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ABSTRACT In this paper, novel Dual-Functional Radar-Communication (DFRC) waveforms with peak
average power ratio (PAPR) constraint are designed, which are under the multiple-input multiple-output
(MIMO) radar-communication system. The DFRC waveforms transmitted by multiple antennas can send
communication information to many downlink cellular users and detect radar targets simultaneously.
An optimization model is established to minimize the downlink multi-user interference (MUI) under PAPR
constraint. The model is non-convex quadratically constrained quadratic programs (QCQP) and can be
derived into a convex problem and solved by using the semi-definite relaxation (SDR) technique with rank-
one approximation. Numerical simulations demonstrate that our proposed waveforms can achieve a better
radar performance in practical scenarios without sacrificing the communication performance.

INDEX TERMS Spectral coexistence, dual-functional radar-communication, non-convex optimization,
semi-definite relaxation, peak average power ratio constraint.

I. INTRODUCTION
In recent years, Radio Frequency (RF) spectral congestion
has become a serious problem due to the tremendous growth
of spectral demands from different wireless applications, and
the current inefficient spectral allocations [1]–[6]. Sharing
the spectrum among both radar and communication signals
can be a promising method of addressing this issue. In gen-
eral, there are two approaches for achieving shared spectrum
access of radar and communication. The first approach is to
let the radar systems transmit in the spacial and frequency
domains, they are unoccupied by any communication system.
To achieve this, a spatial filter can be designed to separate
the radar and communication signals [7]–[9]. Nevertheless,
such methods will cause potential cross interference and
serious degradation in the transmitting process if the radar
and communication signals are not perfectly separated.

The second approach is the joint design of dual-functional
radar-communication (DFRC) waveforms [10]–[14], which
can detect radar targets and transmit communication
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information simultaneously. DFRC waveforms can prevent
cross interference while taking full advantage of current
hardware edge caching capabilities. In [10], [11], commu-
nication information are embedded into the radar intrapulse
waveforms, while the communication information have the
property of low intercept probability. In [12], a sequence of
communication bits are embedded into several orthogonal
transmitted waveforms. The mainlobe of this DFRC wave-
form is used for detecting the targets, while the sidelobes are
used to transmit information to the communication receivers.
In practical scenarios, radar waveforms are often transmitted
with nonlinear amplifiers, and the radar waveforms should be
designed with constant-modulus (CM) or low peak average
power ratio (PAPR). In [14], CM DFRC waveforms are
designed by use of a branch-and-bound (BnB) algorithm,
which is however computationally inefficient. To further
reduce the computational overhead, a Riemannian conju-
gate gradient (RCG) algorithm has been proposed in [15]
for designing CM waveforms. While the CM waveforms
are able to fully adapt to the radar’s amplifier restrictions,
they may incur performance-loss to the output signal noise
ratio (SNR).

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 8047

https://orcid.org/0000-0001-9615-6445
https://orcid.org/0000-0001-8423-8064
https://orcid.org/0000-0002-2463-8733


Y. Zhao et al.: MIMO DFRC Waveform Design With PAPR Constraint

In this paper, we propose novel DFRC waveforms which
minimizes the downlink multi-user interference (MUI) under
the total transmitted power and PAPR constraints. A trade-
off parameter is introduced to control the priority of
radar and communication performance. Assuming that the
communication channel matrix coule be estimated per-
fectly. While the optimization problem is non-convex and
NP (non-deterministic polynomial)-hard in general, it can be
efficiently solved by the semidefinite relaxation (SDR) tech-
nique. By applying rank-one approximation, the near-optimal
solution can be achieved. Numerical results demonstrate that
the waveforms proposed in this article can achieve a better
radar performance in practical scenarios without sacrificing
the communication performance and our algorithm obtains
better performance in the DFRC system compared to its CM
counterpart.

II. SYSTEM MODEL
Weconsider amultiple-inputmultiple-output (MIMO)DFRC
system which is shown in Fig. 1, the RadCom Base Station
is equipped with N antennas which are located in a uniform
linear array (ULA). This system has the objective of detecting
radar targets, and communicate with K single-antenna users
simultaneously. The communication and radar signal models
will be introduced, respectively.

