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ABSTRACT Ultra high reliability and ultra low latency are the key objectives of the internet of things (IoT)
with massive connectivity. To support these objectives, we investigate the resource allocation for the user-
centric multi-cell multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) based
IoT networks. The macro base station (MBS) equipped with multiple antennas transmits signals to access
points (APs) in the backhaul link, and each device can be served by multiple APs in the access link, and
the APs serving the same device compose one AP group (APG). The NOMA is applied in each APG to
reduce the intra-APG interference. In this paper, the resource allocation problem involving the beamforming
optimization and power allocation is formulated as nonconvex optimization problem which is extremely
difficult to tackle. In order to reduce the computational complexity, we decompose the resource allocation
problem into two subproblems in terms of the beamforming optimization and power allocation. For the
beamforming optimization subproblem, the zero-forcing beamforming (ZFBF) algorithm is applied to solve
it.When the beamforming strategy is fixed, the power allocation subproblem is still a nonconvex optimization
problem. We first transform it as a difference of two convex functions (DC) problem, and then the DC
programming method is adopted to optimize it. We further prove that the solution obtained by the DC
programming method is one of the local optimal solutions of the original optimization problem. Extensive
simulation results are presented to demonstrate the effectiveness of the proposed resource allocation scheme
for the user-centric MIMO-NOMA IoT networks.

INDEX TERMS Internet of Things (IoT), MIMO, NOMA, power allocation, beamforming.

I. INTRODUCTION
With the rapid development of the internet of things (IoT)
networks (e.g. smart city, connected health, industrial inter-
net, vehicle network), IoT is facing huge challenges in terms
of the reliability and latency. Indeed, the number of the wire-
less enabled sensors increases with the explosive exponential
growth. In according with the prediction of Cisco, the number
of the terminations of IoT will reach 14.6 billion by 2022 [1].
In addition, the require of some particular scenarios such as
self-driving and industrial internet for reliability and latency
is tougher and tougher.

The user-centric wireless network has been proposed to
improve the reliability and decrease the latency. In the
user-centric wireless network, substantial low power and
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small coverage access points (APs) are deployed, and the
number of the APs is much more than that of the termi-
nals. Therefore, one terminal can be served by multiple
APs simultaneously, and it is possible that each terminal
can get sustainable high quality service through cooperation
among APs. By shifting the network architecture from tradi-
tional cell-centric to user-centric, the user experience will be
enhanced significantly. However, dense-deployed of the APs
will also cause serious interference which may degrade the
system performance.

Non-orthogonal multiple access (NOMA) is another
promising technology for IoT to providemassive connectivity
over limited radio resources. NOMA allows that multiple
users can share the same spectrum resource by means of
superposition coding and successive interference cancella-
tion (SIC). Comparing with the orthogonal multiple access
(OMA), NOMA can significantly improve the spectrum
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efficiency by exploiting the power domain. Due to the
spectrum multiplex, it is important to optimize the power
allocation for NOMA system. In addition, multiple-input-
multiple-output (MIMO) has been also widely investigated
to boost the throughput and reliability of IoT networks.
To make full use of these advantages, MIMO-NOMA has
been proposed as a multiple access technique for the 5G
mobile networks [2].

In the user-centric MIMO-NOMA IoT networks, ultra
dense terminals and limited spectrum resource will cause
serious interference, which will significantly degrade the sys-
tem performance. Therefore, how to suppress the interference
is crucial to improve the system performance. In this case,
it is important for the user-centric MIMO-NOMA IoT to
optimize the resource allocation to eliminate the interfer-
ence. On the other hand, the resource allocation problem for
the MIMO-NOMA IoT is excellently difficult, since both
the beamforming strategy and power allocation are needed
to be optimized. Furthermore, no matter the beamforming
optimization problem or the power allocation optimization
problem are nonconvex optimization problem due to the uti-
lization of non-orthogonal spectrum resource.

