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ABSTRACT Localization problem is a hot topic in the field of wireless sensor networks. The distance
vector-hop (DV-Hop) is a typical range-free localization algorithmwhich is widely used inmany applications
owing to its advantages such as simplicity, feasibility, low cost, and less hardware requirements. However, its
localization error is relatively large. In this article, a novel approach designated as CWDV-Hopwas presented
to improve the localization accuracy. In the first step of CWDV-Hop, the distance-weighted hop distance was
calculated by introducing the new defined distance-weighted factor and single-node hop distance, which
can effectively reduce the impact of curved path on the estimation of average hop distance. Furthermore,
the locations of unknown nodes are obtained by utilizing two-dimensional hyperbolic scheme. At last,
Chicken Swarm Optimization (CSO), which is a kind of nature inspired algorithm, is introduced to optimize
the locations of unknown nodes. In comparison with the traditional DV-Hop approach, the localization
accuracy of CWDV-Hop can be raised by 53.6%, 39.5% and 53.1% for the square, X -shaped and O-shaped
random distribution environment respectively, with the time complexity slightly gained. It demonstrates the
effectiveness of CWDV-Hop not only in the isotropy network, but also in the anisotropy network with holes
or other uneven distributions.

INDEX TERMS Wireless sensor networks, localization, DV-Hop, two-dimensional hyperbola, CSO.

I. INTRODUCTION
Wireless sensor network (WSN) is a popular research area
which has attracted considerable attention recently. It com-
poses of numerous randomly distributed nodes with built-in
sensors which can collect various data from the limited sur-
roundings [1], [2]. Due to the diverse function and low energy
consumption, WSNs have been utilized in many fields such
as military, civil and scientific research [3], [4]. For most sce-
narios, the combination of location data and sensor messages
is momentous. The sensors’ location data are conduced to
calculate network consumption and attain route management
etc. Therefore, localization proves to be a significant research
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direction in WSNs [5]–[7]. The characteristics of numer-
ous sensor nodes, limited power, random distribution and
complex communication environment, put forward higher
demands for localization algorithms of WSNs.

Generally speaking, the localization algorithms are
classified into two categories, namely range-based and range-
free [8]. The formers take into account the length or angle
messages among the target and anchor nodes. As the imple-
mentation of positioning is strongly dependent upon the
transmission of radio signals, they are vulnerable to exter-
nal environment (multipath and noise) and need additional
hardware support. Consequently, range-based technology is
not suitable for large-scale WSN. The commonly used range-
based localization methods include Received Signal Strength
Indicator (RSSI) [9]–[11], Time of Arrival (TOA) [12], [13],
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Time Difference of Arrival (TDOA) [14], [15] and Angle
of Arrival (AOA) [16], [17]. Instead, range-free algorithms
are utilized to compute the coordinates of sensor nodes
with the help of communication or connectivity message,
favored because of its low cost and strong network adapt-
ability. Although their localization accuracy is relatively low,
it can basically meet realistic demands. Distance Vector-Hop
(DV-Hop) [18], [19], Approximate Point-In-Triangulation
Test (APIT) [20], Centroid algorithm [21] are typical rep-
resentatives of range-free methods.

The most well-known range-free distributed localization
technology is the DV-hop algorithm which holds many
decided advantages of simplicity, feasibility, low cost and
less hardware requirements. However, it still provides coarse
position estimation. Achieving better accuracy with some
improved algorithms remains a matter of research. There-
fore, a novel localization method designated as CWDV-Hop
is put forward on the base of distance-weighted DV-Hop
and Chicken Swarm Optimization (CSO) in this article. The
major contributions are summarized below:
• A novel DV-Hop-based localization approach, named
WDV-Hop, is presented to work as an under-
ground positioning mechanism. Compared to the hop-
weight-based DV-Hop methods, WDV-Hop develops a
distance-weight hop distance by introducing the new
defined distance-weight factor and single-node hop
distance. This makes the influence of distance among
different anchors taken into consideration and can
largely reduce the impact of curved path on average
hop distance. Instead of using Least Square (LS) algo-
rithm in the traditional DV-Hop, WDV-Hop applies the
two-dimensional hyperbola approach to estimate the
final locations of unknown nodes.

• In order to reduce the localization errors of unknown
nodes, a CSO-based nature inspired algorithm is utilized
to find the best coordinates of target nodes. On one
hand, the minimal model of CSO is built by utilizing the
distance information among anchor and unknown nodes.
On the other hand, Chicken individuals look for the best
locations of target nodes by several iteration and update.
CSO-based localization algorithm behaves intelligently
and efficiently for the optimization problems.

• By combining WDV-Hop with CSO, we also provide a
new efficient localization solution called CWDV-Hop.
Unlike other similar localization algorithms, the pro-
posed algorithm overcomes the short coming of the tra-
ditional DV-Hop algorithms which are only applicable
to isotropic network, therefore has a strong adaptability
to the complex deployment environment. CWDV-Hop is
compared to other competitive algorithms under differ-
ent distribution scenarios. Simulation results show that
the proposed algorithm has improved by 44.5%∼ 53.6%
with the variation of correlative parameters.

The following content is arranged below. Section 2 presents
the literature review of associated researches. Section 3
illustrates the several system models. Section 4 describes the

proposed CWDV-Hop algorithm. Before conclusion, simula-
tion results and analysis are presented in section 5.

II. RELATED WORK
Generally, node localization consists of two steps: one is
distance estimation and the other is coordinate estimation.
When using these two steps to determine the coordinate of
unknown nodes, error is inevitable, and the smaller the error,
the higher the location accuracy. Recently, scholars use the
weight model and nature inspired methods to optimize the
DV-hop algorithm to achieve a certain degree of accuracy
improvement.

A. RELATED WORK ON WEIGHT-BASED VARIANTS OF
DV-HOP
DV-Hop estimates the distance between the anchor node and
the unknown node by multiplying the minimal hop count
and the average distance per hop. Scholars consider that the
essential reason of poor distance estimation is the inaccuracy
of average hop distance. Therefore, most of the weighted
approaches are proposed to improve the precision of average
hop distance in the process of distance estimation [22]–[24].
In [22] and [23], the distance error between anchors and the
hop counts from the unknown nodes to the anchors are both
considered in the weight model which is then used to modify
the average hop distance. [22] establishes the weight function
by the sum of hop count factor and distance error factor,
while [23] by the product form. The limitation of [22] is that
the weight also relies on an importance coefficient which
must be adjusted. In [24], a weighted DV-hop algorithm is
presented by adding a correction parameter to the average
hop distance. The correction factor is based on the mean hop
distance error. However, it also dependents on a balance coef-
ficient which highly depends on the network environment.
Similarly, [25] adopts the inverse distance weighting (IDW)
correction method to obtain more accurate average hop dis-
tance. IDW uses an inverse distance power value for the
adjustments. The power of distance is set as 2, which does
not have solid reason.