FIGURE 1. MIMO dual-functional Radar-Communication system.

A. COMMUNICATION MODEL
The received signal matrix at legitimate downlink users can
be defined as:

Y = HX+ Z, (1)

where H = [h1,h2, . . . ,hK ]T ∈ CK×N represents the
channel matrix, which is assumed to be flat Rayleigh fading
and estimated perfectly, X = [x1, x2, . . . , xL] ∈ CN×L

denotes the transmitted signal matrix, with L being the
length of the radar pulse or communication frame, and
Z = [z1, z2, . . . , zL] ∈ CK×L denotes the noise matrix,
with zl ∼ CN (0,N0IN ) ,∀l ∈ (1, 2, . . . ,L), where CN ()
denotes Gaussian distribution. If the channel matrix H is
estimated imperfectly, a min-max optimization could be used

as a variable approach [9], [16] and it will be a future
avenue of research. With a known constellation symbol
matrix S ∈ CK×L , it is desired by the legitimate downlink
users. Therefore, the received signals can be rewritten as

Y = S+HX− S︸ ︷︷ ︸
MUI

+ Z, (2)

The entry of S ∈ CK×L for each downlink user can be
assumed to be taken from the same alphabet, such as a quadra-
ture phase shift keying (QPSK) constellation. The second
term in (2) is defined as the multi-user interference (MUI)
signals, and the total MUI energy can be expressed as

PMUI = ‖HX− S‖2F , (3)

Since the achievable sum-rate of the legitimate downlink
users is affected by the MUI energy directly [17], the Signal-
to-Interference-plus-Noise-Ratio (SINR) in each pulse for the
i-th user can be expressed as

ηi =
E
(∣∣si,j∣∣2)

E
(∣∣∣hTi xj − si,j∣∣∣2)︸ ︷︷ ︸

MUI energy

+N0

, (4)

where si,j denotes the (i, j) th entry of S, and E represents
the total average in relation to the pulse width. Therefore,
the achievable sum-rate of the users is defined as

0 =

K∑
i=1

log2 (1+ ηi) , (5)

It can be observed that the power of our signal E
(∣∣si,j∣∣2) is a

constant parameter when the energy of a known constellation
is fixed. Thus,maximizing the sum-rate turns intominimizing
the MUI energy.

B. MIMO RADAR MODEL
It is well known that MIMO radar has many advantages such
as improving the spatial resolution and enhancing the ability
of anti-jamming due to the high Degrees of Freedom (DOFs)
[18], [19]. In addition to these points, the overall waveform
diversity of the system has also been improved which can
be advantageous in a congested or contested environment.
The general approach of MIMO radar waveform design is
focused on designing the beampattern, which is equivalent
to the covariance matrix of the transmitted signals, and it
can be solved by the convex optimization [20]. Here our
radar model only consists of the thermal noise, but in the
practical scenarios clutter and jamming could also affect the
radar performance. More complicated radar models can be
used, and some robust estimates, based on geometric consid-
erations as well as statistical properties of covariance matrix
can be used to improve the performance of the classic sample
covariance [21]–[23]. In our MIMO radar systems, the wave-
forms should be designed with the low auto-correlation and
cross-correlation sidelobes under the CM or lower PAPR
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constraint [24]–[26]. Here, we focus on designing a direc-
tional beampattern, our desired spatial covariance matrix of
the DFRC transmitted signals is expressed as

RX =
1
L
XXH

=
Pt
N
IN , (6)

where IN represents the N dimensional identity matrix. Thus,
the orthogonal linear frequency modulation (LFM) wave-
forms X0 are regraded as our reference waveforms. The
(n, l)-th sampling point of X0(n, l) can be expressed as:

X0(n, l) =
exp{j2πn(l − 1)/L}exp{jπ (l − 1)2/L}

√
NPt

(7)

where n = 1, . . . ,N , l = 1, . . . ,L, andPt is the total transmit
power. Our novel DFRC waveforms are based on the radar
and communication systems defined above.