In this paper, we investigate the joint resource allocation
problem involving the beamforming optimization and power
allocation for the user-centric MIMO-NOMA IoT networks
in order to maximize the system throughput. We consider
both the backhaul downlink (from the MBS to APs) and
access downlink (from APs to devices) since the transmis-
sion rate of the access downlink is limited by the backhaul
downlink. In the backhaul downlink, the MBS equipped
with multiple antennas transmits signals to the single-antenna
APs. The APs are grouped to serve devices, and the APs
in the same AP group (APG) will share the same beam-
forming vector. That is, the MBS and each APG form a
virtual MIMO system. In the access downlink, each terminal
is served by multiple APs simultaneously to enhance the
reliability and decrease the latency. In order to decrease the
interference, the NOMA is applied both at the AP side and
device side for the backhaul downlink and access downlink,
respectively. In the backhaul downlink, the APs in the same
APG will share the same beamforming vector, and the SIC is
applied in each AP to mitigate the interference. In the access
downlink, the APs in the same APG transmit information
to the corresponding device using the same spectrum, and
the co-channel interference will be reduced by the SIC. The
joint resource allocation involving the beamforming opti-
mization and power allocation is formulated as a nonconvex
optimization problem which is extremely difficult to tackle.
In order to reduce the computational complexity, we decom-
pose the resource allocation problem into two subproblems
in terms of the beamforming optimization and power alloca-
tion. For the beamforming optimization subproblem, a novel
zero-forcing beamforming (ZFBF) algorithm is applied to
solve it. However, the power allocation subproblem is still a
nonconvex optimization problem due to the term of the inter-
ference. To solve it, we first reformulate the power allocation

optimization subproblem as a DC programming problem, and
then the DC programming method is adopted to optimize
it. We further prove that the solution obtained by the DC
programming method is one of the local optimal solutions of
the original problem.

The main contributions of this paper are summarized as
follows:

1) We investigate the joint resource allocation problem
involving the beamforming optimization and power
allocation for the user-centric MIMO-NOMA IoT net-
works to maximize the system throughput, and then
the resource allocation is formulated as a nonconvex
optimization problem.

2) The formulated resource allocation model is a large
scale nonconvex optimization problem which is
extremely difficult to solve. In order to reduce the
computational complexity, we decompose the original
optimization problem into two optimization subprob-
lems in terms of the beamforming optimization and
power allocation respectively. For the beamforming
optimization subproblem, a novel zero-forcing beam-
forming ZFBF) algorithm is applied to solve it.

3) The power allocation is still a nonconvex optimization
problem due to the intra-APG interference, and the
problem can be transferred as a DC programming prob-
lem. The DC programming method is adopted to opti-
mize the power allocation problem. We further prove
that the solution obtained by the DC programming
method is one of the local optimal solutions of the
original problem.

The rest of the paper is organized as follows. In section II,
the previous related works are reviewed. We describe the
system model in section III. The beamforming optimization
is introduced in section IV. In section V, we optimize the
power allocation problem using DC programming method
and analyze the performance the algorithm. In section VI,
simulation results are provided to evaluate the performance
of the proposed algorithm. Finally, we conclude this paper in
section VII.

II. RELATED WORKS
As aforementioned, the user-centric wireless networks can
effectively improve the reliability and decrease the latency
since each terminal can be served by multiple APs simul-
taneously. However, the serious interference caused by the
limited spectrum resource and massive nodes will degrade
the system performance seriously. In addition, the complexity
of the resource allocation problem of the user-centric wire-
less networks is extremely high since the resource allocation
problem is usually formulated as a large scale nonconvex
optimization problem. In order to decrease the co-channel
interference, [3] proposes a fractional frequency reuse mech-
anism in which the bandwidth is partitioned into several sun-
bands, and each subband is independently allocated to APs.
Reference [4] proposes a cluster-based spectrum resource
allocation in which the massive APs are clustered as some
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APGs, and each APG is regarded as the spectrum resource
allocation unit. Reference [5] proposes a joint frequency
bandwidth dynamic division, clustering and power control
algorithm to control interference and improve spectrum effi-
ciency. In [5], the authors divide the system bandwidth into
three frequency bands (i.e. the reuse band, the femtocell
dedicated band, and the macrocell dedicated band) dynam-
ically according to the density and the location of femtocells.
In [6], the authors present a novel clustering-based resource
allocation framework for downlink transmission, and they
jointly optimize the subchannel and power allocation and user
traffic demand in terms of a large-scale network scenario,
and formulate the resource allocation as a combinatorial opti-
mization problem. To reduce the complexity, an interference-
separation clustering-based scheme is proposed to divide
the massive small cells into smaller groups with different
priorities, which reduces the network scale. Reference [7]
proposes a multi-cluster based dynamic channel assignment
to improve system performance for the downlink. In [7],
the graph coloring algorithm is adopted to group APs, and
then a dynamic subchannel assignment scheme is proposed to
allocate subchannels for maximizing the system throughput.