Alternatively, the weight models are introduced in the pro-
cess of coordinate estimation. In [26], the Locally Weighted
Linear Regression (LWLR) approach is applied to opti-
mize the least square estimation of DV-hop. LWLR uses
a Gaussian kernel to assign a weight for each neighboring
anchor. Though the localization accuracy is largely improved,
the relationship of linearity or nonlinearity between distances
and hop counts must be determined for all anchor nodes. [27]
replaces the maximum likelihood estimation of DV-hop with
a weighted centroid approach. The weights determine the rel-
ative importance of each anchor on the location of unknown
nodes by measuring the hop counts. However, this method
does not perform well in the anisotropic network.

In summary, the weight models above are all built on the
conventional wisdom which thinks the weights will decrease
with the hop counts or/and distances increase. Although these
algorithms improve the positional precision of the sensor
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nodes, they do not provide a convincing proof of the relation-
ship among the hop counts, distances and weights. Therefore,
the theoretical foundations are not solid. To address this issue,
we construct a clear demonstration and find more accurate
position estimation in this paper.

B. RELATED WORK ON NATURE INSPIRED
ALGORITHMS-BASED VARIANTS OF DV-HOP
Node localization is formulated as an unconstrained NP-hard
optimization problem. Recently, many nature inspired algo-
rithms are applied to solve this problem. Fig. 1 describes the
general classification of nature inspired algorithms, which are
divided into two categories: individual and swarm.

FIGURE 1. Classification of nature inspired algorithms.

Recently, many swarm intelligent algorithms are applied
to find an optimal solution in the localization area. The
swarm optimization methods for precision improvement of
DV-Hop algorithm can be summarized from the following
three aspects:

I. The first one tries to reduce the distance estimation
error by optimizing the average hop distance.

II. The second is to optimize the estimated coordinate
from DV-Hop to find the best result of unknown nodes.

III. The third one manages to estimate the coordinates of
unknown nodes directly instead of the multilateration
method.

Table 1 lists the frequently-used swarm optimization algo-
rithms for DV-Hop during recent three years. In order to

TABLE 1. Swarm optimization-based DV-Hop.

describe the above three aspects for short, we use I, II, and
III to represent them in Table 1.

In [8], [28], [29], Genetic Algorithm (GA) is applied to
increase the localization accuracy of DV-Hop by building
the objective function and fitness function. [8] utilizes GA
to optimize the estimated coordinates of unknown nodes,
which are calculated by the improved DV-Hop algorithm.
In [28], Cai et al. propose a three-dimensional DV-hop local-
ization algorithm by introducing the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II). In addition, this paper uses
the multi-objective positioning model rather than the tradi-
tional single-objective model to find the best solution. Being
different from [8] and [28], [29] computes the coordinates of
unknown nodes directly with the help of GA after analyzing
the correlation between connectivity and position.

With the merits of faster convergence, fewer parameters
and more robustness, Differential Evolution (DE) [30], [31]
also can be used to solve the localization problem. In [30],
the object function of the minimized optimization problem
is established on the weighted squared errors of estimated
distance and DE is applied to obtain the estimated location
of unknown nodes instead of the multilateration method.
With the improvements of mutation operation and crossover
operation of the basic DE algorithm, Han et al. propose an
improved DE algorithm which is applied to obtain the global
optimal solution corresponding to the estimated location of
the unknown node [31]. Although the DE-based algorithms
improve the positional precision of the unknown nodes, they
also induce vast time overhead and energy consumption.

Besides, Particle Swarm Optimization (PSO) is widely
lead-in to heighten the localization precision of sensor
nodes. [32] uses PSO as the learning mechanism of quantum
neural network (QNN) and proposes a PSO-QNN model
which is applied to optimize the average hop distance of
DV-HOP. In [18], [33]–[35], PSO tries to optimize the esti-
mated coordinate of unknown nodes obtained by DV-Hop.
Singh and Sharma [33] firstly use hyperbola method instead
of Least Square (LS) approach to obtain the estimated loca-
tion of unknown node and then optimize that location with the
help of PSO. Shi et al. [34]modify the average hop distance of
relevant nodes by a path matching algorithm and optimize the
initial location of each unknown node with a modified PSO
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algorithm. In [35], an improved PSO is applied to settle the
matter of high localization deviation aroused by initial value
sensitivity of LS approach. PSO in [18] is used twice that the
first time is introduced to build the dynamic set for selecting
appropriate anchors by the binary particle swarm optimiza-
tion (BPSO) algorithm and the second is used to optimize
the coordinates of unknown nodes with the continuous PSO
method. Additionally, [36] and [37] replace the multitrilater-
ation algorithm of DV-Hop with PSO. [36] designs a relative
hop angle connectivity-based DV-Hop localization scheme,
in which PSO is applied to search for the location of unknown
nodes given the fitness function. In [37], an improved PSO
is presented with Monte Carlo localization boxed (MCB) for
three-dimensional mobile wireless sensor networks.

In [38], [39], Cuckoo Search (CS)-based DV-Hop method
is designed for improvement of the precision performance.
[38] incorporates a new oriented cuckoo search algorithm
with Lévy distribution and Cauchy distribution (OCS-LC)
into the methodology of DV-Hop algorithm to improve the
predicted precise. The correction factor is applied to modify
the hop count of DV-Hop and then the node coordinates
are calculated by CS instead of the maximum likelihood
estimation method in [39].

The Bat algorithm (BA) can also be introduced to optimize
the average hop distance [40] or the estimated coordinate of
unknown nodes [41], [42].

In [5], the average hop distance is refined by Grey Wolf
Optimization (GWO) for randomly deployed 2D and 3D
WSN.

In general, many nature inspired algorithms have been
successfully applied to optimize the DV-Hop localization
problem. However, achieving reasonable accuracy with faster
convergence time remains a matter of research (see Fig.17).
To solve this issue, we will find a more suitable nature
inspired algorithm for the localization optimization problem.

C. RELATED WORK ON DV-HOP DERIVATIONS IN
ISOTROPY AND ANISOTROPY NETWORKS
As is well known, DV-Hop-based localization algorithms
demonstrate acceptable performance in isotropic networks in
which sensor nodes distribute evenly. However, these algo-
rithms are easily affected by network topology, causing a sig-
nificant decrease in positioning accuracy for the anisotropic
networks. Taking Fig. 2 as an example, the blue dashed lines
denote the geometric distances between sensor nodes A and
B, while the green solid lines indicate the hop distances of
the shortest path between them. P1 in the isotropic network
(see Fig. 2(a)) shows the ideal case in which the sum of hop
distances is approximately equal to the geometric distance.
In general case, the shortest path between nodes A and B
occurs as P2. The large deviation between the geometric
distances and hop distances leads to a sharp drop in local-
ization accuracy. For the anisotropic networks, the curved
path like P3 always appears. This is exactly the reason that
the DV-Hop-based localization methods perform so poorly in
anisotropic networks.

