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ABSTRACT The safety and reliability of the mechanical system in the industrial process determines the
quality of products. Whether the fault can be identified and classified in time is the key to ensure the safe
operation of the system and arrange the appropriate maintenance plan to restrain the deterioration of the fault.
However, with the rapid development of manufacturing digitization, how to process large amounts of data
quickly and accurately is faced with many problems. In this paper, a pattern recognition method of cyclic
GMM-FCM (CGF) based on joint time-domain features is proposed. Firstly, the concept of joint time-domain
features based on Vold-Kalman filter (VKF) is proposed. It retains the integrity of the signal components
and avoids the problem of dimension disaster caused by anomaly detection, which laid a foundation for the
accurate classification of sensitive feature sets. Secondly, a pattern recognition method of cyclic GMM-FCM
is proposed. It can eliminate global and local outliers in sensitive feature sets and determine the number of
FCM categories adaptively. It makes the classification result more reasonable and accurate. Finally, the
effectiveness and superiority of the pattern recognition algorithm are verified by the gearbox vibration

experiments in various states. The result shows that the method is feasible in engineering practice.

INDEX TERMS Joint time-domain features, anomaly detection, GMM, FCM, pattern recognition.

I. INTRODUCTION

In the modern industrial system, with the rapid development
of manufacturing digitization, real-time recording and per-
ception of production operation state and operating environ-
ment have been realized, and a large number of industrial
timing data have been accumulated and are being gener-
ated [1], [2]. In the face of massive data, how to quickly
find sensitive feature sets and accurately identify and classify
them is the key to efficiently discover and prevent mechan-
ical system faults and avoid serious damage [3]. It is also
the key to the research object of fault diagnosis [4]. The
research on the characteristics of industrial data shows that
due to the abnormal problems in the manufacturing system [5]
(such as product quality defects, equipment failures, perfor-
mance degradation and changes in external environment [6]),
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in the analysis of a large number of data, there are abnormal
data which are far away from other observed data and may
have different production mechanisms. The existence of such
abnormal data will have a great influence on the selection and
pattern recognition of sensitive feature sets [7].

For scenarios of large rotating machinery data, label of data
are difficult and expensive to obtain [8]. And the marking pro-
cess of label data is very dependent on subjective judgment
of human. It will have great deviation and influence on the
final analysis result. Unsupervised anomaly detection only
relies on data without tags during training [9]. It can make use
of the overall characteristics of the data to get accurate rules
for dividing anomaly. Compared with the machine learning
method based on label, unsupervised anomaly detection algo-
rithm has a better application prospect [10].

However, unsupervised anomaly detection is faced with
the challenge of ‘““dimensional disaster” [11] in process-
ing high-dimensional data, so it is necessary to select
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low-dimensional sensitive feature sets from a large number of
high-dimensional data features firstly. Common processing
methods include principal component analysis (PCA), fea-
ture mapping, competitive learning, topological mapping and
tensor analysis [12]. However, when these methods convert
high-dimensional data to low-dimensional data, some infor-
mation of the signal is often lost, which affects the global
outlier or local outlier removal of feature sets [13], [14].
In this paper, the single harmonic component signal obtained
by Vold-Kalman filter (VKF) is used to select multiple com-
bined features and independent features for experiment. The
results show that the single combined feature sets or inde-
pendent feature sets cannot be used for effective pattern
recognition. However, there is still the problem of outliers
in pattern recognition by topological mapping. In this paper,
the signal separation results of Vold-Kalman filter are used to
construct a two-dimensional joint time-domain feature sets by
taking the reconstructed harmonic signal and signal residue as
dimensions and taking the same time-domain features of each
dimension as values. The selected sensitive feature sets not
only retain the complete information of signal components,
but also reduce the feature dimension, which lays a great
foundation for the anomaly detection of feature sets.

For data sets without anomaly, the application purpose of
machine learning in fault diagnosis is to classify the fea-
ture set and to determine whether and what kind of fault
occurs [15]. The mining of data information without label
is called unsupervised learning. Cluster analysis is the main
method of unsupervised learning [16]. Compared with other
pattern recognition methods, clustering analysis has a unique
advantage in the big data scene, that is, without any known
category label, the clustering analysis algorithm realizes the
correct classification of samples according to sample simi-
larity or probability density function estimation method by
analyzing the internal structure of sample data. At the same
time, it can be used as an independent tool to obtain the data
distribution state, and can also observe the characteristics of
each cluster and analyze the required cluster. Cluster analysis
can be divided into hard cluster and soft cluster. Hard clus-
tering is a well-defined clustering, that is, each sample data
clearly belongs to a certain category. Soft clustering, known
as fuzzy clustering, is based on the membership degree of
sample data in various categories, and the category bound-
ary is fuzzy [17]. It provides a good platform for pattern
recognition of composite faults and early faults of rotating
machinery.

