame as an input alongside the current frame to incorpo-
rate spatio-temporal information [16]. There are also 2D-3D
hybrid approaches that use group convolutions to combine
multiple frames before feeding the result into a 2D model.
From those, the 2D convolutions PedNet [17] approach feeds
multiple frames into multiple inputs before merging into a
conventional 2D model. Another 2D-3D hybrid is Mnet [18],
which is a 2D model with a 3D input operating over adjacent
frames. Other hybrid approaches like NetWarp combine opti-
cal flow analysis with deep learning.When applied tomedical
segmentation 3D volumetric approaches have been popu-
lar [10]–[15]. There has been development in models imple-
menting recurrent memory units that had initially been used
in natural language applications. The STFCN model adapts
the recurrent memory units used in natural language appli-
cations by manually defining tens of recurrent units, each
operating over a small window of backbone model feature
maps. More recent recurrent convolutional neural network
(CNN), RCNN models take advantage of the development of
convolutional long short-term memory (LSTM) layers which
replace dozens of LSTM layers with a single LSTM unit
applied in a convolutional fashion. FCN-LSTMnet adapts
a Unet model by applying two convolutional LSTM to the
featuremaps of 28 sequential images [19]. The STGRFmodel
uses two groups of backbone models; one group passes infor-
mation forward over past frames and the second group passes
information backwards over future frames before combining
intermediate outputs to produce a prediction for the current
frame [20]. The BD-LSTM model performs action recogni-
tion by examining every sixth frame and using two layers of

convolutional LSTM layers to pass information backwards
and forwards overmultiple frames, and to capture higher level
sequence information [21].

III. METHODS
A. PATIENT POOL
This prospective study was conducted from Septem-
ber 2015 to September 2017 under an Institutional Review
Board approved protocol and was Health Insurance Portabil-
ity and Accountability Act compliant. A total of 198 cineclips
were recorded in 120 patients from one or both sides of
the neck during one or more thyroid exams. The imaging
protocol consisted of gathering cineclips with a sweep of
the thyroid gland in the transverse plane, including some
distance beyond the thyroid by a board certified sonographer
with more than 30 years of experience scanning thyroids.
The cineclips were fully segmented for this study by a team
including a trained sonographer. In this study the clinically
significant classes, cysts, solid nodules and thyroid, were
chosen for segmentation with calcifications considered to be
part of the solid nodule class and Hashimoto’s and Grave’s
disease not considered to be solid nodules. Patients who
were experiencing a nodule recurrence after a partial or total
thyroidectomy were removed from the prospective dataset
as there were insufficient cases for training. The dataset
was divided into independent training, validation and test
sets separated by patient such that no patient appears in
more than one dataset. Rare pathologies (N<3; metastatic
medullary carcinoma, chondrosarcoma, adenomatous nod-
ule) and patients with inconclusive biopsies were first sorted
into the training set and the remaining patients were randomly
sorted into training, validation and test sets such that the pro-
portion of each known pathology were approximately equal.
The pre-training dataset was a superset comprised of the
training dataset and cineclips where only the thyroid had been
segmented and discarded after pre-training. The test set was
hand segmented by an expert sonographer with 30-plus years’
experience. Due to the quantity of data in the test set and the
cost of hand segmenting data only every 20th frame from
the first appearance of the thyroid until the thyroid vanished
from view were segmented. The training set and validation
sets consisted of fully segmented cineclips including frames
before and after the thyroid entered the viewing plane. The
height and width of each cineclip depends on the specific
hardware and settings used to acquire the ultrasound data.
Cineclips were resized by setting the largest dimension to
256 pixels and the shorter dimension was resized to preserve
the original video’s aspect ratio. Empty space was filled with
-1 to help the model distinguish between very dark regions at
the edges of the frame and the filler.