FIGURE 2. An example of network topology.

Recently, researchers propose many DV-Hop derivations
which can work for both isotropy and anisotropy networks.
In [23], quantum-behaved particle swarm optimization algo-
rithm (QPSO) is reconstructed with the memetic algorithm
and Lévy flight to find the best coordinates of unknown
nodes. Simulations are conducted in the square and C-shaped
scenarios with the randomly deployed nodes and results show
that the LMQPDV-hop algorithm can effectively improve
the position precision. A hybrid DECHDV-Hop localization
algorithm with DV-Hop and DE is designed in [30], and its
effectiveness is tested in random, grid, C-shaped random and
C-shaped grid network situations. [43] proposes a new frame-
work to localize newly deployed nodes in a pre-localized
network using GADV-Hop algorithm which is simulated in
random topology, C-shaped topology and W-shaped topol-
ogy. As can be seen from Fig. 2, the anisotropy networks
undermine the balance relationship between hop count val-
ues and estimated distances, thus its localization error is
higher than that of the isotropy networks. However, these
three papers avoid the estimated locations of unknown nodes
falling into an infeasible region by using the meta-heuristic
algorithms to locate the unknown nodes.

III. SYSTEM MODEL
This section presents several models which are applied in the
proposed algorithm.
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FIGURE 3. Nodes distribution of the network with n = 200, m = 20 and R = 60.

A. NETWORK MODEL
The model of a traditional WSN consists of n sensor nodes
amongwhich the number of anchors ism and that of unknown
nodes is u in the sensing field. All anchor nodes are aware
of their positions clearly with the deployment of Global
Positioning System (GPS) or other devices. (xi, yi) and (x, y)
represent coordinates of i-th anchor node and unknown node
respectively. It is supposed that the communication radius is
R for all sensor nodes.
In order to verify the algorithm performance, the isotropy

and anisotropy networks are all chosen in this paper. There
are many different models for anisotropy network [44], [45].
Here, the most representative X -shaped and O-shaped envi-
ronments are built for the anisotropy network. Fig. 3 repre-
sents three different node distribution in the area of 500m ×
500m: the square area with the length of l m, the X -shaped
area with width of d m and the hole area with radius of γm.

B. DV-HOP LOCALIZATION MODEL
Briefly speaking, the DV-Hop procedure is summarized as the
following steps:

Step1: Collection of minimal hop count.
All anchor nodes broadcast data packets including the

coordinate information and the hop count, which is initialized
to 0 and raised by 1 after each hop. If the gained value is
less than the former one, the node will update it and store the
minimum value. At the end of broadcast, all nodes possess
the minimal hop counts.

Step2: Calculation of average hop distance.
The minimal hop value and coordinates of anchors are

acquired between any two anchor nodes in stage 1. Hence,
the average hop distance described as Hi is achieved by:

Hi =

∑
i6=j

√
(xi − xj)2 + (yi − yj)2∑

i6=j
hij

(1)

where hij represents the minimal hop value between i-th
and j-th anchors. Then all the average hop distances will be
broadcasted to the whole network.

Step3: Calculation of unknown nodes coordinates.
Each unknown node calculates the distance dik from the

i-th anchor node to the k-th unknown node by means of
multiplying average hop distanceHi obtained from stage 2 by
the minimal hop count hik as follows:

dik = Hi × hik (2)

Once obtaining three or more anchors distance data,
the coordinates of unknown node could be estimated by the
least square method. The complete process is below.

The distances between unknown node (x, y) and anchor
nodes (xi, yi) are:

(xi − x)2 + (yi − y)2 = d2i (3)

Thus, the set of distance equations for all m anchors are:



(x1 − x)2 + (y1 − y)2 = d21
(x2 − x)2 + (y2 − y)2 = d22

...

(xi − x)2 + (yi − y)2 = d2i
...

(xm−1 − x)2 + (ym−1 − y)2 = d2m−1
(xm − x)2 + (ym − y)2 = d2m

(4)

By subtracting the last equation from the previous
m-1 equations, we can obtain the following forms:

(xi − x)2 − (xm − x)2 + (yi − y)2 − (ym − y)2 = d2i − d
2
m

(5)

2(xi − xm)x + 2(yi − ym)y=x2i −x
2
m+y

2
i − y

2
m + d

2
m − d

2
i

(6)

Let X = [x, y]T (7)
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FIGURE 4. Flowchart of DV-Hop.

A =



2(x1 − xm) 2(y1 − ym)
2(x2 − xm) 2(y2 − ym)

...
...

2(xi − xm) 2(yi − ym)
...

...

2(xm−2 − xm) 2(ym−2 − ym)
2(xm−1 − xm) 2(ym−1 − ym)


(8)

b =



x21 − x
2
m + y

2
1 − y

2
m + d

2
m − d

2
1

x22 − x
2
m + y

2
2 − y

2
m + d

2
m − d

2
2

...

x2i − x
2
m + y

2
i − y

2
m + d

2
m − d

2
i

...

x2m−2 − x
2
m + y

2
m−2 − y

2
m + d

2
m − d

2
m−2

x2m−1 − x
2
m + y

2
m−1 − y

2
m + d

2
m − d

2
m−1


(9)

We can have

AX = b (10)

According to the least mean square estimation, coordinates
of unknown nodes are gotten by:

X̂ = (ATA)−1AT b (11)

The unknown node coordinates can be described as:{
x = X̂ (1)
y = X̂ (2)

(12)

Fig. 4 gives the flowchart of DV-Hop.

C. CHICKEN SWARM OPTIMIZATION MODEL
CSO is a popular nature inspired optimizer which imitates
the hierarchical order and behavior of chickens to find food.

FIGURE 5. Sketch map of rooster’s movement.

It can effectively extract the wisdom of chickens to optimize
WSNs localization.

CSO contains lots of chicken groups, and each group
includes a rooster, some hens and chicks. The clustering prin-
ciple depends on the fitness function value of each chicken.
The role of the individual chicken as a rooster, a hen or a
chick is determined by the fitness value from low to high
sequentially [46].

It is assumed that RN, HN and CN mean the number
of roosters, hens and chicks respectively. The N fictitious
individuals are depicted with locations X tp,q, p ∈ [1,N ], q ∈
[1,D] at time step t foraging onD-dimensional area. The hier-
archical relationship of chicken swarm remains unchanged in
the same round. Current states will be corrected after the time
interval of G.

Roosters with higher fitness values have the privilege of
finding and searching for food than lower ones. Simply
speaking, roosters with better fitness values can search for
food in a wider range of places than that of the roosters with
worse fitness values (Fig. 5). The mathematical expressions
are as follows:

X t+1p,q = X tp,q · (1+ Randn(0, σ
2)) (13)

σ 2
=


1 if fp ≤ fk

exp

(
fk − fp∣∣fp∣∣+ ε

)
, otherwise

k ∈ [1,N ], k 6=p

(14)

where Randn(0, σ 2) shows the normal distribution with mean
0 and variance σ 2. The index k of rooster is stochastically
chosen. f denotes the fitness value. The minimum constant ε
is introduced to avert the divisor of 0.

