
SPECIAL SECTION ON EMERGING TRENDS OF ENERGY AND
SPECTRUM HARVESTING TECHNOLOGIES

Received November 24, 2020, accepted December 7, 2020, date of publication December 17, 2020, date of current version January 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3045611

Frequency-Hopping Sequences With Optimal
Average Hamming Correlation and Their
Applications in Energy and Spectrum
Harvesting Technologies Area
MINGYUE FAN
School of Information Engineering, China Jiliang University, Hangzhou 310018, China

e-mail: mingyue_fan@163.com

ABSTRACT The research of cyclotomy theory can be traced to Gauss and it has been applied to many fields
such as cryptography, coding theory, and combinatorics. According to v prime numbers or compound words,
the incision on the residue-like ring Zv can be separated to classic incision or general incision. In this work,
a kind of extended generalized cyclotomic classes is introduced. Based on this tangent method, a class of
frequency hopping sequence set with the best average Hamming correlation is proposed.

INDEX TERMS Frequency-hopping, hamming correlation, generalized cyclotomy, energy and spectrum
harvesting technologies.

I. INTRODUCTION
Suppose Zv is an integer ring modulo v. Let Z∗v be all
reversible elements of Zv. {D0,D1, . . . ,Dd−1} is a partition
of Z∗v , which is a family set with

Di ∩ Dj = ∅ for all i 6= j,
d−1⋃
i=0

Di = Z∗v .

Suppose that Z∗v has a multiplicative sub-group D0, and
h1, . . . , hd−1 is the elements of Z∗v so that for all i,Di = hiD0
and the cosets Di can be called as generalized cyclotomic
classeswhen v is composite, and classical cyclotomic classes
when v is prime. For all 0 ≤ i, j ≤ d − 1, the (generalized)
ring number of d is set as (i, j) = |(Di + 1) ∩ Dj|. There
may be many multiplication subgroups D0 for index d in Z∗v .
There will be give different numbers of generalized incision
and circumcision with Different subgroups D0.
In the book ‘‘Disquisitiones Arithmeticae’’ [2]–[4], [12],

Gauss first presented the detailed classical secant technique.
The so-called cyclotomic numbers and Gaussian periods
were also introduced, and they are associated with some loop
codes [10].

In order to find the residual set, Whiteman presented the
generalized segmentation method of order d in [21] on p1p2,
where p1, p2 satisfy the rule of gcd(p1 − 1, p2 − 1) = d .
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After that, it has been applied to several research fields, such
as cyclic codes, sequence construction, and codebooks. Ding
[10] introduced extended generalized cyclotomic classes of
order two by extending the concept of generalized circum-
section of Whiteman, and studied their basic characteristics.
Facts have proved that the extended generalized cyclic tan-
gent method in [10] can be used to generate cyclic codes with
good parameters.

The first objective of this work is to study an approach of
extended generalized cyclotomic classes of order n and their
basic properties and their cyclotomic numbers. This gener-
alizes the study of order two’ cyclotomic classes. Another
objective is using order n’s extended generalized cyclotomic
classes to obtain highly Hamming correlational frequency-
hopping sequence sets.

The following symbols can conclude the first section and
the remained content will use these notations.
• p and q are two distinct odd primes.
• P = {p, 2p, . . . , (q − 1)p}, Q = {q, 2q, . . . ,
(p− 1)q}, R = {0}.

• Z∗pq is the Zpq’s invertible elements.
• d = gcd(p−1, q−1), e = (p−1)(q−1)

d and κ = (p−1)(q−1)
d2

.
• positive integer n satisfies n|d .

II. GENERALIZED CYCLOTOMY
In the following, the properties of order d’s generalized gen-
eralized segmentation ofWhiteman is introduced, andwewill
utilize them next sections.
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When the multiplicative order of an integer a modulo v
equals φ(v) (φ(v) is Euler function and gcd(a, v) = 1), a can
be named a primitive root modulo v.
According to the Chinese Remainder Theorem,

since p and q are relative prime numbers, there is a universal
primitive root g. Then the integer x should satisfy

x ≡ g (mod p), x ≡ 1 (mod q).