B. MODEL ARCHITECTURE
The backbone model adapted for the recurrent convolutional
neural network (RCNN) is the top performing segmenta-
tion network DeepLabv3 + [22] using ResNet101 with the
ResNet-C input stem replacement [23]. Additional changes

5120 VOLUME 9, 2021



J. M. Webb et al.: Automatic Deep Learning Semantic Segmentation of Ultrasound Thyroid Cineclips

FIGURE 1. Block diagram of the proposed model. Orange trapezoids represent the backbone DeepLabv3 + models with the
output layers removed. The blue rectangle represents the recurrent module with arrows representing convolutional LSTM layers.
The inverted orange trapezoids represent the upsampling and output layers.

to the ResNet101 model included replacing the downsizing
strided convolutional operations in the last two blocks with
dilated convolutions to expand context without sacrificing
spatial resolution or memory; strided by two and four respec-
tively. All ReLu activation functions were replaced with
Leaky ReLu activations with an alpha value of 0.10. The
model output used transposed convolutions with a stride of
8×8 and kernel size of 4×4 to return the output size to that of
the model input. Improved performance was observed when
using ResNet152 and removing the first maxpool operation,
however the memory use exceeded resources when creating
the final time series model. The model had two outputs; the
first output used a sigmoid activation function to segment
the thyroid and the second output use a softmax activation
to segment the cysts and nodules. Fig. 1 displays a block
diagram of the model showing how the backbone model
is adapted for time series semantic segmentation. In our
previous study [24] it was found that using a dual output
model structure improves segmentation performance in med-
ical ultrasound applications. The benefits of using multi-
ple outputs in ultrasound medical segmentation are twofold:
multiple outputs simplify post-processing and the nature
of medical semantic segmentation supports the framework.
Common deep learning applications of semantic segmenta-
tion deal with exclusive categories (i.e. person, building, car,
etc.) whereas in medical segmentation the classes may be
shared such as tissue nodule within thyroid tissue compared
to thyroid tissue. It was observed that in some challenging
cases where nodules presented ill-defined margins the model
would output uncertain predictions at the probable boundaries
of the thyroid and nodule with equal weighting between
classes rather than a smooth transition from one class pre-
diction to another. Applying a simple thresholding operation

resulted in boundary regions with an unrealistic ‘‘patchwork’’
of thyroid and nodule tissue due to slight variations in the
prediction. Using a standard single output model formulates
the segmentation problem as one in which we must define the
outer boundaries of nodules, define the inner boundaries of
the thyroid around the nodule and define the outer boundaries
of the thyroid. By using a dual output model the problem
formulation is simplified by removing the need to define the
inner boundaries of the thyroid around lesions.

The proposed algorithm modification produced higher
mean results and more certain segmentations, particularly
when segmenting lesions with ambiguousmargins. The back-
bone model was adapted for time series segmentation by
freezing all layers, removing the upsizing output layers and
replicating the model six times. A recurrent module was
appended to the new single feature map output of each back-
bone model. The recurrent module was adapted from the
STGRU [20]. The recurrent module was made up of 18 con-
volutional LSTM layers each with 3 by 3 kernels and 32 fil-
ters. Pairs of convolutional LSTM layers form a block; one
operating in a forward fashion and one operating backwards
to transmit information backwards and forwards. The pairs
were then concatenated, normalized, and Leaky ReLu acti-
vation was applied. Four stacks of blocks were applied with
a dilation rate of 1 × 1, 3 × 3, 5 × 5 and 7 × 7 to both
three model clusters. Finally two convolutional LSTMs were
applied to the two model clusters to combine the outputs and
the final segmentation was obtained through the dual output
as previously described.

C. MODEL TRAINING
Class imbalance is a known issue in deep learning and com-
mon inmedical applications. As the quantity of data increases
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TABLE 1. Distribution of number of patients, cineclips and frames in each
dataset.

the portion of healthy tissue and non-gland background tissue
increases greatly relative to the quantity of unhealthy tissue.
Unaddressed, this leads to the model heavily prioritizing the
common classes over the more important and rarer classes.
The current dataset has nodules in approximately 35% of
frames and approximately 2% of the dataset by pixel count.
Three methods were considered to combat class imbalance in
this study: data sampling, algorithm modification, and cost-
sensitive learning.

Subsampling chooses all examples of the minority class
and samples from the majority class at a reduced rate
and potentially risks discarding useful data. Oversampling
increases the quantity of data by repeating examples of
the minority class, either with or without augmentation and
potentially risks overfitting. Hybrid techniques are any com-
bination of over- and sub- sampling. In our tests subsam-
pling was performed by controlling the quantity of nodules
in each batch. Oversampling was performed by doubling
the quantity of the minority class with horizontal flipping
data augmentation. In our tests subsampling the dataset to
60% nodule improved performance over full sampling, but
oversampling with data augmentation improved performance
across all metrics over subsampling.