Hens usually go after their partner rooster to find food.
Furthermore, they also stochastically pilfer food discovered
by other roosters as described in Fig. 6(a). The ruling hens
are more skilled at contending for food than the compliant
individuals. It can be described below.

X t+1p,q = X tp,q + O1 · Rand · (X tr1,q − X
t
p,q)

+O2 · Rand · (X tr2,q − X
t
p,q) (15)
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FIGURE 6. Sketch map of hen’s movement.

O1 = exp

(
fp − fr1∣∣fp∣∣+ ε

)
(16)

O2 = exp(fr2 − fp) (17)

whereRand represents a random number in [0, 1]. r1 ∈ [1,N ]
expresses a rooster’s index that is the p-th hen’s partner.
r2 ∈ [1,N ] shows the index of the rooster or hen selected
from the individuals where r1 6= r2. O1 and O2 are selection
coefficients. If O1 = 0, the p-th hen will look for food
followed by others as illustrated in Fig. 6(b). If O2 = 0, the
p-th hen will forage for food in their own territory as depicted
in Fig. 6(c).

The chicks follow the mother hen to search for food. This
behavior is described below.

X t+1p,q = X tp,q + FL · (X
t
z,q − X

t
p,q) (18)

where X tz,q expresses the location of mother hen for the z-th
chick (z ∈ [1,N ]). FL is a constant, which usually be cho-
sen randomly in the range of 0-2 considering the individual
differences.

The flow chart of the CSO algorithm is illustrated in Fig. 7.

IV. PROPOSED ALGORITHM
A. MOTIVATION AND PRINCIPLE OF CWDV-HOP
It is universally acknowledged that DV-Hop estimates
sensor nodes’ location through obtaining the distance esti-
mation between nodes and the essential reason of poor dis-
tance estimation is the inaccuracy of average hop distance.
To enhance the positional performance, weighted approach
is used to improve the precision of average hop distance.
The conventional wisdom is that the bigger values of hop
count or/and distance are, the smaller value of weight will
be. Although the weighted algorithms improve the positional
precision of the sensor nodes, this statement related to the
relationship among the hop counts, distances and weights has
not been proved. Motivated by the weighted conjectures put
forward by scholars, this study analyzes the mathematical
model of average hop distance by the idea of weight, reveals

FIGURE 7. Flowchart of CSO.

its fundamental cause of error and innovatively proposes a
distance-weight hop distance by introducing the new defined
distance-weight factor and single-node hop distance.

In order to get more accurate positions, many nature
inspired algorithms have been applied to optimize the
DV-Hop localization problem. However, achieving reason-
able accuracy with faster convergence time remains a matter
of research. This issue motives us to find a better nature
inspired algorithms for the localization optimization prob-
lem. As a bio-inspired multi-swarm algorithm, CSO not
only inherits the major advantages of PSO and DE, but also
extracts the chickens’ swarm intelligence to solve the opti-
mization problems efficiently. Therefore, this paper selects
CSO to optimize the location of unknown nodes.

Based on the above analysis, this study designs a
novel Chicken SwarmOptimization-based distance-weighted
DV-Hop algorithm (CWDV-Hop). CWDV-Hop consists of
four major steps.

Step 1: Acquisition of the minimum hop count.
Step 2: Calculation of distance-weighted hop distance.
Step 3: Estimation of unknown node’s location.
Step 4: Optimization the coordinates of unknown node.
The proof and implementation details of CWDV-Hop will

be described as the following subsections.

B. THE PROOF OF CWDV-HOP ALGORITHM
In original DV-hop algorithm, the main reason that results in
error is the deviation of average hop distance for anchor nodes
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with (1). Next, the relationship between average hop distance
and node distance will be explored.
Proposition 1: The greater the distance dij between i-th

anchor node and j-th anchor node (i 6= j) is, the higher its
effect on the average hop distance is.

Proof: On the basis of definition in (1), we can deduce
that:

Hi =

∑
i6=j

√
(xi − xj)2 + (yi − yj)2∑

i6=j
hij

=

∑
i6=j
dij∑

i6=j
hij
=
di1 + di2 + · · · + dim
hi1 + hi2 + · · · + him

=
hi1∑

i6=j
hij
×
di1
hi1
+

hi2∑
i6=j
hij
×
di2
hi2
+ · · · +

him∑
i6=j
hij
×
dim
him

= αi1 ×
di1
hi1
+ αi2 ×

di2
hi2
+ · · · + αim ×

dim
him

(19)

where

αij =
hij∑

i6=j
hij

(20)

can be defined as hop-weighted factor. m represents the
number of anchors. Here, (19) reveals that average hop dis-
tance is equivalent to the accumulation which is product of
weight on the hop count and the hop distance of each anchor
node.

Substituting the distance for the hop count into (19), it can
be rewritten as follows:

H ′i =
di1∑

i6=j
dij
×
di1
hi1
+

di2∑
i6=j
dij
×
di2
hi2
+ · · · +

dim∑
i6=j
dij
×
dim
him

= ωi1 ×
di1
hi1
+ ωi2 ×

di2
hi2
+ · · · + ωim ×

dim
him

(21)

where

ωij =
dij∑

i6=j
dij

(22)

ωij is defined asdistance-weighted factor.
The above equation reveals that with the increasing of the

distance dij between any two anchors, the distance weight ωij
increases. That is to say, as the distance increases, its effect on
the average hop distance increases. Here the proof is ending.

The hop counts, which are obtained from the minimum
path method, always have errors. But the distances between
anchor nodes are certain physical values. Therefore, consider-
ing the influence of anchor node itself, CWDV-Hop algorithm
introduces the distance as the weight factor.
Definition 1: Given i, j ∈ [1,m] and m is the number of

anchors, the new hop distanceH ′i in (21) can be rewritten and

FIGURE 8. Diagram of an example WSN.

defined as distance-weighted hop distance:

H ′i =
m∑
j=1

(
dij∑

i6=j
dij
×
dij
hij

) =
m∑
j=1

(ωij × Hij) (23)

Hij =
dij
hij

(24)

Hij is defined as single-node hop distance.
Fig. 8 is a sample diagram, which further explains the

distance-weighted method. There are four anchor nodes
(described as A1, A2, . . . ,A4) and five unknown nodes
(described as U1, U2, . . . ,U5) in the diagram. The red
lines are used to represent the physical distance d12, d13, d14
between anchors A1 and A2, A1 and A3, and A1 and A4.
The blue lines are used to indicate the shortest hop-counts
h12, h13, h14 between them. Anchor node A1 computes origi-
nal average hop distance and new defined distance-weighted
hop distance based on (19) and (23) as:

HA1 = α12 ×
d12
h12
+ α13 ×

d13
h13
+ α14 ×

d14
h14

(25)

H ′A1 = ω12 ×
d12
h12
+ ω13 ×

d13
h13
+ ω14 ×

d14
h14

(26)

For

α12 =
h12∑

i6=j
h1j

(27)

ω12 =
d12∑

i6=j
d1j

(28)

Fig. 9 (a) is captured from Fig. 8 to show the local details of
anchorsA1 andA2. Fig. 9 (b) and (c) illustrate other situations
when there are more hops between anchors A1 and A2.