Whiteman proved that [21]

Z∗pq =
{
gsx i : s = 0, 1, . . . , e− 1, i = 0, 1, . . . , d − 1

}
.

The order d’s generalized cyclotomic classes can be denoted
as

Di =
{
gsx i : s = 0, 1, . . . , e− 1

}
, i = 0, 1, . . . , d − 1

and the generalized cyclotomic numbers (i, j)d are denoted as

(i, j)d = |(Di + 1) ∩ Dj|, 0 ≤ i, j ≤ d − 1.

Lemmas shown as follows summarizes many properties of
order d’s generalized ring number of Whiteman [21].
Lemma 1: Let the notations be used as afore-mentioned.

Then
(1) Z∗pq ∪ P ∪ Q ∪ R = Zpq.

(2) Z∗pq =
d−1⋃
i=0

Di, Di ∩ Dj = ∅ for i 6= j.

(3) The order of g modulo pq is e.
(4) D0 is a subgroup of Z∗pq.
(5) The order of x modulo pq is p− 1.
(6) xd = gu for some u with 0 ≤ u ≤ e− 1.
(7) If a ∈ Dj, aDi = D(i+j) (mod d).

(8)−1 =

{
g
e
2 (mod v), if κ is odd

gµx
d
2 (mod v), if κ is even

, for some µ with

0 ≤ µ ≤ e− 1.
Lemma 2: Let the notations be used as afore-mentioned.

Then
(A0) (i, j)d = (i′, j′)d , when i ≡ i′ (mod d) and j ≡ j′

(mod d).

(A1) (i, j)d= (d−i, j−i)d=

{
(j, i)d , if κ is odd,
(j+ d

2 , i+
d
2 )d , if κ is even.

(A2)
d−1∑
j=0

(i, j)d =
(p−2)(q−2)−1

d + δi, where

δi =


1, if i ≡ 0 (mod d) and κ is odd,

1, if i ≡
d
2

(mod d) and κ is even,

0, otherwise.

(A3)
d−1∑
i=0

(i, j)d =
(p−2)(q−2)−1

d + εj, where

εj =

{
1, if j ≡ 0 (mod d),
0, otherwise.

Lemma 3: Let the notations be used as afore-mentioned.
Then for any ω ∈ Zpq,

|(Di + ω) ∩ Dj|

=



(p− 1)(q− 1)
d2

, i 6= j, ω ∈ P ∪ Q,
(p− 1)(q− 1− d)

d2
, i = j, ω ∈ P, ω 6∈ Q,

(p− 1− d)(q− 1)
d2

, i = j, ω 6∈ P, ω ∈ Q,

(i−k, j−k)d , ω∈Dk (0≤k≤d−1).
|(Di + ω) ∩ (Q ∪ R)|

=

 0, ω ∈ Q ∪ R,
p− 1
d

, ω ∈ P ∪ Z∗pq.

|(Di + ω) ∩ (P ∪ R)|

=

 0, ω ∈ P ∪ R,
q− 1
d

, ω ∈ Q ∪ Z∗pq.

III. EXTENDED GENERALIZED CYCLOTOMY
In [10], Ding introduced the order two’s extended generalized
cyclotomic classes:

C (2)
0 =

(d−2)/2⋃
i=0

D2i, C
(2)
1 =

(d−2)/2⋃
i=0

D2i+1,

which is different from Whiteman’s generalized cyclotomic
classes if d > 2. We will generalize this concept, and define
order n’s extended generalized cyclotomic classes and order
n’s extended cyclotomic numbers as follows:

A(n)i =

d
n−1⋃
s=0

Dsn+i, 0 ≤ i ≤ n− 1,

(i, j)n = |(A
(n)
i + 1) ∩ A(n)j |, 0 ≤ i, j ≤ n− 1.