III. TRADE-OFF BETWEEN RADAR AND
COMMUNICATION PERFORMANCE
WITH PAPR CONSTRAINT
A. CONVENTIONAL TRADE-OFF DFRC WAVEFORM DESIGN
We first provide the optimization problem of conventional
trade-off DFRC waveform design under the total transmitted
power constraint

min
X
ρ‖HX− S‖2F + (1− ρ)‖X− X0‖

2
F ,

s.t.
1
L
‖X‖2F = Pt, (8)

where ρ ∈ [0, 1] is the weighting coefficient that controls the
balance of radar and communication performance in DFRC
waveforms. Assuming that A =

[√
ρHT ,

√
1− ρIN

]T
∈

C(K+N )×N , B =
[√
ρST ,

√
1− ρXT

0

]T
∈ C(K+N )×L , (8) can

be rewritten as:

min
X
‖AX− B‖2F ,

s.t. ‖X‖2F = LPt, (9)

It is a non-convex quadratically constrained quadratic pro-
gram (QCQP) which can be converted into a Semidefi-
nite Programming (SDP). This optimization problem can be
solved by the method of Semidefinite Relaxation (SDR), and
further details can be found in [14].

B. TRADE-OFF DFRC WAVEFORM DESIGN WITH
PAPR CONSTRAINT
According to the analysis above, we combine the conven-
tional trade-off DFRC waveform design with the PAPR
constraint. PAPR is a significant parameter in the aspect
of transmitting radar waveforms, and large PAPR can dis-
tort radar waveforms. The optimization problem can be
expressed as:

min
X
‖AX− B‖2F ,

s.t. ‖X‖2F = LPt,

PAPR(X) ≤ r; (10)

where r ∈ [1,NL]. In the case where r = 1, it transforms
into the CM constraint. The PAPR constraint can be given as
follow [26], [27]

PAPR(x) =
max
m
|x(m)|2

‖x‖2
NL

≤ r, (11)

where x = vec(X) ∈ CNL×1, m = 1, . . . ,NL. It can be
observed that the total transmitted power and PAPR con-
straints have transformed into a quadratic equality constraint
and a series of quadratic inequality constraints, respectively:

xHx = LPt,

xHEmx ≤
Ptr
N
. (12)

where

Em(i, j) =

{
1 i = m and j = m
0 otherwise.

(13)

where Em ∈ RNL×NL . In order to combine the vector-
ized PAPR constraint with the objective function together,
the objective function of (10) must be vectorized. The A can
be written into one diagonal matrix:

Ã =


A

A 0
. . .

0 A
A

 ∈ C(K+N )L×NL (14)

and b = vec(B) ∈ C(K+N )L×1. Thus, (10) can be rewritten as:

min
x
‖Ãx− b‖2,

s.t. xHx = LPt,

xHEmx ≤
Ptr
N
. (15)

where (15) is a non-convex QCQP with a non-convex
quadratic equality constraint and a series of quadratic
inequality constraints.

IV. SOLUTION TO THE OPTIMIZATION MODEL
The SDR techniques have been shown to be an effective
method to solve the problem of waveform design with a non-
convex QCQP. According to the analysis in [28], we apply
the matlab CVX tools [29] to solve this problem after a series
of derivations. Thus, we have the following transform:

G =
[
<(Ã) −=(Ã)
=(Ã) <(Ã)

]
∈ R2(K+N )L×2NL , (16)

s = [<(x) =(x)]T ∈ R2NL×1, (17)

y = [<(b) =(b)]T ∈ R2(K+N )L×1. (18)

where<(C) and =(C) denote the real value and the imaginary
value, respectively. The objective function of (15) can be
rewritten as:

min
s
‖Gs− y‖2, (19)
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Here, (19) is an inhomogeneous QCQP. In order to homog-
enize (19), we introduce one new parameter v and assume
that v2 = 1. Then, (19) is equivalent to the following
expression:

min
s,v
‖vy−Gs‖2, s.t. v2 = 1. (20)

Thus, (20) can be expressed as a homogeneous QCQP:

min
s,v

[
sT v

] [ GTG −GT y
−yTG ‖y‖2

] [
s
v

]
, s.t. v2 = 1. (21)

Assuming that s̃ =
[
sT v

]
∈ R(2NL+1)×1 and

D =
[

GTG −GT y
−yTG ‖y‖2

]
(22)

Then, (19) turns into the following expression:

min
s̃,v

s̃TDs̃, s.t. v2 = 1. (23)

For the quadratic constraint in (15), based on the constraint
condition in (23), and s̃ is used to replace the parameter x.
Thus, we have the following expression:

s̃T s̃ = LPt + 1,

s̃T Ẽws̃ ≤
Ptr
N

(24)

where

Ẽw(i, j) =


1 i = w and j = w

1 i = NL + w and j = NL + w

0 otherwise.