We can see that the hop count h12 between anchor node A1
and A2 increases, the hop-weighted factor α12 increases
accordingly. However, the distance-weighted factor ω12 is
unchanged. As shown in Fig. 9(a)-(c), when the hop counts
increase, the path between any two nodes may be curved.
It means that the distance-weighted method can reduce the
impact of curved path on average hop distance.
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FIGURE 9. Partial diagram with increasing hops.

FIGURE 10. Diagram of minimum path method.

C. THE STEPS OF CWDV-HOP ALGORITHM
CWDV-Hop can be summarized as the following four steps:

Step1: Acquisition of the minimum hop count.
All nodes gain the minimum hop counts by data flooding

meanwhile anchors also obtain the coordinates information.
As described in Fig. 10, there are three paths between anchors
A1 and A2, and the hop counts are below.

5: A1—U3—A3—U6—U5—A2
3: A1—U4—U5—A2
2: A1—U1—A2
Therefore, the minimum hop counts between A1 and A2

are 2 (see the red lines).
Step2: Calculation of distance-weighted hop distance.
The inaccuracy of average hop distance mainly attributes

to the final result of localization. In accordance with
the relationship between average hop distance and corre-
sponding distance proved in Proposition 1, the distance-
weighted hop distance can be calculated by (23) according
to the distance-weighted factor in (22) and single-node hop
distance (24).

Step3: Estimation of unknown node’s location.
Two-dimensional hyperbolic approach is utilized to gain

the coordinates of unknown nodes in CWDV-Hop. As the
distance difference between an unknown node U and two

FIGURE 11. Diagram of two-dimensional hyperbola method.

anchors A1 and A2 is a fixed value, the location of unknown
node U is must on the hyperbola curves (black solid curves
in Fig. 11) basing on the definition of hyperbola. This hyper-
bola takes anchors A1 and A2 as the focus and distance
between A1 and A2 as the focal length. In the same way,
we can get the hyperbolas for anchors A1 and A3 (the dotted
curves) andA2 andA3 (the dash-dot curves). Finally, the loca-
tion of unknown node U is determined by the intersection
point of three or more groups of hyperbolas. The whole
process is explained below.

According to (3), there are the following expressions:

x2i + y
2
i − 2xix − 2yiy+ x2 + y2 = d2i (29)

−2xix − 2yiy+ x2 + y2 = d2i − x
2
i − y

2
i (30)

Let Zc =
[
x, y, x2 + y2

]T
(31)

Gc =



−2x1 −2y1 1
−2x2 −2y2 1
· · · · · · · · ·

−2xi −2yi 1
· · · · · · · · ·

−2xm−1 −2ym−1 1
−2xm −2ym 1


(32)

Lc =



d21 − x
2
1 − y

2
1

d22 − x
2
2 − y

2
2

...

d2i − x
2
i − y

2
i

...

d2m−1 − x
2
m−1 − y

2
m−1

d2m − x
2
m − y

2
m


(33)

We can get

GcZc = Lc (34)

With the estimation method of standard minimum mean
square, it can be got

Zc = (GTc Gc)
−1GTc Lc (35)
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FIGURE 12. Schematic diagram of objective function.

Unknown node coordinates can be described as:{
x = Zc(1)
y = Zc(2)

(36)

Comparing the least square method (i.e. (4)-(12)) with
the hyperbolic method (i.e. (29)-(36)), they have something
in common: both transform the nonlinear equation (i.e. (3))
into the linear ones (i.e. (10) and (34)). However, in the
whole process of transformation, the least square method
requires that the firstm-1 equation subtract them-th equation.
In (9), once a large error in dm will lead to a large error in
d2m − d2i . That is to say, the error of dm will flood into all
m-1 sub-equations of (9). But, the hyperbolicmethod does not
involve the action of subtraction. Therefore, the more precise
hyperbolic method is used in this paper.

Step4: Optimization the coordinates of unknown node.
In WSNs, it is the primary objective for localization

approaches to acquire more accurate location of unknown
nodes. Consequently, CSO is used to optimize the estimated
coordinate obtained by Step 3 to find the best result of
unknown nodes. The specific implementation of CSO is as
follows:

1) Initialization: The parameters of CSO, including the size
of chicken swarm N , the maximum iterations M1, the time
interval G of status update for chicken swarm, the number of
roosters RN, hens HN, chicks CN, are initialized.
2) Calculating the fitness value: In WSN, the localization

problem is formed as an optimization problem where the
localization error is considered as the objective function.

As shown in Fig. 12, (xi, yi) represents the position of i-th
anchor A1. Meanwhile U1(x, y) and U1’(x ′, y′) express the
estimated positions of unknown node without and with the
CSO method respectively. The distances between A1 andU1,
A1 and U1’ are d and d ′. The minimal localization deviation
model is built by applying the distance difference of d and d ′.
The objective function is shown below:

F(x ′, y′) = Min(
∣∣d ′ − d∣∣) (37)

where {
d =

√
(xi − x)2 + (yi − y)2

d ′ =
√
(xi − x ′)2 + (yi − y′)2

(38)

In accordance with (37), the fitness function of all chickens
in the swarm is usually calculated as follows:

f (x ′, y′) =
1
m

m∑
i=1

∣∣F(x ′, y′)∣∣ (39)

or

f (x ′, y′) =
1
m

m∑
i=1

(
F(x ′, y′)

)2 (40)

Considering the fact that the estimated distance error also
increases as the value of hop-count increases, the fit-
ness function of DV-Hop-based localization algorithm can
be optimized in a weighted manner by the reciprocal of
hop-count h [18], [33], [35].

f (x ′, y′) =
1
m

m∑
i=1

1
h2
(
F(x ′, y′)

)2 (41)

For each unknown node, the estimated position (x ′, y′) with
the CSO method is assigned initially as:

(x ′, y′) = (x, y)+
R
2
× rand(1, 2) (42)

where (x, y) is obtained from the above step 3 of proposed
algorithm by (36).

Based on the fitness value of the chickens, the hierarchal
order, mother-child relationship and dominance relationship
will be assigned every time interval of G.

3) Update: The positions of all chickens (i.e. roosters, hens
and chicks) are updated according to (13), (15) and (18)
respectively where X tp,q is just the estimated position (x ′, y′)
of unknown node. CSO obtains the possible optimal solution
of each unknown node by minimizing the fitness function
after several iterations.