Remark 4: For the extended generalized cyclotomy
defined above, we have the following comments.

(1) When n = d , the extended generalized cyclotomy is
identical to the generalized cyclotomy of Whiteman.

(2) When n = 2, the extended generalized cyclotomy is
indeed the cyclotomy introduced by Ding [10].

We summarize some properties of order n’s extended
cyclotomy in the following lemmas.
Lemma 5: Let the notations be used as afore-mentioned.

Then

(1) Z∗pq =
n−1⋃
i=0

A(n)i , A
(n)
i ∩ A

(n)
j = ∅ for i 6= j.

(2) A(n)0 is a subgroup of order (p−1)(q−1)
n of Z∗pq.

(3) If a ∈ A(n)j , aA(n)i = A(n)(i+j) (mod n).

(4) −1 ∈


A(n)0 , if κ is odd,

A(n)0 , if κ is even and d
n is even,

A(n)n
2
, if κ is even and d

n is odd.

Proof: The properties can be easily obtained by
Lemma 1. We omit the details here. �
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Lemma 6: Let the notations be the same as before. Then
(B0) (j, i)n = (j′, i′)n, where j ≡ j′ (mod n) and i ≡ i′

(mod n).
(B1) (j, i)n=(n− j, i− j)n.

(B2) (j, i)n=


(i, j)n, if κ is odd,
(i, j)n, if κ is even and d

n is even,
(i+ n

2 , j+
n
2 )n, if κ is even and d

n is odd.

(B3)
n−1∑
j=0

(i, j)n =
(p−2)(q−2)−1

n + δi, where

δi =



1, if i ≡ 0 (mod n) and κ is odd,

1, if i ≡ 0 (mod n), κ is even and
d
n
is even,

1, if i ≡
n
2

(mod n), κ is even and
d
n
is odd,

0, otherwise.

(B4)
n−1∑
i=0

(i, j)n =
(p−2)(q−2)−1

n + εj, where

εj =

{
1, if j ≡ 0 (mod n),
0, otherwise.

Proof: It can be seen that Property (B0) is obvious.
Property (B1) will be first proved. We can learn from
Lemma 2’s Property (A1):

(i, j)n =

d
n−1∑

s′,t ′=0

|(Ds′n+i + 1) ∩ Dt ′n+j| (1)

=

d
n−1∑

s′,t ′=0

(s′n+ i, t ′n+ j)d (2)

=

d
n−1∑

s′,t ′=0

((
d
n
− s′)n− i, (t ′ − s′)n+ j− i)d (3)

=

d
n−1∑
s,t=0

(sn− i, tn+ j− i)d (4)

= (n− i, j− i)n. (5)

Then Property (B2) is easily proved by (i, j)n =

|((−1)A(n)j + 1) ∩ (−1)A(n)i | and Lemma 5 (3), (4).
Property (B3) will be then proved. It follows from

Property (A2) in Lemma 2 that

n−1∑
j=0

(i, j)n =
n−1∑
j=0

d
n−1∑
s,t=0

|(Dsn+i + 1) ∩ Dtn+j|

=

d
n−1∑
s=0

 d
n−1∑
t=0

n−1∑
j=0

(sn+ i, tn+ j)d


=

d
n−1∑
s=0

d−1∑
j′=0

(sn+ i, j′)d

=

d
n−1∑
s=0

(
(p− 2)(q− 2)− 1

d
+ δsn+i

)
=

(p− 2)(q− 2)− 1
n

+ δi.

Wecan prove Property (B4) in similar. The detailed process
is omitted here. �
Lemma 7: For any 0 ≤ i, j ≤ n− 1 and ω 6= 0,

|(A(n)i + ω) ∩ A
(n)
j |

=



(i− k, j− k)n, ω ∈ A(n)k ,
(p− 1)(q− 1)

n2
, i 6= j, ω ∈ P ∪ Q,

(p− 1)(q− 1− n)
n2

, i = j, ω ∈ P, ω 6∈ Q,
(p− 1− n)(q− 1)

n2
, i = j, ω 6∈ P, ω ∈ Q.