Fuzzy C-means (FCM) [18] algorithm is the most famous
and widely used fuzzy clustering method. It is very sen-
sitive to parameters and the number of categories deter-
mines how close the clustering result is to the real data
structure. If the number of classes is larger than the true
value, one or more good compact clusters may be broken.
If less than the true value, the clustering result merges mul-
tiple classes [17]. Therefore, how to determine the number
of categories of FCM is the key to the good application
of FCM.
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To solve the above problems, this paper proposes a pattern
recognition method of cyclic GMM-FCM based on joint
time-domain features, where, cyclic GMM-FCM is named
CGF. The main contributions are as follows:

(1) A method of joint time-domain features based on the
VKF is proposed as the feature sets of pattern recognition.
This method not only ensures the integrity of the signal
component information contained in the feature sets, but also
effectively reduces the dimension of the feature set and avoids
the dimension disaster when the feature set is abnormal
detected.

(2) The abnormal detection method of cyclic GMM-EM
(Gaussian mixture model, Expected value maximization) is
proposed. This method can detect and eliminate global and
local outliers of the joint time-domain feature sets, which
makes the classification more reasonable.

(3) The pattern recognition method of CGF is proposed.
The method can determine the number of categories of FCM
adaptively by cyclic GMM-EM algorithm, which makes the
classification result more accurate.

(4) The effectiveness and superiority of joint time-domain
features based on VKF as feature sets are verified by the
gearbox vibration experiment under various states.

(5) The effectiveness and superiority of CGF pattern recog-
nition algorithm based on joint time-domain features are
verified by the gearbox vibration experiments in various
states.

Il. METHODOLOGY
A. PRINCIPLE OF GMM-EM AND ANOMALY DETECTION
Gaussian mixture model (GMM) [19] is an extension of
the Gaussian model and a linear combination of several
Gaussian distribution functions. GMM assumes that all sam-
ple data obey the mixed Gaussian distribution, that is, the
probability density function of sample data sets is esti-
mated [20]. The estimated model is the linear combination
of the Gaussian model, and each Gaussian distribution is
a cluster. The clustering result of the hybrid model is that
data sets are divided into several clusters which obey the
independent Gaussian distribution function [21] based on
probability.

Suppose the random variable is X, and the mixing model
is composed of Gaussian distributions whose number is M.
GMM can be expressed as:

M
P(x|0) = ) an(x[6) ()

m=1

where, the parameter o, represents the weight of the m-th
Gaussian distribution in GMM and satisfies Z%:l ay, =
L, (o = 0);

@(x|6,,) is the probability density function of m-th Gaus-
sian distribution. At the same time, 6,, expressed as: 6, =
(m»> Zm), W represents the mean of the m-th Gaussian dis-
tribution, X, represents the covariance matrix of the m-th
Gaussian distribution.
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¢(x]6,,) can be expressed as:

¢(x|60m) =

_ 2
_ (= wm) ) )

1
Nezoma ( 2%,

This paper describes the three parameters of the GMM
for 6, namely the mixed coefficient «,,, the mean w,, and
the covariance matrix X,,. To divide the sample data set into
several clusters, it is necessary to know parameters’ values
of the Gaussian distribution that each part of the data in this
data set obeys, and make the clustering results fit the observed
data as much as possible. Among them, the observed data in
the mixed model refers to the data are known in the data set
to obey the known Gaussian distribution [22]. At the same
time, the sample data set is also called the complete data,
containing the observed random data X = {x1, x2,...,xy}
and the unobserved random variable Z = {z1, 22, ..., 2nv}.

Thus, GMM is mainly determined by the parameter 6.
In order to obtain a high quality clustering result, the optimal
sample parameters need to be solved. The most common
method is to maximize the logarithmic likelihood function
of the mixed model. Expected value maximization (EM) [23]
algorithm iteratively solves the parameters of the maximum
likelihood estimation from complete data containing implicit
variables.