Cost sensitive learning modifies the loss function to
penalize missed predictions of minority classes greater
than majority classes. We experimented with down weight-
ing the background and up weighting classes with the
inverse of frame-frequency and inverse of pixel-frequency.
Combining the class up weighting and background down
weighting seemed to increase instability in training and
decreased overall performance. Down weighting the back-
ground improved performance, while up weighting classes
by the inverse of pixel frequency improved performance
with a tendency of over segmentation and decreasing per-
formance in the majority class. A number of new loss func-
tions have been proposed that are designed to address class
imbalance. Generalized Dice coefficient loss, sensitivity-
specificity loss, Tversky loss, Focal loss, Asymmetric log
loss, Combo loss, Lovasz hinge, Boundary F1 loss and mean
Hausdorff distance [15], [25]–[30]. The best performance
was achieved with a weighted loss function adapted from
Matthew’s correlation coefficient (MCC), which rewards
true positives and true negatives, and penalizes false posi-
tives and false negatives. The advantage of using the MCC
loss function is that it provides useful back propagation
when there is no true positive present, while other over-
lap based loss functions return zero whether the model

TABLE 2. Augmentation Schemes and Settings used during Training.

correctly predicts no true positive or predicts a large false
positive.

Model training was performed in four stages using the aug-
mentation schemes shown in Table 2. The first stage is pre-
training of a single-output single-class version of the model
using batches drawn from a larger dataset of healthy and
diseased thyroids. The pretraining dataset seen in Table 1 is
larger than the final dataset due to the relative ease in seg-
menting the thyroid compared to nodules and cysts. The sec-
ond stage introduced the second output to the model, and
retrained the model using batches drawn from the training set
using data augmentation shown in Table 2, and oversampling
frames with the nodule by 66%. That is two batches of
data chosen to include a nodule for every three batches of
randomly sampled data. The third stage froze the model up
to the ASPP module [22] and trained the remaining output
layers on full sequences of cineclips from the training set
as recommended by [31] to combat class imbalance without
bias towards over segmentation. The fourth stage of training
modified the pretrained backbone model into the time series
model and trained on full sequences of cineclips randomly
sampled from the training set.

IV. RESULTS & DISCUSSIONS
Fig. 2 shows the ROC curve for the segmented cysts, nodules
and thyroids which demonstrates high overall performance
across the features of interest in the test set. As in [24], the
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proposed model results are compared against a conventional
seeded segmentation algorithm, the distance regularized level
set (DRLS) algorithm presented by Li et al. [32]. The param-
eters were optimized for ultrasound thyroid segmentation
using grid search and the results are: time step of 1.0, lambda
of 1, alpha of −0.9, epsilon of 2.75, outer loop of 60 itera-
tions and 10 refinement iterations. The segmentation seeds
were obtained by dilating the ground truth mask using a
20 pixel disk structure. The high recall and low performance
across other metrics suggests strong tendency toward over
segmentation. Even when provided guidance with a seed
derived from the ground truth mask the algorithm fails to
finds boundaries in most cases.

FIGURE 2. ROC curve for the three segmented features; cyst in green,
nodules in red and thyroid in blue.

Table 3 shows mean and standard deviation values com-
paring the results of the proposed model, the MPCNN model
and the DRLS algorithm for the five metrics used to evalu-
ate model performance. All metrics are defined in (1-5) in
terms of true positive, true negative, false positive and false
negative. Intersection over union (IoU) is defined in (1) and
is a commonly used segmentation metric that measures the
degree of overlap between the prediction and ground truth.

IoU =
TP

(TP + FN + FP)
(1)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(2)

Recall =
TP

(TP+ FN )
(3)

Precision =
TP

(TP+ FP)
(4)

F2 =
5TP

(5TP+ 4FN + FP)
(5)

MCC is defined in (2) and is a metric typically used in
classification tasks. MCC incorporates true positive, false
positive, true negative and false negative to provide valuable
information when dealing with sparse segmentations when

TABLE 3. Comparison of results between proposed model, mpcnn model
and DRLS algorithm for all metrics over each reported feature.