NOMA has been widely applied in IoT networks since it
can significantly improve the spectrum efficiency by explor-
ing the power domain multiplexing. Reference [8] studies the
Narrowband-Internet of Things (NB-IoT) to support machine
type communications (MTCs) in next generation mobile net-
works. The authors in [8] propose a power domain NOMA
schemewith user clustering for anNB-IoT system. In particu-
lar, theMTC devices are assigned to different ranks within the
NOMA clusters where they transmit over the same frequency
resources. Then, an optimization problem is formulated to
maximize the total throughput of the network by optimizing
the resource allocation of MTC devices and NOMA cluster-
ingwhile satisfying the transmission power and quality of ser-
vice requirements. Reference [9] proposes a power-domain
NOMA scheme for the NB-IoT systems to enhance the con-
nection density by allowing multiple IoT devices to simulta-
neously access one subcarrier. In [9], both single-tone and
multi-tone transmission modes of the NB-IoT systems are
considered, where each device can access a single subcarrier
or a bond of contiguous subcarriers, respectively. The authors
in [9] formulate joint subcarrier and power allocation prob-
lems for both transmissionmodes tomaximize the connection
density while taking the quality of service requirements and
the transmit power constraints of IoT devices into account.
Reference [10] investigates a NOMA-enhanced IoT network.
In [10], a novel cluster strategy is proposed, where multiple
devices can be served simultaneously. Then, the stochastic
geometry is adopted to model the spatial randomness of both
terrestrial and aerial devices. Reference [11] considers the
radio frequency (RF) energy harvesting IoT relay system.
In [11], the authors consider to transmit the data of IoT
relay node along with source node data using non-orthogonal
multiple access (NOMA) protocol in the presence of an
interfering signal to their respective destinations.

MIMO is another critical technology for wireless networks
since it can significantly improve the system performance.
Reference [12] investigates the integration of massive MIMO
enabled heterogeneous cellular networks and IoT networks.
Considering that the human-to-human devices mainly con-
centrate on downlink throughput, but the IoT devices pay
more attention to uplink power consumption, the authors
in [12] design a device association mechanism to achieve
a tradeoff between these two performance metrics under
devices’ association requirements. Reference [13] investi-
gates the feasibility of improving the energy efficiency of
massive MIMO orthogonal frequency division multiplex-
ing (OFDM) systems applied to a battery-limited IoT net-
works. For the uplink aspect, the authors in [13] consider the
uplink reference signal (RS) power control. Reducing uplink
RS power could induce the battery saving of IoT devices but
could cause an increase in channel estimation error. For the
downlink aspect, they consider the peak-to-average power
ratio reduction of the OFDM signal and downlink transmit-
ter power control. In addition, [13] considers the utilization
of radio frequency energy transfer using unmanned aerial
vehicles to extend the operating time of battery-limited IoT
devices. Reference [14] considers the access phase for IoT
networks in a mixed-analog-to-digital converter distributed
massive MIMO system, in which users are classified into
light-load users and heavy-load users depending on their traf-
fic load requirements. To meet the low-latency and low-cost
demands in IoT, the access scheme for both types of users are
designed in a grant-free fashion.

In order to make full user of the advantages of NOMA
and MIMO, the integration of NOMA with MIMO has been
drawn a lot of attentions. Reference [15] proposes a downlink
scheme combining virtual MIMO and NOMA to support
massive connectivity and boost spectral efficiency for IoT
networks. In [15], the outage probability and goodput of the
virtual MIMO-NOMA system are thoroughly investigated by
considering the Kronecker model, which embraces both the
transmit and receive correlations. Then, the goodput maxi-
mization problems is solved in closed form by the Karush-
Kuhn-Tucker conditions, with which the joint power and rate
selection is realized by using alternately iterating optimiza-
tion. In [16], a newMIMO-NOMA scheme in IoT is designed
to serve users quickly for small packet transmission, where
one user is served with its quality of service requirement
strictly met, and the other user is served opportunistically
by using the NOMA concept. In [17], the authors propose
a novel successive sub-array activation diversity scheme for
a massive MIMO system in combination with NOMA, and a
low-complexity two-stage beamformer which is constructed
based only on the long-term channel statistical informa-
tion is proposed. Then, The authors in [17] derive an exact
closed-form expression for the outage probability through
carrying out the in-depth analytical analysis. Reference [18]
addresses multi-user multi-cluster massive MIMO systems
with NOMA. In [18], the power optimization is simpli-
fied to a convex problem, and then an iterative algorithm
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FIGURE 1. System model of the user-centric IoT network.

is proposed to provide fairness also among different
sub-groups.