4) Output: The above process of update stops when the
ending conditions are met. The best position found currently
by the chicken swarm will be considered as the final result of
each unknown node.

It is worthy noted that the location estimation process
of each unknown node is independent of one another. That
means every unknown node requires a solitary CSO particle
to obtain its coordinates.

D. THE COMPLETE CWDV-HOP ALGORITHM
The flowchart of CWDV-Hop is shown in Fig. 13. Only to
study the merits of distance-weighted hop distance, CWDV-
Hop without CSO is named as WDV-Hop for convenience.
In order to verify the performance of CSO in optimizing
the localization results of DV-Hop, CWDV-Hop without
distance-weighted hop distance is named as CDV-Hop.

The pseudo code of CWDV-Hop is described in Table 2.

V. PERFORMANCE EVALUATION
A. SIMULATION PARAMETERS
To verify the performance of the proposed scheme, three
groups of simulations have been conducted in Matlab2016a,
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FIGURE 13. Flowchart of proposed CWDV-Hop algorithm.

and implemented on Intel core i5-3320m CPU and RAM
of 4 GB. The first one just conducts a comparative study
on the proposed WDV-Hop method, traditional method and
iDV-Hop1 in [22]. The second one compares the CDV-Hop
algorithm with the traditional method and iDV-Hop2 in [33].
The third one evaluates the proposed CWDV-Hop algorithm
compared with iDV-Hop2 in [33], iDV-Hop3 in [24] and
iDV-Hop4 in [30].

100 independent tests are carried out to assess the perfor-
mance of all methods. Three different network topologies are
selected as Fig. 3. For each network, the setups of system
parameters are given in Table 3. The intention of select-
ing different number of anchors, different number of nodes
and different communication range is to explore the local-
ization performance of all algorithms under different net-
work topology in terms of the anchor proportion, the node
density and the node connectivity. PSO and DE variables
are set according to the comparative paper [33] and [30].

CSO parameters are also varied to find the best optimization
performance.

To compare the superiority of CWDV-Hop with its coun-
terparts, the following metrics are taken into account.

Localization Error (EL): the deviation between the true
position (x0, y0) and estimated coordinate (x, y) of unknown
node. Mathematically, it is expressed by the following
formula:

EL =
√
(x − x0)2 + (y− y0)2 (43)

Localization Accuracy (LA): the proportion of sum of
localization error to the number of unknown nodes u. It can
be expressed as follows:

LA =

u∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

u× R
× 100% (44)

where u = n-m.
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TABLE 2. The Pseudo Code for CWDV-Hop.

TABLE 3. Simulation parameters.

Localization Coverage Rate (LCR): the ratio of the number
of nodes uf localized successfully to the total number of
unknown nodes u.

LCR =
uf
u
× 100% (45)

For the parameters in Table 3, the localization coverage rate
can reach almost 100%. As all algorithms being compared are
based on the traditional DV-Hop algorithm which is a mul-
tihop scheme, localization coverage rates of all algorithms
are the same. Therefore, we only compare the localization
accuracy in the next simulations.

B. SIMULATION FOR WDV-HOP
The first group of simulation is designed to con-
trast WDV-Hop with traditional DV-Hop and iDV-Hop1.
From (44), it is obvious that three parameters n, m, R can
affect the average localization accuracy. Therefore, the sensi-
tivity analysis of these parameters is provided in this section.

1) SENSITIVITY OF THE NUMBER OF ANCHOR NODES
It seems to be a hard task to localize an unknown node when
it cannot calculate or measure its distance from three or more
anchor nodes. In this situation, increasing the number of
anchor nodes could be a possible solution. Considering this
case, simulations are done to evaluate the effect of anchor pro-
portion in localization accuracy. In this experiment, the num-
ber of anchor nodes m varies from 30 to 60 with n=300 and
R = 60 unchanged. As illustrated in Fig. 14(a), Fig. 15(a) and
Fig. 16(a), localization errors of the three algorithms show a
gradual downward trend with the number of anchors increas-
ing. However, localization accuracy of WDV-Hop increases
by 25.8%, 17.5% and 21.6% in comparison with that of
iDV-Hop, and about 23.9%, 19.1% and 19.4% in comparison
with that of iDV-Hop1 for square, X -shaped and O-shaped
networks respectively.

2) SENSITIVITY OF THE COMMUNICATION RADIUS
The communication range R gradually increases from 60m
to 100m, and the other two parameters remain n = 300, m =
30 unchanged for all situations. As illustrated in Fig. 14(b),
Fig. 15(b) and Fig. 16(b), when the communication radius
increases, localization error decreases for all mentioned algo-
rithms. Therefore, communication radius is counted as one
of the most important parameter in WSN localization. The
WDV-Hop scheme can improve the localization accuracy by
25.1%, 17.8% and 26.1% in contrast with DV-Hop, and about
24%,18.2% and 29.6% compared with iDV-Hop1 in square,
X -shaped and O-shaped situations respectively.

3) SENSITIVITY OF THE TOTAL NUMBER OF NODES
In this experiment, the total number of nodes n is varied
from 300 to 500 with the interval of 50, that is, the node
density is assigned with [0.12, 0.14, 0.16, 0.18, 2] m2. The
communication range R is kept to 60m and the percentage
of anchor nodes is fixed at 10%. As illustrated in Fig. 14(c),
Fig. 15(c) and Fig. 16(c), as the number of nodes increases,
errors show a downward trend. This is because with the
increase of node density, each node can contain more one-hop
nodes and the connectivity of WSN also becomes stronger
simultaneously. However, the localization accuracy of WDV-
Hop scheme can improve 23.5%, 16.2% and 15% compared

VOLUME 9, 2021 391



J. Chen et al.: CWDV-Hop: A Hybrid Localization Algorithm With Distance-Weight DV-Hop and CSO

FIGURE 14. Localization accuracy in square network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

FIGURE 15. Localization accuracy in X-shaped network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

FIGURE 16. Localization accuracy in O-shaped network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

with DV-Hop, about 22.4%, 15.1% and 17.9% compared
with iDV-Hop1 for square, X -shaped and O-shaped random
situation respectively.

For the three different scenarios of square, X -shaped and
O-shaped network, the proposed WDV-Hop method signifi-
cantly outperforms its counterparts no matter which param-
eter is concerned. This is because the distance-weighted
method can reduce the impact of curved path on average hop
distance. Sometimes, the localization errors of iDV-Hop1 are

even worse than the traditional DV-Hop method, especially
in the O-shaped network.

C. SIMULATION FOR CDV-HOP
The second group of simulation is designed to investigate the
optimization performance of CSO with different parameters.
Next, the sensitivity of CSO parameters is analyzed with the
system parameters of Dv-Hop setting to n=300, m=30 and
R = 60.
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FIGURE 17. Localization accuracy with different number of iterations.