Proof: (1) The first equality is easily proved by
Lemma 5 (3).

(2) When ω ∈ P ∪ Q and i 6= j, A(n)i ∩ A
(n)
j = ∅. Then by

Lemma 3,

|(A(n)i + ω) ∩ A
(n)
j | =

d
n−1∑
s,t=0

|(Dsn+i + ω) ∩ Dtn+j|

=

d
n−1∑
s,t=0

(p− 1)(q− 1)
d2

=
(p− 1)(q− 1)

n2
.

(3) When ω ∈ P, ω 6∈ Q and i = j, by Lemma 3,

|(A(n)i + ω) ∩ A
(n)
i | =

d
n−1∑
s,t=0

|(Dsn+i + ω) ∩ Dtn+i|

=

d
n−1∑
s=0

|(Dsn+i + ω) ∩ Dsn+i|

+

d
n−1∑
s,t=0
s6=t

|(Dsn+i + ω) ∩ Dtn+i|

=
(p− 1)(q− 1− d)

dn

+
(d − n)(p− 1)(q− 1)

dn2

=
(p− 1)(q− 1− n)

n2
.

(4) When ω 6∈ P, ω ∈ Q and i = j, the result is similarly
proved. We omit the details here. �
Lemma 8: For i in [0, n− 1], j 6= 0 and ω 6= 0,

n−1∑
i=0

|(A(n)i + ω) ∩ A
(n)
i | =


(p− 1)(q− 1− n)

n
, ω ∈ P,

(p− 1− n)(q− 1)
n

, ω ∈ Q,
(p−2)(q−2)−1

n
+1, ω ∈ Z∗pq.
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n−1∑
i=0

|(A(n)i+j + ω) ∩ A
(n)
i | =


(p− 1)(q− 1)

n
, ω ∈ P ∪ Q,

(p−2)(q−2)−1
n

, ω ∈ Z∗pq.
Proof: The results can be obtained by Lemma 6 (B1),

(B4) and Lemma 7. We only proved the last equality here,
and leave the rest to the readers.

For ω ∈ A(n)k (0 ≤ k ≤ n− 1), we have

n−1∑
i=0

|(A(n)i+j+ω)∩A
(n)
i |

=

n−1∑
i=0

(i+j−k, i−k)n=
n−1∑
i=0

(k−i−j, n−j)n

=

n−1∑
i′=0

(i′, n−j)n=
(p−2)(q−2)−1

n
.

The last equality comes true since n− j 6≡ 0 (mod n). �
Lemma 9: For i in [0, n− 1] and ω ∈ Zpq,

|(A(n)i +ω)∩(Q∪R)| =

 0, ω∈Q∪R,
p− 1
n

, ω∈P∪Z∗pq.

|(A(n)i +ω)∩(P∪R)| =

 0, ω∈P∪R,
q−1
n
, ω∈Q∪Z∗pq.

|A(n)i ∩(P+ω)| =


0, ω∈P,
q−1
n
−1, ω∈A(n)i .

q− 1
n

, ω∈Q∪Z∗pq\A
(n)
i .

|A(n)i ∩(P∪Q∪R+ω)| =



p−1
n
, ω∈P,

q−1
n
, ω∈Q,

p−1
n
+
q−1
n
−1, ω∈A(n)i .

p−1
n
+
q−1
n
, ω∈Z∗pq\A

(n)
i .

|(P∪Q∪R+ω)∩(P∪Q∪R)| =


q, ω ∈ P,
p, ω ∈ Q.
2, ω ∈ Z∗pq.