III. SYSTEM MODEL
As shown in Fig.1, we consider aMIMO-NOMAsystem in an
user-centric IoT that consists of one MBS equipped with Nt
antennas overlapped a set ofM single-antenna APs. There are
N (N<M ) IoT devices that need to access the network, and
each IoT device is served by multiple APs simultaneously.
It is assumed thatM APs have been divided intoN AP groups
(APG), and the nth APG serves the nth device.
We assume that the transmission process includes the

access links (from APs to IoT devices) and downlink back-
haul links (from MBS to APs). For the backhaul downlinks,
theMBS allocates the same beamformer to theAPs belonging
to one APG. Then, the SIC is applied in each AP to mitigate
the interference. For the access downlink, the APs in the same
APG transmit signals to the corresponding device using the
same spectrum resource. In order to reduce the intra-APG
interference, the NOMA is adopted in the access links, that
is, multiple APs superpose multiple signals on the same
frequency to the corresponding IoT device, and then the SIC
is applied at the receiver to decode the superposed signals.

A. DOWNLINK SIGNALS MODEL
In this subsection, we provide the signal model of the back-
haul downlink model and access downlink respectively for
the user-centric MIMO-NOMA IoT.

1) BACKHAUL DOWNLINK SIGNAL MODEL
As aforementioned, the MBS equipped with Nt antennas, and
there are M single-antenna APs which are divided into N
APGs. It is assumed that the number of APs in the nth APG

is Mn, n = 1, . . . ,N . Obviously,
N∑
n=1

Mn = M . Then, for the

backhaul downlink, Mn APs in the nth APG shares the same
beamformer, n = 1, . . . ,N , and N independent data streams
can be given as:

X = [x1, x2, . . . , xN ]T (1)

where xn =
√
p1s1 + . . .+

√
pmnsmn + . . .+

√
pMnsMn ; pmn

denotes the transmit power from the MBS to the mnth AP in
the nth APG, mn = 1, 2, . . . ,Mn, n = 1, 2, . . . ,N .

The received signals of the APs can be written as:
y = HWX+ z (2)

where H = [HT
1 , . . . ,H

T
N ]

T
∈ CM×Nt is the channel matrix

from theMBS to APs, andHn ∈ CMn×Nt ;W= (w1, . . . ,wN )
∈ CNt×N denotes the beamforming matrix at the MBS, and
‖wn‖ = 1, n = 1, . . . ,N ; z is the additive Gaussian white
noise (AWGN) with zero mean and variance δ2.
The received signal of the mth AP in the nth APG can be

written as:

ymn = hmnwn
√
pmnsmn +

Nr∑
i=1,i6=mn

hmnwn
√
pinsin

+

∑
j=1,j 6=n

hmnwjxj + zmn (3)

where hmn ∈ C1×Nt denotes the channel coefficient from
the MBS to the mnth AP in the nth APG; the first term
is the desired signal, and the second term is the intra-APG
interference from the other Mn − 1 APs of the nth APG, and
the third term is the inter-APG interference from the other
N − 1 APGs; zmn is the AWGN with zero mean and variance
δ2 for the mnth AP in the nth APG from the MBS.
In each APG, the NOMA is applied to reduce the inter-

ference caused by the beamformer sharing. Without loss of
generality, we assume the channel coefficients from the MBS
to APs can be ordered as follows: Without loss of generality,
it is assume that the channel coefficients can be ordered as:

‖h1n‖ ≥ ‖h2n‖ ≥ . . . ≥ ‖hMn‖ (4)

where ‖ • ‖ represents the 2-norm.
In accordance with the principle of NOMA, the AP with

better channel condition can decode the signals of the APs
with weaker channel condition and then proceeds to subtract
it from the received signal and decode its own data. The
received signal-to-interference-plus-noise ratio (SINR) of the
mnth AP in the nth APG is given by:

SINRmn=
|hmnwn|

2pmn
mn−1∑
i=1
|hmnwn|

2pin+
∑

j=1,j 6=n
|hmnwj|

2pj+δ2
(5)

where pj is the total transmit power of the jth APG.
Therefore, the achievable rate of the mnth AP in APG n in

the backhaul downlink can be written as:
Rb,mn = log(1+ SINRmn ) (6)

The achievable backhaul rate of the nth user can be
given as:

Rb,n =
Mn∑
mn=1

Rb,mn =
Mn∑
mn=1

log(1+ SINRmn ) (7)