(25)

where Ẽw ∈ R(2NL+1)×(2NL+1) and w ∈ [1, . . . , 2NL + 1].
Combining (23) and (24) together, the optimization model of
DFRC waveform design with the total transmitted power and
PAPR constraints becomes:

min
s̃,v

s̃TDs̃,

s.t. v2 = 1,

s̃T s̃ = LPt + 1,

s̃T Ẽws̃ ≤
Ptr
N

(26)

To further improve the objective function, the following
assumptions can be made S̃ = s̃T s̃, and tr(S̃) = tr(s̃T s̃).
(26) can be rewritten as:

min
s̃,v

tr(DS̃),

s.t. S̃(2NL + 1, 2NL + 1) = 1,

tr(S̃) = LPt + 1,

tr(ẼwS̃) ≤
Ptr
N

w = 1, . . . , 2NL,

rank(S̃) = 1. (27)

It can be observed that the only non-convex constraint is
rank(S̃) = 1. By using the rank-one approximation, we get

min
s̃,v

tr(DS̃),

s.t. S̃(2NL + 1, 2NL + 1) = 1,

tr(S̃) = LPt + 1,

tr(ẼwS̃) ≤
Ptr
N

w = 1, . . . , 2NL. (28)

It is apparent that the optimal solution can be solved using the
SDR technique with rank-one approximation. Then, we can
get the optimal solution S̃opt, and inverse vectorization is
applied to obtain s̃opt, where s̃opt =

[
sopt v

]
. The optimal

waveforms can be expressed as xoptp = soptp +
√
−1soptp+NL ,

where p ∈ [1,NL]. The proposed DFRC waveform design
is a SDR problem and can be solved by matlab convex opti-
mization toolboxes with an interior-point algorithm, which
needs a total O((2NL + 1)3.5 log(1/ε)) complex floating-
point-operations(flops), where one complex flop is defined
as one complex addition or multiplication and ε > 0 is a
solution accuracy.

V. SIMULATION RESULTS
In this section, numerical simulations are provided to illus-
trate that our novel DFRC waveforms have improved radar
performance without sacrificing the communication perfor-
mance than the conventional DFRC waveforms proposed
in [14]. ‘Chirp-Tradeoff-Total’ and ‘Chirp-Tradeoff-Total-
PAPR’ denote the conventional DFRC waveforms and the
DFRCwaveforms with the total transmitted power and PAPR
constraints, respectively. When r = 1, the PAPR constraint
transforms into the CM constraint, and ‘Chirp-Tradeoff-
Total-CM’ denotes the DFRCwaveforms with the total trans-
mitted power and CM constraints. Without loss of generality,
assuming that the total transmitted power Pt = 1, and SNR =
Pt/N . There are N = 8 antennas in the DFRC system, and
the system transmits information to K = 4 single-antenna
receivers. The length of DFRC waveform pulse is set to be
L = 20. Each entry of H subjects to the standard complex
Gaussian distribution, and the constellation in S ∈ {1 + j,
1 − j,−1 + j,−1 − j} is selected to be the QPSK
alphabet, and they correspond to the communication signal
bits {00, 01, 10, 11}.
The communication performance achieved by different

approaches are shown in Fig. 2 and Fig. 3. ‘Zero-MUI’
represents the ideal situation where the MUI energy is zero.
The trade-off parameter ρ is set to be 0.5. In Fig. 2, when
SNR = 10 dB, with the increasing of r , the average achiev-
able sum-rate (AASR) of our novel DFRC waveforms with
the total transmitted power and PAPR constraints approaches
to the AASR of conventional DFRC waveforms. When
r = 1.5, they almost cross together, and the data can be
observed in Table 1. Thus, we assume that r = 1.5 is the
upper bound to limit the communication performance. Here,
we need to highlight when r = 1, PAPR = 0 dB, and
our novel DFRC waveforms are under the CM constraint.
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FIGURE 2. Average achievable sum-rate and PAPR for different
waveforms. ‘Chirp-Tradeoff-Total’ and ‘Chirp-Tradeoff-Total-PAPR’ denote
the conventional DFRC waveforms and the DFRC waveforms with the
total transmitted power and PAPR constraints, respectively. ‘Zero-MUI’
represents the ideal situation where the MUI energy is zero. ρ is the
trade-off parameter.