The iteration of EM algorithm is accomplished by two
major steps, Expectation step (E-Step) and Maximization
Step(M-step) [24]. Because the goal is to solve the distribu-
tion parameters of GMM, and the implicit and unobserved
data is unknown, the EM algorithm of E-step first guess the
implicit data of the model to get the expected value and the
Gaussian distribution [25]. Then maximum likelihood esti-
mation is performed for complete data and the parameters of
GMM are solved, namely M-step. However, in the process of
solving the parameters of GMM, the implied data of E-Step is
obtained by guessing [26]. It is not accurate so that the model
parameters solved according to the results are not accurate.
Therefore, the above steps are repeated again [27]. In this
way, E-step and M-step are iterated continuously until the
parameters of GMM are basically unchanged. The algorithm
converges to find the optimal expectation, covariance matrix
of GMM and weight of each Gaussian distribution.

According to Bayes’ theorem [28], [29], by selecting the
initial value of parameters of GMM, the influence degree
of the m-th Gaussian distribution on the observed data
(x1,x2,...,xy) in GMM, namely, the maximum posterior
probability is estimated as follows:

M
Dim = am®jlttm. 03) [ Y amd(jlpim. o) (3)
m=1
According to the initial value of selected model parame-
ters, the expected value of the logarithmic likelihood function
of the mixed model can be expressed as:

Eg [logp(@1Y, 0167, Y]
= / log [p(A1Y, Q)Ip(Q16D, Y)dQ  (4)
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where, Q represents the implicit data, 0® is the posterior
standard deviation of the i+1 iteration.

The conditional expectation probability of the joint distri-
bution of the mixed model can be expressed as:

L©.6) =YY P(zx.0)logP (x.zl0) 5)

=l z

Under the conditional probability constraint of E-step, the
maximum value of logarithmic likelihood function parame-
ters can be expressed as:

0j11 = arg m@ax L(9,0)) (6)

After a new round of iteration, the three parameters can be
expressed as:

N
llm = Z);jmxj
_ o
Ajm(xj_ﬂm) /Z)?]m, m=1,2,....M
j=1

)?jm/N, m=1,2,....M (7
1

The above E-step and M-step are iterated until values of 6¢)
and 90U+ are infinitely close to each other.

After obtaining the final convergent GMM, the generation
probability Fy of each sample point x; can be expressed as:.

N
Y P m=12,....M
j=1

~
—_

M>

3

I
M=

~.
Il
-

=]

3

I
M=

~.
Il

m
Fo =" aip (i, 07) ®)
i
Fy is lower, the more likely xi is to be an outlier. Therefore,
in GMM algorithm, the derivative of F} is taken as the score
to determine the anomaly.

B. PRINCIPLE OF FCM

FCM (Fuzzy C-means) algorithm is a classical algorithm
based on distance. The distance value between the data and
the cluster class center is calculated as the evaluation stan-
dard [17]. If they are more similar, the smaller the value is,
and the greater probability of being divided into the same
category is.

FCM algorithm is a typical clustering algorithm based on
objective function, and uses Euclidean distance as similarity
discrimination [30], [31]. It uses constraints to solve of objec-
tive function. Finally, the final solution is obtained through
continuous iteration, and different types of data are divided
into different cluster classes. Its definition is as follows [18]:

Suppose X = {x1,x2, ..., x,} is a set of feature data sets
in space, x; = (xj1,X2,...,Xi;m) 1S a data sample in X,
representing a point in the space sets, and x;; is the j-th
attribute value of x;.

The clustering of a given data sets X is to generate c¢ classes
of X1, X5, ..., X.. The membership degree 1 represents the
membership relationship between sample x; and subset Xj.

VOLUME 9, 2021
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FIGURE 1. The algorithm flowchart of cyclic GMM-FCM pattern recognition based on joint time-domain features.