B. ACCESS DOWNLINK SIGNALS MODEL
In this subsection, we give the signal model of the access
downlink model of the user-centric MIMO-NOMA IoT net-
works. For the access downlink, there exists intra-APG inter-
ference as a result that multiple APs in the sameAPG transmit
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signals to the corresponding device simultaneously. For sim-
plification, it is assumed that the inter-APG interference can
be avoided due to the proper APs grouping and resource allo-
cation. The received signals of the nth device can be given as:

yn =
Nr∑

mn=1

hmnn
√
pmnnsmnn + zmnn (8)

where hmnn denotes the channel coefficient from themnth AP
in the nth APG to the nth device; pmnn represents the transmit
power of the mnth AP in the nth APG to the nth device; zmnn
means the AWGNwith zero mean and variance δ2 for the nth
device from the mnth AP in the nth APG.
Without loss of generality, it is assumed that the channel

coefficients can be ordered as:
h1n ≥ h2n ≥ · · · ≥ hMnn (9)

According to the principle of NOMA, device n with SIC
can successfully decode the signals of the APs with weaker
channel condition. That is, the signal of the AP with best
channel condition can be first decoded, however, it should
experience interference from the other APs in the APG since
the device cannot remove the signals from the other APs.

Thus, the received SINR of the nth device can be written
as:

SINRmnn =
|hmnn|

2pmnn
Mn∑

d=mn+1
|hdn|2pdn + δ2

(10)

The achievable access rate of the nth device served by the
nth APG can be given as:

Ra,n =
Mn∑
mn=1

log(1+ SINRmnn) (11)

Then, the total system throughput can be given as:

R =
N∑
n=1

Ra,n (12)

Ra,n ≤ Rb,n (13)

C. PROBLEM FORMULATION
In this paper, we aim to maximize the system throughput of
the user-centric MIMO-NOMA IoT networks through opti-
mizing the beamforming strategy and power allocation. The
optimization problem can be formulated as:

P1 max
W,p

Rtot =
N∑
n=1

Ra,n (14)

s.t.
N∑
n=1

Mn∑
mn=1

pmn ≤ PB (15)

pmnn ≤ Pap, ∀mn,∀n (16)

Ra,n ≤ Rb,n, ∀n (17)

where (15) and (16) represent the maximum power con-
straint of the MBS and APs, respectively; (17) means that the

achievable rate of each device should be less than the avail-
able data rate of backhaul links due to the limited backhual
capacity.

It is obvious that the joint resource allocation problemP1 is
a nonconvex optimization problem with high computational
complexity which is extremely difficult to solve. In order
to reduce the computational complexity, we decompose
problem P1 into two optimization subproblems in terms of
the beamforming optimization and power allocation respec-
tively. For the beamforming optimization, we use a novel
ZFBF algorithm in [19] to solve it. Then, the DC program-
ming method is adopted to optimize the power allocation
subproblem.

IV. BEAMFORMING OPTIMIZATION
In this section, we adopt a novel ZFBF algorithm in [19] to
solve the beamforming optimization in the backhaul down-
link. Next we briefly introduce the novel ZFBF algorithm,
and the details of this algorithm can be referred to [19].

In the first, the channel coefficient matrix of the nth APG
is obtained: Hn = [hT1n , . . . ,h

T
Mn

]T∈ CMn×Nt , where hmn∈
C1×Nt is the channel coefficient from the MBS to the mnth
AP in the nth APG.
Then, the singular value decomposition is used to

decompose the channel coefficient matrix Hn as:
Hn = Un6nV T

n (18)

whereUn andVn are the left singular matrix and right singular
matrix of Hn, respectively. 6n is a diagonal matrix.

In the next, the equivalent matrixHn ofHn can be obtained:
Hn = U (1)T

n Hn (19)

where U (1)T
n ∈ C1×Mn denotes the transposition of the first

column of matrix Un.
The equivalent matrix H of the channel coefficient matrix

H of all APs is:
H = [H1, . . . ,HN ] (20)

Then, computing the pseudo inverse of H, and making H
unit, the beamforming matrix W can be obtained:

W =
H
+

‖H
+
‖F

= [
w1

‖w1‖F
, . . . ,

wN

‖wN‖F
] (21)

where ‖ • ‖F represents the F-norm, and wn denotes the nth
column of the pseudo inverse of H.