FIGURE 18. Localization accuracy with different swarm size.

1) SENSITIVITY OF THE NUMBER OF ITERATIONS
In this experiment, the number of iterations for CSO and PSO
varies from 1 to 100. That is to say, M1 ∈ [1, 100], M2 ∈
[1, 100]. The other parameters of CSO are selected as N=20,
RN=0.35N, HN=0.6N, CN=0.05N and G=10. While those
of PSO are set toP=20, C1=C2=2.05, Vmax=10, which are
the same as the original paper [33]. Figure 17 shows the effect
of iterations on localization accuracy, that is the convergence
speed of algorithms.

According to the results of Fig. 17, the proposed CDV-
Hop method with CSO has faster convergence speeds and
smaller localization error than iDV-Hop2 with PSO in the
square,O-shaped andX -shaped networks. That is to say, CSO
can achievemore reasonable localization accuracy with faster
convergence time than PSO. It also can be clearly seen that
the localization errors of iDV-Hop2 continue to fluctuate with
the increase of iterations. In contrast, CDV-Hop always has
a stable value, which demonstrates the robustness of CSO.
The relationship between the number of iterations and the
localization accuracy in three topological networks proves
that the CDV-Hop method with CSO has small localization
error, fast convergence speed, robustness and stability.

2) SENSITIVITY OF THE SWARM SIZE
In this experiment, the size of chicken swarm N for CSO
is varied from 5 to 100 with the interval of 5. In order to
make a fair comparison, the size of particle swarm P for PSO

is selected as the same as that for CSO. The other param-
eters of CSO are chosen as M1=50, RN=0.35N, HN=0.6N,
CN=0.05N andG=10.While those of PSO are set toM2=50,
C1= C2=2.05, Vmax =10. Figure 18 shows the effect of
swarm size on localization accuracy. As shown in Fig.18,
with the increase of swarm size, the localization errors of
CDV-Hop and iDV-Hop2 first decline sharply and then get the
optimal value gradually. By comparison, it can be seen that
the proposed CDV-Hop algorithm with CSO outperforms the
iDV-Hop2 method with PSO.

3) SENSITIVITY OF THE TIME INTERVAL OF STATUS UPDATE
The time interval G of status update gradually increases
from 1 to M1 in this experiment, and the other parame-
ters of CSO are selected as M1=50, N=20, RN=0.35N,
HN=0.6N and CN=0.05N. The experimental results are
shown in Fig. 19 where it is clear that the differences in the
localization results of different time intervals are not large.
This means that the time interval of status updating has little
impact on the performance of CDV-Hop.

4) SENSITIVITY OF THE NUMBER OF ROOSTERS
In CSO algorithm, rooster is considered as the head of a
group and leads the subordinates. Therefore, the number of
roosters, which ultimately indicates the number of groups in
the chicken swarm, plays a significant role in CSO algorithm.
That is to say, the more the number of roosters is, the more
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FIGURE 19. Localization accuracy with different time interval of status update.

FIGURE 20. Localization accuracy with different time interval of status update.

FIGURE 21. Localization accuracy in square network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

the number of groups is and the better the localization accu-
racy obtained through the collective searching approach is.
The effect of rooster number in WSN localization is shown
in Fig. 20 where the number of roosters RN is represented
by the product of rooster rate β and swarm size N . The
percentage of rooster β is tuned from 0.05 to 0.4 with the
interval of 0.05. Other parameters are set to M1=50, N=20,
G=10, RN=βN, HN=(1-β−0.05) N and CN=0.05 N . It is
clear that when the rooster rate increases the localization error
decreases, though different rooster rate β has a tiny influence
on the localization accuracy.

D. SIMULATION FOR CWDV-HOP
To research the performance of CWDV-Hop method,
Figs. 21-23 illustrate the localization accuracy in square,
X -shaped and O-shaped random networks respectively.

Fig. 21(a), Fig. 22(a) and Fig. 23(a) show the localization
accuracy when the number of anchors increases from 30 to
60 with the step of 5. The number of nodes is 300, and
communication radius is 60m. Generally, as the number of
anchors rises, the trend of the localization error declines
gradually for most approaches in square, X -shaped and
O-shaped random networks. When there are more anchors,
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FIGURE 22. Localization accuracy in X-shaped network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

FIGURE 23. Localization accuracy in O-shaped network (a) n=300, R=60; (b) n=300, m=30; (c) R=60, Percent of anchors=10%.

the hop counts between anchor and unknown nodes increase,
the error is reduced accordingly. Hence, the localization
accuracy of all methods decreases. When the number of
anchors is 60, in comparison with DV-Hop, WDV-Hop,
iDV-Hop3, iDV-Hop4 and iDV-Hop2, the localization accu-
racy of CWDV-Hop algorithm increases about 53.6%, 41.2%,
32.9%, 18.9% and 7.6% respectively in square random net-
work. In contrast with its counterparts, the performance
of CWDV-Hop algorithm is improved about 39.5%, 1.3%,
2.5%, 8.1% and 15.1% in X -shaped network. For the
O-shaped network, CWDV-Hop increases by 40.3%, 38.4%,
26.4%, 18.8% and 2.1%.

Communication radius of sensor nodes is an important
factor for the localization algorithms. Thus, this set of tests
computes the localization accuracy with the communication
radius varied from 60m to 100m with an interval of 10m
in Fig. 21(b), Fig. 22(b) and Fig. 23(b). The number of nodes
is 300 and anchors is 30. As can be seen from Fig. 21(b),
Fig. 22(b) and Fig. 23(b), with the increase of the communi-
cation range, localization accuracy shows a downward trend
in square, X -shaped and O-shaped random networks. To a
certain extent, in contrast with DV-Hop, WDV-Hop improves
the accuracy largely. It has almost the same performance with
CWDV-Hop in Fig. 21(b). When communication radius is

100m, the accuracy of CWDV-Hop is improved by 51.1%,
32.6%, 29.1%, 11.2% and 5.9% respectively in comparison
with the counterparts in square network, 65.9%, 1.5%, 50.2%,
2.4% and 2.1% in X -shaped random network and 53.1%,
52.4%, 24.5%, 39.4% and 3.7% in O-shaped network.
Fig. 21(c), Fig. 22(c) and Fig. 23(c) shows the final result

of the total number of nodes from 300 to 500, where the
number of anchor nodes is 30 and the communication radius
is 60 m. As the total number of nodes increases, the trend
is downwards. That is because the network connectivity is
greatly improved with the more nodes increase. When the
number of nodes is 500 in square situation, the localization
accuracy of CWDV-Hop is promoted by 52.8%, 41%, 33.9%,
28.8% and 6.7% respectively in comparison with the others.
Localization accuracy of CWDV-Hop algorithm increases by
35.8%, 3.9%, 5.9%, 3.5% and 6.6% in X -shaped situation,
and it increases by 46.9%, 32.1%, 27.4%, 13.1% and 3.4%
respectively in O-shaped situation. Obviously, our algorithm
performs the best.