Proof: The results are easily obtained by Lemma 3. We
only notice the last equality is proved by the following trivial
facts:

|(P+ ω) ∩ Q| =

{
0, ω ∈ P ∪ Q ∪ R,
1, ω ∈ Z∗pq.

|(P+ ω) ∩ P| =

{
0, ω ∈ Q ∪ Z∗pq,
q− 2, ω ∈ P.

|(Q+ ω) ∩ Q| =

{
0, ω ∈ P ∪ Z∗pq,
p− 2, ω ∈ Q.

Thus, we get all the conclusions. �

IV. AN APPLICATION OF EXTENDED CYCLOTOMY IN FHS
DESIGN
Frequency-hopping sequence (FHS) has been broadly
utilized in nowadays communication systems, such as ultra-
wide bandwidth radios, blue tooth, and wearable sense net-
work [11], [20]. The using of FHS sets with lower Hamming
correlation and larger sets is very important in these sys-
tems. In the FHS spectrum (FHSS) communication systems,
average error performance was evaluated by the average
Hamming correlation (AHC), and the worst-case perfor-
mance is represented by the maximum Hamming correlation
(MHC). We only discuss the sets of FHS with the best AHC
in the article. For the construction of the sets of FHS with the
best MHC in terms of Peng-Fan bound [17], readers can refer
to [1], [5]–[7], [9], [13], [14], [16] and its references.

We can denote a available frequencies set as F =

{f0, f1, . . . , f`−1}. The array X = (x0, x1, . . . , xL−1) is
defined as an L-length FHS over F when xt ∈ F for t ∈
[0,L − 1]. For L-length FHSs Y and X over F , the periodic
Hamming correlation between Y and X can be written as

HY ,X (τ ) =
L−1∑
k=0

h[yk , xk+τ ], 0 ≤ τ < L,

where h[y, x] = 0 when y 6= x, and 1 when y = x. If Y =
X , HY ,X (τ ) is Y ’s Hamming autocorrelation, and is defined
as HY (τ ).

Let U be a set of M L-length FHSs over F with |F | = `.
Define

Sa(U) =
∑

X∈U ,1≤τ<L
HX (τ ),

Sc(U) =
1
2

∑
X ,Y∈U ,X 6=Y ,0≤τ<L

HX ,Y (τ ).

The average Hamming autocorrelation and crosscorrelation
of U are defined by

Aa(U) =
Sa(U)

M (L − 1)
,

Ac(U) =
2Sc(U)

LM (M − 1)
,

respectively [19]. A bound on an FHS set’s AHCs is created
in lemma [19] as follows.
Lemma 10: For an L-length and M-size FHS set U over

F with |F | = `, the average Hamming auto-correlation and
cross-correlation of U can be denoted as Aa(U)and Ac(U).
Then,

Aa(U)
L(M − 1)

+
Ac(U)
L − 1

≥
LM − `

`(L − 1)(M − 1)
. (6)

When the pair (Aa(U),Ac(U)) keeps (6) with equality,
the set U of an FHS is considered having optimal
AHC.

After the AHC’s concept was introduced [19], we have
known several constructions of FHS with the best AHC. The
boundary in the above lemmawas first proposed by Peng, Niu
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and Tang [19], and some FHS sets based on cubic polynomi-
als with the best AHC were also proposed. According to the
power residual theory, they [19] construct a type of FHS set,
which are the best for AHC and MHC binding [18]. Chung
and Yang analyzed some FHS sets’ AHC known to have the
best MHC, and showed that the best MHC cannot ensure
the best AHC. The segmentation method [8] constructed the
best AHC and was close to the best MHC New FHS set.
Through utilizing the theory of generalized circumcision of
Whiteman [21], the FHS set with the best AHC was also
constructed [15].

In what follows, we shall construct a class of FHS sets
with best AHC property based upon the extended generalized
cyclotomy defined in the above section.

We follow the notations in sections above. Define

E0 = A(n)0 ∪ P ∪ Q ∪ R,

Ei = A(n)i , 1 ≤ i ≤ n− 1.