C

0, 11&Y0, Y pix =
k=1

It satisfies pjx € 1;Vk,0 <

C
> ik < n, U = (i) is n x ¢ dimension of membership
k=1

function.
The objective function of FCM is expressed as:

c n
T=W. V)= (uw)"dy ©)
k=1 i=1
where, diz = ||lx; — Vi|| refers to the Euclidean distance

between x; and the k-th clustering center Vi; m € (1, 0o)is the
fuzzy weighted exponent;V = (Vy, Vo, ..., V,) is the cluster
class center set of all subsets Xj.
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Combined with Lagrange multiplication ) ;_, pix =
1, uix €10,1],i=1,2,...,n, available:

c
S s =
k=1

-1

(da /)™ (10)
j=1

)" [y ()" (1n
i=1 i=1

FCM algorithm steps are as follows:

(1) Given c, m, ¢ and initial iteration value f = 0, U is
initialized by using random number between [0, 1], satisfy
the constraint conditions Zli:l nik =1,vVi=1,2,...,n

(2) According to Equation (11), cluster centers Vi are
calculated and the number is c;

o

Vi
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(c) (d)

(e)

FIGURE 2. (a) is the test bench, where, 1-speed motor, 2-coupling, 3-test gearbox, 4-torque tachometer,
5-torque bar, 6/7/8/9-piezoelectric acceleration sensor, 10-main test gearbox; (b) is the schematic
diagram of sensors distribution; (c) is slight gear pitting; (d) is gear pitting; (e) is electric discharge

machined bearing outer ring.

TABLE 1. Independent features and combined features.

variance; mean square value; root mean square value; skewness; kurtosis; waviness index;

Independent features

margin index; pulse index; peak index ; kurtosis index

Time domain &

Time domain

Frequency domain

. frequency domain
Combined

features

mean; variance; variance coefficient;

skewness; kurtosis

spectral flatness; spectral entropy;

spectral flux

Time-frequency

domain

mean; variance; variance coefficient; skewness; kurtosis; time -frequency entropy

flatness; Shannon entropy; time-frequency flux

(3) The UY) of this iteration is calculated according to
Equation (10), and the J () of this iteration is calculated
according to Equation (9);

(4) If the condition |J (R | (f_1)| < ¢ is true, then output
the result; otherwise, f = f + 1, turn step (2).

C. ALGORITHM FLOW CHART AND MAIN STEPS

The algorithm flow chart of cyclic GMM-FCM based on joint
time-domain features is designed by the above theory, and the
results are shown in Figure 1.

Where, VKF can separate complex multi-component sig-
nals [32] into a combination of multiple single-component
signals and signal residues through the instantaneous fre-
quency curve of each component in the obtained signal.
The single component signal is related to the parts that pro-
duce vibration impact [33], while the signal residue con-
tains noise and hidden information [34]. The combination
provides the possibility to extract the features of different
components [35].

1908

The main steps of the improved algorithm of pattern recog-
nition are as follows:

(1) An improved signal separation method of VKF is used
to decompose the input signal into harmonic reconstruction
signal and signal residual. Extract the time-domain features
as a dimension to build 2D joint time domain. The joint
time-domain feature sets of signals in different states are
regarded as feature sets. Sensitive feature sets are selected
from ten types of joint time-domain feature sets;

(2) The pattern recognition algorithm conducts prelimi-
nary training on the feature set with GMM-EM algorithm.
It obtains the initial optimal number of categories ki, and
removes the global outliers in the feature set through GMM
anomaly detection;

(3) GMM-EM training is carried out on the feature set
again to obtain the optimal number of categories k». The
optimal category number k; was obtained by rounding the
mean values of k; and ky. The feature set is preliminarily
labeled by &;.

VOLUME 9, 2021
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FIGURE 3. (a) is the normal signal, (b) is the slight gear-pitting signal, (c) is the gear-pitting signal and (d) is the

signal of composite faults.

composite faults slight gear pitting ‘

‘ % faultless O gear pitting \ /
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FIGURE 4. Training results of GTM, where, (a) is 20 x 40 combined feature sets after GTM and (b) is 28 x 40 combined

feature sets after GTM.

(4) GMM anomaly detection is carried out for each type
of label feature data to remove local anomaly points. Then
GMM-EM training is carried out on the feature set again to
obtain the optimal number of categories k3.