the presence of positive classes is uncommon such as med-
ical segmentation. Recall is defined in (3) and measures the
correctly segmented pixels of a feature compared to all pixels
belonging to a feature. Precision is defined in (4) measures
the correctly segmented pixels of a feature compared to all
pixels predicted to belong to that feature. The F2 measure
is a member of a family of F-measures that combine pre-
cision and recall with different weights. The F2 measure is
defined in (5) and places greater importance on recall than
precision which is of interest in medical segmentation as the
cost of false negatives is greater than a false positive. Our
model is compared to MPCNN, a VGG16 based semantic
segmentationmodel designed from ultrasoundmedical image
segmentation. The proposed model outperforms the MPCNN
model across all metrics. The proposedmodel had an increase
in meanMCCmetric of 0.31, 0.18 and 0.56 for cysts, nodules
and thyroid respectively. Low performance of the MPCNN
model in the cyst and nodule metrics were largely due to
frames in which small and ambiguous frames when features
were entering or leaving the frame. The MPCNN model was
trained on ultrasound images provided by clinicians rather
than cineclips. The protocol for collecting images is to image
the largest cross-section in one or more planes. The effect
is that the MPCNN operating on its dataset was partially
guided with almost every frames having a nodule or cyst, and
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TABLE 4. Results for each reported feature by echogenicity as
determined by a radiologist.

TABLE 5. Comparison of results separated by malignancy of the nodules.

presented as clearly as the operator couldmanage. In contrast,
cineclips present less ideal scenarios.

In Table 4, model results are compared against the
echogenicity of the nodule for each patient. Hypoechoic
denotes that the nodule is darker than the surrounding tis-
sue and is frequently observed, hyperechoic denotes that
the nodule is brighter than the surrounding tissue and isoe-
choic denotes that the nodule has the same gray level as

TABLE 6. Comparison of results separated by nodule margins as
determined a radiologist.

the surrounding tissue. The metrics compared against hypoe-
choic and isoechoic nodules indicates the model’s ability to
correctly distinguish between nodules and cysts which may
possess clutter but otherwise appear hypoechoic and isoe-
choic. The metrics compared against hyperechoic nodules
indicates the model’s ability to correctly identify nodules and
distinguish the boundaries from the thyroid. Table 4 shows
an unexpected inversion as cyst segmentation performs best
when the nodule has lower contrast. Fig. 4b shows that the
segmentation of nodules performs best when the nodules are
hypoechoic and having less contrast with the surrounding
thyroid tissue. Table 4 shows the segmentation results of the
overall thyroid and is relatively indifferent to the condition
of the containing nodule. This is a benefit of the model’s
dual output as there is no tradeoff between the thyroid and
other classes. The proposed model outperforms the MPCNN
model due to advancements in the base backbone model,
the recurrent module, training method and loss function. The
new loss function is a class balanced MCC modified as a
loss function. In testing it was found that down weighting
the background and thyroid classes, which greatly out num-
bers the nodule and cysts classes, improved performance in
the minority classes without sacrificing performance in the
majority classes. The MCC loss provides a useful gradient
update even when there is no true positive whereas traditional
overlap based loss functions return zero when there is no true
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TABLE 7. Stage 3 model parameters.

TABLE 8. Stage 1 and Stage 2 model parameters.

positivewhether themodel over segments or correctly outputs
no segmentation.

The new backbone model, a modified ResNet 101 model
with Atrous Spatial Pooling module, offers greater perfor-
mance than the VGG16 based model with lower memory
footprint. Six pretrained copies of the backbone model are
modified by replacing the output layers with a series of con-
volutional LSTM layers that allow themodel to share features
collected from five consecutive frames before outputting the
segmentation map for the current frame. The approach out-
performs both 2D and 3D versions of the model. The LSTM
model is of additional benefit in ultrasound as the focal depth
of the probe means that each frame represents a non-zero
slice of tissue. When viewed in a cineclip a sweep across
tissue will often show healthy thyroid tissue darken from the
presence of a nodule or cyst adjacent to the viewing location.
The transitional phases as features leave and enter the viewing
plane cause confusion in the previous model. Blood vessels
branching from the main arteries and running through the

TABLE 9. Recurrent module parameters.

TABLE 10. Identity and convolutional block parameters.

thyroid can often be difficult to distinguish from small cysts
and can require time series information from multiple frames
to see if the feature persists. As with the old model, the new
model struggles with hyperechoic nodules and nodules that
replace the entirety of the thyroid. In these cases the model
detects the presence of a nodule, but under segments the area.

In Table 5 the results are compared against the malignancy
of the nodule. Malignant nodules are more likely to have
indistinct boundaries, projections and more complex features
presenting more difficult objects to segment and critically
important features. Table 5 shows approximately equivalent
results in the nodule for both benign and malignant nodules
with a slight trend towards higher maximum performance in
benign nodules. Table 5 shows approximately equal results in
the thyroid regardless of the malignancy in the nodule.