The proposed CWDV-Hop method has better localization
accuracy than its counterparts in both isotropy and anisotropy
networks. This is because the compared algorithms use the
hop-weight factor to calculate the average hop distance, and
the hop counts always have errors when the minimum path
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is curved. That is to say, the inevitable curve paths, espe-
cially in the anisotropy networks, undermine the balance rela-
tionship between hop count values and estimated distances
(see Fig.2 and Fig.9). As the distances between anchors are
certain physical values, CWDV-Hop depends on the distance-
weight factor to reduce the impact of curved path on average
hop distance. In addition, the meta-heuristic algorithm, CSO,
also plays important roles in reducing the positioning error
produced by curved paths. CWDV-Hop avoids the estimated
locations of unknown nodes falling into an infeasible region
by using the meta-heuristic algorithms to locate the unknown
nodes.

E. LOCALIZATION ERROR OF CWDV-HOP
Localization error of all above algorithms is listed in
Table 4-6. The simulation is conducted for 300 nodes ran-
domly deployed in the field of 500m × 500m where anchor
nodes are 30 and communication radius of each node
is 60m.

TABLE 4. Localization error for square.

TABLE 5. Localization Error for X-shaped.

TABLE 6. Localization Error for O-shaped.

Table 4-6 list the localization errors of the square,
X -shaped and O-shaped network respectively. It can be seen
that the localization error of WDV-Hop is less than the

TABLE 7. Algorithm complexity.

traditional DV-Hop and iDV-Hop1. That is because the
distance-weighted method introduced in WDV-Hop, greatly
reduces the effect of curved path on the average hop distance,
and two-dimensional hyperbola approach also increases the
accuracy in the process of computing the coordinates of
unknown nodes. Moreover, the CSO algorithm applied in
CWDV-Hop optimizes the position accuracy of unknown
nodes and is verified to be of better performance than
PSO and DE. According to the three merits, the proposed
CWDV-Hopmethod gives better performance compared with
iDV-Hop2, iDV-Hop3 and iDV-Hop4.

F. LOCALIZATION RESULT ANALYSIS OF CWDV-HOP
Fig. 24(a)-(c) and Fig. 25(a)-(c) show the actual location and
estimated location of DV-Hop and CWDV-Hop in square,
X -shaped and O-shaped simulation area. In general, the error
based on CSO is much smaller than that of the original algo-
rithm.Moreover, CWDV-Hop can greatly reduce the error for
some nodes distributed on boundary.

G. COMPLEXITY ANALYSIS OF CWDV-HOP
The time complexity and space complexity are taken into
consideration in this section. Assuming the WSN consists of
n sensor nodes among which the number of anchors ism, then
themaximum iterations of CSO, PSO andDE areM1,M2 and
M3, the sizes of CSO and PSO are N , P and Q respectively.
The time interval of status update for chicken swarm is G.

In step 1, all algorithms need calculate the minimum
hop counts, so the time complexity is O

(
n2
)
. In step 2 of

calculating the average hop distance, DV-Hop, CDV-Hop,
iDV-Hop2, iDV-Hop3 and iDV-Hop4 use the traditional way
and the time complexity is O

(
m2
)
. Although iDV-Hop1,

WDV-Hop and CWDV-Hop use different weighted meth-
ods, they have the same time cost. In step 3 of estimating
unknown node’s position, DV-Hop, CDV-Hop, iDV-Hop1
and iDV-Hop4 use the least square method, and the
time complexity is O (m ∗ (n− m)). iDV-Hop3 uses the
weighted least square method, but its time complexity is
unchanged. WDV-Hop, iDV-Hop2 and CWDV-Hop using
the two-dimensional hyperbolic approach which is a kind of
multilateral localization algorithm, and their time complexity
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FIGURE 24. Localization result of DV-Hop.

FIGURE 25. Localization result of CWDV-Hop.

are also O (m ∗ (n− m)). In the last step of optimizing coor-
dinates of unknown nodes, the time complexity of CDV-Hop
and CWDV-Hop with CSO is O (M1 ∗ N ∗ (n− m)), that
of iDV-Hop2 with PSO and that of iDV-Hop4 with DE are
O (M2 ∗ P ∗ (n− m)) and O (M3 ∗ Q ∗ (n− m)).

In CSO, the time complexity generated by calculating
the fitness value is O (m ∗ N ). The processes to update the
chickens’ roles at interval of G require a time complexity of
O (M1/G). Meanwhile, the time complexity for updating the
locations of roosters, hens and chicks isO (M1 ∗ N ). In addi-
tion, the time complexity required for updating the current
optimal value isO (N ). Because themaximumnumber of iter-
ations and the size of bat group is larger than the other param-
eters, the maximum time complexity of CSO is O (M1 ∗ N ).
Therefore, the fourth step of CDV-Hop and CWDV-Hop with
CSO has a time complexity of O (M1 ∗ N ∗ (n− m)).
Table 7 summarizes the time complexity of the eight

algorithms. It is observed that WDV-Hop has the same
complexity as the traditional method and the CWDV-Hop
algorithm increases slightly in time complexity. In terms of
space complexity, the temporary storage spaces occupied
by the operational process of CWDV-Hop, iDV-Hop2 and
iDV-Hop4 are correlated with the sizes of CSO, PSO and DE
groups. Therefore, the space complexities of CWDV-Hop and
iDV-Hop2 are O (N ), O (P) and O (Q).

VI. CONCLUSION
In this article, a novel CWDV-Hop algorithm is proposed.
Considering the effect of distance on different anchors,
CWDV-Hop replaces the average hop distance of traditional
DV-Hop with distance-weighted hop distance. Then the coor-
dinates of unknown nodes are obtained from two-dimensional
hyperbolic approach. Those improvements based on the for-
mer are termed as WDV-Hop. The proof of WDV-Hop
presents its simplicity in theory and experimental results
show its superiority over the traditional DV-Hop. And then,
Chicken Swarm Optimization (CSO) is applied to minimize
the error of estimated coordinates. The localization accuracy
of CWDV-Hop is improved in comparison with its counter-
parts. In addition, the introduction of CSO cause a slight but
acceptable time complexity increase during the optimal oper-
ation. Theoretically, the proposed algorithm can be applied in
both indoor and outdoor environment. However, the indoor
environment is complex, and the signal propagation must
face the problems of reflection, scattering and masking. This
results in the inaccuracy localization. Therefore, the proposed
CWDV-Hop is more suitable for the outdoor environment.
Considering the resource constrains (e.g., small storage, low
computation and energy) of sensor nodes in real-world appli-
cations, the localization algorithms using bio-inspired tech-
niques can adopt the centralized network structure where the
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base station (BS) firstly collects data of each node through
multi-hops and then implements the following localization
processes. In the future, extending proposed scheme to the
3D space and the mobile WSN is our research direction.
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