(5) The optimal number of categories K was obtained by
roundness of the mean values of ki, k» and k3, and K was
taken as the category number of FCM to carry out clustering
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training for feature sets with global and local anomalies
removed.
Ill. SELECTION OF JOINT TIME-DOMAIN FEATURES OF

COMPONENT SIGNALS
A. THE DESIGN SCHEME OF EXPERIMENT

As shown in Table 1, in this paper, ten time-domain fea-
tures, such as variance, mean square value, root mean square
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FIGURE 5. Combined features of VKF components in different states, where, (a) is in the faultless state, (b) is
in the state of gear pitting and (c) is in the state of composite faults.
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FIGURE 5. (Continued.) Combined features of VKF components in different states, where, (a) is in the
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value, skewness, kurtosis, waviness index, margin index,
pulse index, peak index and kurtosis index, are selected
as independent features. Select time-domain features of
mean, variance, variance coefficient, skewness and kurto-
sis, frequency-domain features of spectral flatness, spec-
tral entropy and spectral flux, and time -frequency domain
features of mean, variance, variance coefficient, skewness,
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kurtosis, time -frequency entropy flatness, Shannon entropy
and time-frequency flux, such as eight group features, to con-
stitute combined features that the time-frequency domain fea-
tures correspond to the time-domain and frequency-domain
features.

In order to verify the practicability of the improved method
proposed in this paper, a closed power flow gearbox test
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FIGURE 7. Joint time-domain feature sets.

bench was used to perform related experiments. The vibration
signals of the gearbox were collected under normal, gear pit-
ting transition, gear pitting and combined faults (gear pitting
and bearing outer ring pitting). The bench is loaded by the
internal force generated by the torsion bar. The test gear has
a transmission ratio of 1: 1 and a number of 18 teeth. The test
bench is shown in Figure 2 (a). The model of piezoelectric

1912

sensor is CA-YD-186 (sensitivity is 10.41mV/m-s2), the sam-
pling frequency is 12000Hz, and layout positions are shown
in Figure 2 (b). Figure 2 (c) (d) (e) show the parts in three
fault states.

The signals in different states are selected, as shown in
Figure 3(a) (b) (c) (d), which are the normal signal, the slight
gear-pitting signal, the gear-pitting signal and the signal of
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FIGURE 7. (Continued.) Joint time-domain feature sets.

combined faults. They have a load of 800N - M and a uniform
acceleration of 550r/min to 600r/min.

In view of the multi-dimensional features of signals, the
general method is to construct high dimensional sets, and
to find hidden variables in the high-dimensional feature
sets through feature mapping (such as principal compo-
nent analysis, self-organizing mapping, etc.), so as to clas-
sify feature sets and realize the pattern recognition of fault

types.
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As shown in Figure 4, (a) combines 10 independent
features of reconstructed signals and signal residuals to
construct a 20 x 40 high-dimensional feature sets, and
(b) combines 8 groups of combined features and 10 indepen-
dent features of reconstructed signals and signal residuals to
construct a 28 x 40 high-dimensional feature sets. After the
labels of feature sets in (a) and (b) are marked, the sets are
classified by generative topographic mapping (GTM). The
results show that the dimension of feature sets is higher, the
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FIGURE 8. The training results of the cyclic GMM-EM algorithm for sensitive feature sets, where, (a) is
sensitive feature sets, (b) is the result of preliminary GMM-EM training, (c) is the result of GMM-EM training
after global outliers removed and (d) is the result of GMM-EM training after local outliers removed.

result of pattern recognition is better. Although it can carry
on the classification to different fault states, it has to mark
labels in advance. In the mapping results of the feature sets,
there are outliers far away from the cluster of each fault state.
And due to the problem such as “dimension disaster”, it is
difficult to eliminate abnormal feature sets.

Therefore, it is necessary to preserve the integrity of sig-
nal information in the low-dimensional data set as much
as possible and to show the relationships hidden in the
high-dimensional data set.

B. ANALYSIS OF COMBINED FEATURES AND JOINT
TIME-DOMAIN FEATURE SETS

Previous studies have shown that the feature set composed
of single combined feature or independent feature cannot be
used for pattern recognition. Therefore, this paper attempts
to start with characteristics of VKF components and conduct
research in two ways. On the one hand, 8 pairs of com-
bined features are taken as horizontal and vertical coordi-
nates, and feature sets are constructed with the combined
eigenvalues of each component of signals in different states.
Then, 8 groups of feature sets are screened to select sensitive
feature sets for pattern recognition. On the other hand, recon-
structed harmonic signals of VKEF, signal residues and origi-
nal signals are selected as dimensions, and their time-domain
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independent features are taken as values to construct a
two-dimensional or three-dimensional joint time-domain
feature set.