In Table 6 metrics for the nodule and thyroid are shown
compared against the margins of the nodules; smooth,
ill-defined or lobulated. The margin features are used when
estimating the malignancy of nodules, with smooth margins
suggesting benign, and ill-defined and lobulatedmargins sug-
gesting malignancy. Given the distribution of the test set there
was one patient with a nodule having ill-defined margins.
Table 6 shows that there is little change in the performance
in segmentation of the cyst class with regards to the margins
of the nodule as expected. Table 6 shows roughly equal
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FIGURE 3. Examples of Comparison of automatically generated thyroid maps in multiple planes
with thyroid maps generated by sonographers. In the generated maps blue represents the
thyroid gland, red represents solid nodules and green represents cysts.

performance in the nodule class with regards to the margins
of the nodule with a clear improvement in the precision of
nodules with smooth margins.

Fig. 3 displays one of the potential applications of the ultra-
sound thyroid semantic segmentation model to help automate
mapping of the thyroid. Once segmented, the resulting 3D
thyroid volume can be viewed along any plane and orien-
tation. Here, three standard engineering planes were created
by summing each class along the X, Y and Z axes. The size
and volume of each class can be calculated by integrating
the area of each slice over the length of the thyroid found
by measuring the length of the thyroid in a longitudinal
plane and assuming a constant uniform velocity. Currently
the dimensions of nodules and large cysts are measured in
two perpendicular planes and the volume of the thyroid is
estimated using an ellipsoid approximation. Comparing the
performance of the ellipsoid approximation with an integral
calculation results in a mean percent difference of -13.55%.
This result correlates well to a study by Vurdem et al. [33]
comparing 2D ultrasound thyroid volume estimation with
the volume as measured by post-thyroidectomy which found
ultrasound thyroid volume estimation had a systematic under-
estimation of the thyroid by 10.62%

V. CONCLUSION
In this paper, we present a novel recurrent semantic segmen-
tation network suitable for automatic segmentation of thy-
roid ultrasound cineclips. Our proposed method incorporates
the top performing DeepLabv3 + model, a novel recurrent
module, a novel model for segmentation MCC loss function
and a training procedure. In contrast to previous papers our
proposed method takes advantage of the format of the typical

thyroid ultrasound exam. Segmentation performance of the
thyroid feature using our proposed model is very high, but
the performance in cysts and nodules are not yet acceptable
to be used as an assistance tool. We expect performance
to increase with larger datasets. Kohl et al. has proposed
techniques specifically designed for ambiguous segmentation
as encountered in some nodules with ill-definedmargins [34].
Karimi et al. and Abraham et al. propose modifications to
standard segmentation loss functions to improve performance
over the unmodified loss functions [29], [35]. Such modi-
fications could potentially be applied to our class balanced
MCC loss to further improve performance on cysts and nod-
ules. Regularization had not been applied to our model, but
has been shown to improve model performance in certain
applications. A more accurate segmentation model could
be used in clinical work, either directly implemented into
commercial ultrasound systems or implemented as a sepa-
rate post-processing step. A live implementation could assist
with remote medical clinics where expertise may be limited.
Given the ambiguous margins of some nodules a consistent,
unified segmentation tool may help improve consistency of
the TI-RAD system used to recommend further application.

APPENDIX
Parameters for the proposedmodel are provided in tables 7-10
below. The stage 3 model is defined in table 7. Stage 1, stage
2 and recurrent models are defined from the stage 3 model
in tables 8 and 9. The identity and convolutional blocks
are defined in table 10. Let CX denote 2D convolutional
layers with X number of filters, DCx denote 2D deconvo-
lutional layers with X number of filters, BN denote batch
normalization, concat denote concatenation layer, LR denote
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Leaky ReLU activation units with an alpha value of 0.10. Let
CB [X Y Z] denote a ResNet convolutional block with X,
Y and Z number of filters. Let XxIB [WY Z] denote X stacks
of ResNet identity blocks with W, Y and Z number of filters.
Let ASPP denote an atrous spatial pyramid pooling module.
Let F, S and D denote filter kernel size, strides, and dilation
rate. Unless specified otherwise all filters are 3 by 3, a stride
of 1 and dilation rate of 1.
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