V. POWER ALLOCATION USING DC PROGRAMMING
In the above section, the beamforming matrix W has been
optimized using the novel ZFBF algorithm. The original
optimization problem can be reformulated as:

P2 max
p

Rtot =
N∑
n=1

Ra,n (22)

s.t. (15), (16), (17) (23)

It can be observed that problem P2 is also difficult to solve
for the power allocation subproblem since it is still a noncon-
vex optimization problem. In order to decrease the computa-
tional complexity, we first approximate the constraint (17) as
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a affine constraint. To achieve it, we introduce two additional
constraints of problem P2:

mn−1∑
i=1

|hmnw
∗
n|
2pin+

∑
j=1,j 6=n

|hmnw
∗
j |
2pj ≤ χb (24)

Mn∑
d=mn+1

|hdn|2pdn ≤ χa (25)

where χb and χa are pre-set values, and by adjusting them,
a good system performance can still be obtained.

Then, both the achievable backhaul downlink rate and the
achievable access rate of user n are bounded by:

R∗b,n(p1) =
Mn∑
mn=1

log(1+
|hmnwn|

2pmn
χb +δ2

) (26)

R∗a,n(p2) =
Mn∑
mn=1

log(1+
|hmnn|

2pmnn
χa + δ2

) (27)

where p1 = {pmn}, and p2 = {pmnn}.
(26) and (27) can be approximated by the first Taylor

expansion:
R∗b,n(p1) ≈ R

∗

b,n(p1) = R∗b,n(p
v
1)+∇R

∗
b,n(p

v
1)(p1 − pv1) (28)

R∗a,n(p2) ≈ R
∗

a,n(p2) = R∗a,n(p
v
2)+∇R

∗
a,n(p

v
2)(p2 − pv2) (29)

where pv1 and pv2 denote the solutions of p1 and p2 from the
vth iteration.

Therefore, constraint (17) can be rewritten as a affine form:

R
∗

b,n(p1)− R
∗

a,n(p2) ≥ 0 (30)

In accordance the property of logarithmic function,
the objective function of problem P2 can be rewritten as:
N∑
n=1

Ra,n =
N∑
n=1

Mn∑
mn=1

log(1+
|hmnn|

2pmnn
Mn∑

d=mn+1
|hdn|2pdn+δ2

)

=

N∑
n=1

Mn∑
mn=1

log(
Mn∑

d=mn+1

|hdn|2pdn+|hmnn|
2pmnn+δ

2)

−

N∑
n=1

Mn∑
mn=1

log(
Mn∑

d=mn+1

|hdn|2pdn+δ2) (31)

Let H (p12) =
N∑
n=1

Mn∑
mn=1

log(
Mn∑

d=mn+1
|hdn|2pdn + δ2), where p12

= {p(mn+1)n, . . . , pMnn}. H (p12) can be approximated by the
first Taylor expansion as:

H (p12) = H (p1v2 )+∇H (p1v2 )(p12 − p1v2 ) (32)

Thus, problem P2 can be rewritten as:

P3 max
N∑
n=1

Mn∑
mn=1

log(
Mn∑

d=mn+1

|hdn|2pdn + δ2 + |hmnn|
2pmnn)

−H (p1v2 )−∇H (p1v2 )(p12 − p1v2 ) (33)

s.t. (15), (16), (30) (34)

It can be observed that problem P3 is a convex optimization
problem, since the objective function is concave, and all the
constraints are affine. In the following, we use the Lagrangian
dual method to optimize it.
The Lagrangian function of problem P3 can be given as:

L =
N∑
n=1

Mn∑
mn=1

log(
Mn∑

d=mn+1

|hdn|2pdn + δ2 + |hmnn|
2pmnn)

−H (p1v2 )−∇H (p1v2 )(p12 − p1v2 )

−λ(
N∑
n=1

Mn∑
mn=1

pmn−PB)−
N∑
n=1

Mn∑
mn=1

µmnn(pmnn−Pap)

−ηn(R
∗

b,n(p1)− R
∗

a,n(p2)) (35)

where λ, µmnn(mn = 1, 2, . . . ,Mn, n = 1, 2, . . . ,N ) and
ηn(n = 1, 2, . . . ,N ) are Lagrangian multipliers with respect
to constraints (15), (16) and (30), respectively.

Then, we can obtain the dual function of problem P3:

g(λ,−→µ ,−→η ) = max
p

L(p, λ,−→µ ,−→η ) (36)

Setting the the partial derivation of (35) with respect to
pmnn, ∀n ∀mn:

∂L
∂pmnn

=
|hmnn|

2

Mn∑
d=mn+1

|hdn|2pdn + |hmnn|2pmnn + δ2

−µmnn − ηn = 0 (37)

Then, we can obtain M equations which are not linear.
To address it, we transfer these equations into linear. (37) can
be rewritten as:

Mn∑
d=mn+1

|hdn|2pdn+|hmnn|
2pmnn+δ

2
=
|hmnn|

2

µmnn + ηn

∀n, ∀mn (38)

Let A denote the coefficient matrix of the above equations,

and Y = (p1n, . . . , pMN n). Let b = ( |h1n|
2

µ1n+ηn
, . . . ,

|hMN n|
2

µMN n+ηn
)T .