Then
n−1∑
i=0

Ei = Zpq and Ei ∩ Ej = ∅ for i 6= j.

Let X = (x0, x1, . . . , xL−1) be an L-length sequence
over a frequency set F . Then suppX (k) = {t|xt = k,
t = 0, 1, . . . ,L − 1} is called as k ∈ F’s support.
Theorem 11: Let

suppX (i) (j) = Ej+i, 0 ≤ j ≤ n− 1,

where j + i is reduced modulo n, then X = {X (i)
: i =

0, 1, . . . , n − 1} is a family of n sequences with length pq,
and alphabet size n which is best in terms of the bound of
AHC in (6).

Proof: The length, family size, and alphabet size of X
follows directly from its definition. We now prove that it has
optimal average Hamming correlation. We only consider the
condition that n is odd, since the condition that n is even is
similar. By Lemmas 8 and 9, for any 0 ≤ k, l ≤ n − 1 and
k 6= l, we have

HX (k) (ω)=



p+pq−q−1
n

+q−p+1, ω∈P,
q+pq−p−1

n
+p−q+1, ω∈Q,

pq−1
n
+1, ω∈A(n)0 .

pq−1
n
+3, ω∈A(n)i for i 6=0,

HX (k),X (l) (ω)=



0, ω = 0,
p+pq−q−1

n
, ω∈P,

q+pq−p−1
n

, ω∈Q,
pq−1
n
−1, ω∈A(n)k−l∪A

(n)
l−k ,

pq−1
n

, ω∈A(n)i for i 6=k−l, l−k .

Therefore, according to the definition of Sa and Sc, we have

Sa =
n−1∑
k=0

L−1∑
ω=1

HX (k) (ω)

= n
{
(q−1)

(
pq−1
n
+
p−q
n
+q−p+1

)
+(p−1)

(
q+ pq− p− 1

n
+p−q+1

)
+
(p−1)(q−1)

n

(
pq−1
n
+1
)

+(n−1)
(p−1)(q−1)

n

(
pq−1
n
+3
)}

= (pq−1)2 + (n−1)(q−1)2+(n−1)(p−1)2+n(pq−1).

2Sc =
∑

0≤k 6=l≤n−1

L−1∑
ω=0

HX (k),X (l) (ω)

= (n− 1)[(pq− 1)2 − (p− 1)2 − (q− 1)2].

It then follows that the average Hamming auto-correlation
and average Hamming cross-correlation of the FHS setX are
respectively in the following:

Aa(X )=
(pq−1)2+(n−1)(q−1)2+(n−1)(p−1)2+n(pq−1)

n(pq−1)

Ac(X )=
2Sc(X )

LM(M−1)
=

(pq−1)2−(p−1)2−(q−1)2

pqn
.

Note that
Aa

L(M−1)
+

Ac
L−1

=
(pq−1)2+(n−1)(q−1)2+(n−1)(p−1)2+n(pq−1)

n(n−1)pq(pq−1)

+
(pq− 1)2 − (p− 1)2 − (q− 1)2

pqn(pq− 1)

=
1

n− 1
.

and
LM − `

`(L − 1)(M − 1)
=

pqn− n
n(pq− 1)(n− 1)

=
1

n− 1
.

Therefore, FHS set X is best in terms of the bound of AHC
in (6). �

V. CONCLUSION
For any positive integer n| gcd(q − 1, p − 1), an extended
generalized ring number class and order n’s ring number
are introduced, where q and p are two different Odd prime
numbers. The name ‘‘extended generalized circumcision’’
was first proposed by Ding [10], which discussed the basic
characteristics of second-order extended circumcision. They
are the non-trivial generalizations of Whiteman generalized
ring atom classification and ring number. Then Some basic
characteristics of them are derived. We construct a kind of
FHS set that is most ideal relative to AHC constraints.Wewill
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consider the application of extended generalized ring atom
classification in theory of coding, cryptography and direct-
spread sequence design in the future work.
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