Combined features are extracted for each component signal
and signal residual of signals after VKF. Ten sets of gear box
vibration signals are selected for each state, and the results
are shown in Figure 5.

According to Figure 5(a), (b) and (c), the eight combination
features of VKF components in different states, the four com-
bination features of group 1, group 2, group 6 and group 7 can
better distinguish each component, namely, the combined
features of the four groups of mean-TF mean, variance-TF
variance, spectral flatness-TF entropy flatness and spectral
entropy-Shannon entropy.

Each VKF component in different states is combined into
a feature set according to the above four combined features,
as shown in Figure 6. The results show that the feature set
composed of each component has no clear boundary in vision,
and there are abnormal points in some combination features,
so it is difficult to carry out clustering analysis.

Therefore, the idea that constructing a feature set from
combined features of each component is abandoned. Inde-
pendent features of reconstructed signals, signal residues and
original signals are obtained respectively to construct the
feature set, which is named as joint time-domain feature set.
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FIGURE 9. (a) is FCM after cyclic GMM-EM and (b) is k-means after cyclic GMM-EM.

Independent features are ten independent features listed in
Table 1.

Reconstructed harmonic signals of VKF, signal residues
and original signals are selected as dimensions, and their
time-domain independent features are taken as values to
construct a two-dimensional or three-dimensional joint time-
domain feature set.

As shown in Figure 7, abnormal points both exist in the
2D and 3D, and the joint time-domain feature set in (a) is
more clear than (b) to distinguish the boundaries of different
states. But due to anomaly detection of 2D feature set is the
most simple, and the sum of reconstructed signal and residual
is the original signal, that is, 2D feature set contains all the
features of vibration state information. 3D feature set increase
dimension on the basis of the original signal characteristics.
It makes part of the information redundancy. Therefore, this
paper chooses the two-dimensional joint time-domain fea-
tures to construct the feature set.

IV. EXPERIMENTAL VERIFICATION
In Figure7 (b), 1 to 3 groups of sensitive joint features,
boundary of different state is obvious, and the distribution
of three groups of joint features are similar. Therefore, Joint
time-domain feature set of variance is chosen as the sensi-
tive feature set. And train the sensitive feature set with the
improved algorithm of pattern recognition in this paper. The
results are shown in Figure 8.

k1 = 4 is obtained by preliminary GMM-EM training on
the feature set in Figure 8 (a), and the preliminary classifi-
cation result is shown in (b). It shows that the classification
result is greatly affected by abnormal points. After removing
the global outliers, the GMM-EM training result is shown
in (c) and k> = 4. Compared with (b), the classification result
of (c) is better. But it is still greatly affected by local outliers.
The optimal number of categories k;, = 4 was obtained
by rounding the mean values of kjand kp. After average
classification of feature sets, local outliers are removed. And
the result of GMM-EM training is shown in (d) and k3 = 3.
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It can be found that not all the points in (d) are in the clas-
sification results. It indicates that the GMM-EM algorithm,
as a hard clustering algorithm, cannot consider all feature
points.

By rounding the mean values of ki,k; and k3, the
optimal number of categories K=4 is obtained. The
feature sets with global and local outliers removed
were trained by fuzzy C-means clustering (FCM) and
K-means clustering, respectively. The results are shown in
Figure 9 (a) and (b). Compared with Figure 8(a), the training
accuracy of FCM is better than that of K-means cluster-
ing. It achieves the purpose of relatively accurate pattern
recognition and lays a solid foundation for subsequent fault
diagnosis.

V. CONCLUSION AND RECOMMENDATIONS
This paper proposes a pattern recognition method of cyclic
GMM-FCM based on joint time- domain features. In this
paper, according to the characteristics of VKF components,
a number of combined features and independent features
are selected to test. The results show that the sensitive fea-
ture set constructed by joint time-domain features can retain
all the information of signal features while avoiding the
“dimensional disaster”” problem faced by anomaly detec-
tion. Then, the pattern recognition method based on cyclic
GMM-FCM can effectively eliminate global and local out-
liers in the joint time-domain feature set, and determine the
number of FCM categories adaptively. It makes the result
of classification more accurate and lays a foundation for
the application of the improved method in the industrial
environment.

In future work, it is recommended to extend this improved
method to other composite faults and vibration environments,
such as composite faults of planetary gearboxes.
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