The above equations can be rewritten as:

AY = b (39)

Thus, we can obtain the solution of (39):

p̂2 = A−1b (40)

The iterative formula of pv2 can be given as:

pv+12 = pv2 + θ (̂p2 − pv2) (41)

where θ is the stepsize.
For the transmit power p1, we adopt the maximum transmit

power PB, and all APs are averagely allocated the power.
That is,

p∗mn =
PB
M
, ∀n, ∀mn (42)

Then, the Lagrangian multiplier λ can be removed.
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Algorithm 1 The Power Allocation Optimization Using DC
Programming
1: Initialization
2: set v = 0.
3: Initialize the power allocation variables p0,

the Lagrangian multipliers −→µ (0), and −→η (0).
4: Set the convergence threshold τthr .
5: Updating
6: while pv − pv−1 � τthr do
7: v = v + 1;
8: Compute the optimal power allocation of P3 p̂2

according to (40).
9: Updating power allocation pv2 according to (41);
10: Solve the dual problem (43) and updating Lagrangian

multiplier µmnn, ∀n,∀mn and ηn, ∀n according to (46)
and (47) respectively.

11: end while

A. OPTIMIZING THE DUAL PROBLEM
The dual optimization problem of problem P3 is given as:

min g(−→µ ,−→η )

s.t. −→µ � 0, −→η ≥ 0 (43)

The dual problem is a convex optimization problem, and the
sub-gradient method can be used to optimize it.

The sub-gradient at the point −→µ , −→η can be given:

1µmnn = Pap −
N∑
n=1

Mn∑
mn=1

pmnn, ∀n, ∀mn (44)

1ηn = R
∗

b,n(p
∗

1)− R
∗

a,n(p
∗

2), ∀n (45)

The Lagrangian multipliers can be updated by the
following formulas:

µmnn(i+ 1) = µmnn(i)− υmnn1µmnn (46)

ηn(i+ 1) = ηn(i)− ιn1ηn (47)

where υmnn (∀n,∀mn) and ιn are the iteration stepsizes
corresponding to µmnn, ∀n,∀mn and ηn, ∀n, respectively.
The details of the proposed power allocation scheme for
the user-centric MIMO-NOMA IoT networks is shown in
Algorithm 1.
Theorem 1: The solution obtained by the DC program-

ming algorithm is one of the local optimal solutions of the
original problem.

Proof: Suppose p̂2(pv2) is the optimal solution of
problem P3. There is, ∇L (̂p2(pv2)) = 0. As proved in [20]

lim
v→∞

p̂2(pv2) = lim
v→∞

pv2 (48)

In accordance with the property of the Taylor expansion,
the gradient of the Taylor expansion at the expansion point
is equal to that of the original problem at the expansion
point. Therefore, while v → ∞, the gradient of the original
problem at the point p̂2(pv2) is equal to ∇L (̂p2(p

v
2)) = 0. As a

FIGURE 2. The APs and devices are modeled as independent PPP. The
green solid point, blue solid point and the red triangle represent the MBS,
APs and devices, respectively.

result, lim
v→∞

p̂2(pv2) is a local optimal solution of the original
problem.

VI. SIMULATED RESULTS
In this section, we intend to evaluate the performance of
the proposed resource allocation scheme for the user-centric
MIMO-NOMA IoT. The parameters of the user-centric
MIMO-NOMA IoT are set as follows unless otherwise spec-
ified. It is assumed that the coverage region of the BS is
a square with area of 0.1 Km × 0.1 Km, and the MBS
with 3 antennas is deployed in the center of the cell. The
APs and users are modeled as independent Poisson points
process (PPP) such as Fig.2, respectively. The large scale
path loss is modeled according to the WINNER model [21],
and the small scale fading is modeled as Rayleigh fad-
ing. The transmit power of the MBS and APs are set as
46 dBm and 30 dBm respectively. The system bandwidth is
set to 20 MHz, and the spectrum density of the noise is set
to −174 dBm/Hz.
In order to illustrate the effectiveness of the proposed

resource allocation scheme, we compare it with a few of
benchmarks as follows: 1) the traditional cell-centric access
scheme with NOMA, in which each device can be served by
at most one AP in the access link, and the NOMA is applied
in each cell; 2) the user-centric access scheme with OMA,
in which the NOMAwill not be applied in each APG both for
the backhaul downlink and access downlink; 3) the traditional
cell-centric access scheme with OMA, in which each device
can be served by at most one AP in the access link, and the
NOMA is not applied in each cell.

Fig.3 compares the system throughput of the MIMO sys-
tem with that of the single-antenna system. From Fig.3,
the system throughput increases with the increase of the
number of APs for both theMIMO system and single-antenna
system. Furthermore, the MIMO system achieves higher
system throughput than the single-antenna system for the
same number of the APs, and this result shows that theMIMO
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FIGURE 3. Comparison of the system throughput using MIMO system
with that of the single-antenna system.

FIGURE 4. System throughput vs the number of the APs.

system can significantly improve the spectrum efficiency.
On the other hand, Fig.Fig.3 illustrates that the combination
of the MIMO and NOMA has great advantages. Indeed,
grouping the APs can improve the performance of the beam-
forming since the number of the beamforming vectors is
reduced, and then the NOMA is applied in each APG in
order to decrease the intra-APG interference caused by the
beamforming vector sharing.

Fig.4 shows the system throughput with the increase of
the number of the APs. It can be observed from Fig.4 that
the system throughput increases with the increase of the
number of the APs. Furthermore, the proposed resource allo-
cation scheme outperforms the other benchmarks in terms
of the system throughput. In addition, it can also be seen
that the user-centric access scheme with OMA has higher
throughput than the other two benchmarks, and this result
depicts the effectiveness of the user-centric access scheme.
Fig.5 presents the system throughput with the increase of the
number of devices, and it shows that the system throughput
increases with the increase of the number of the devises
due to the multi-user diversity. Fig.5 also shows similar
curve trends with Fig.4 which illustrates the effectiveness of
the proposed resource allocation scheme for the user-centric
MIMO-NOMA IoT.

FIGURE 5. System throughput vs the number of the devices.

FIGURE 6. Outage of the probability vs the number of the SNR.

Fig.6 and Fig.7 depict the outage probability with different
number of the APs and devices. The results of Fig.6 and
Fig.7 show that the proposed resource allocation scheme for
the user-centric MIMO-NOMA IoT has lower outage proba-
bility than the other benchmarks. The fact can be explained
that the diversity gain can be achieved since multiple APs
can serve the same devise simultaneously. On the other hand,
it can also be seen from Fig.6 and Fig.7 that NOMA system
can significantly decrease the outage probability comparing
with the traditional OMA access scheme. Indeed, each beam-
forming vector is allocated to multiple APs simultaneously in
order to improve the efficient. However, it will cause serious
intra-APG co-channel interference. NOMA can reduce the
intra-APG interference by removing the interference from the
APs with better channel condition through utilizing the SIC.
Furthermore, it can be observed that the curves decrease slow
with the increase of the number of the APs. This result can be
explained as that multiple APs serving the same device can
improve the SNR at the side of the device. However, when
the number of the APs is large enough, the performance of
the NOMA will be reduced.

In the following, we intend to evaluate the convergence
performance of the proposed resource allocation scheme for
the user-centric MIMO-NOMA IoT, and the results is shown
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FIGURE 7. Outage of the probability vs the number of the APs.

FIGURE 8. System throughput vs the number of iterative index.

in Fig.8. From Fig.8, it can be observed that the proposed
resource allocation scheme has good convergence, and the
algorithm converges with 25 iterations.

VII. CONCLUSION
In this paper, we have investigated the user-centric access
framework for the IoT to enhance the system performance,
in which each device are served by multiple APs simultane-
ously. In order to further improve the spectrum efficiency,
the MIMO and NOMA are integrated due to the comple-
mentarity of these two issues. Then, the resource allocation
involving the beamforming strategy optimization and the
power allocation for the user-centric MIMO-NOMA IoT has
been investigated, and we have formulated the resource allo-
cation problem as a nonconvex optimization problem which
is extremely difficult to tackle. To reduce the computational
complexity, we decompose the original optimization problem
into two optimization subproblems in terms of the beam-
forming stragegy optimization and power allocation. For
the beamforming strategy optimization subproblem, a novel
ZFBF algorithm is applied to solve it. The power allocation is
still a nonconvex optimization problem due to the intra-APG
interference, and the problem has been transferred as a DC
programming problem. The DC programming approach has
been adopted to optimize the power allocation problem.

We have further proved that the solution obtained by the DC
programming method is one of the local optimal solutions of
the original optimization problem.
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