FIGURE 3. Average achievable sum-rate comparison for different
waveforms in the same SINR. ‘Chirp-Tradeoff-Total-CM’ denotes the DFRC
waveforms with the total transmitted power and CM constraints;
‘Chirp-Tradeoff-Total-PAPR’ denotes the DFRC waveforms with the total
transmitted power and PAPR constraints; ‘Chirp-Tradeoff-Total’ denotes
the conventional DFRC waveforms. r is the PAPR constraint parameter. ρ
is the trade-off parameter.

TABLE 1. The value of average achievable sum-rate for different
waveforms in the same PAPR, ρ = 0.5.

In Fig. 3, our novel DFRC waveforms with different PAPR
constraints are shown. Our novel DFRC waveforms which
under the total transmitted power and CM constraints obtain
the worst AASR comparing with the other situations. The
data can be observed in Table 2. With the increase of r ,
the AASR of our novel DFRC waveforms approaches to the
AASR of conventional DFRC waveforms.

The radar performance achieved by different approaches
and parameters are shown in Fig. 4, Fig. 5 and Fig. 6. The
Orthogonal-Chirp-Waveforms in (6) are used as the reference
waveforms, and the detection probability PD is applied to
determine the detection performance as a metric [8, eq.(69)].
Assuming that the target is point-like and in the far-field,

TABLE 2. The value of average achievable sum-rate for different
waveforms in the same SINR, ρ = 0.5.

FIGURE 4. Radar detection probability and SNR for different approaches
and parameters, N = 8, L = 20, PFA = 10−7. ‘Chirp-Tradeoff-Total-CM’
denotes the DFRC waveforms with the total transmitted power and CM
constraints; ‘Chirp-Tradeoff-Total-PAPR’ denotes the DFRC waveforms
with the total transmitted power and PAPR constraints;
‘Chirp-Tradeoff-Total’ denotes the conventional DFRC waveforms;
‘Orthogonal-Chirp-Waveform’ denotes the reference waveforms. r is the
PAPR constraint parameter. ρ is the trade-off parameter.

FIGURE 5. The waveforms in time domain with different approaches.
‘Orthogonal-Chirp-Waveform’ denotes the reference waveforms;
‘Chirp-Tradeoff-Total’ denotes the conventional DFRC waveforms;
‘Chirp-Tradeoff-Total-PAPR’ denotes the DFRC waveforms with the total
transmitted power and PAPR constraints. r is the PAPR constraint
parameter. ρ is the trade-off parameter.

TABLE 3. The value of PD for different waveforms in the same SINR.

and the angle of target is 45◦. The false-alarm probability of
radar is set to be PFA = 10−7. With the increase of r or the
decrease of ρ, our novel DFRC waveforms approach to the
reference waveforms. The data can be observed in Table 3.
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FIGURE 6. The auto-correlation function of the waveforms with different
approaches. ‘Orthogonal-Chirp-Waveform’ denotes the reference
waveforms; ‘Chirp-Tradeoff-Total’ denotes the conventional DFRC
waveforms; ‘Chirp-Tradeoff-Total-PAPR’ denotes the DFRC waveforms with
the total transmitted power and PAPR constraints. r is the PAPR
constraint parameter. ρ is the trade-off parameter.

TABLE 4. The value of ACLSs and PAPR for different waveforms.

When r = 1.5 and ρ = 0.5, the detection probability
value of our novel DFRC waveforms and the conventional
DFRC waveforms are overlapped together. It means that
they have the same performance of radar detection ability
in the simulation. In Fig. 5, the waveforms designed with
different approaches are shown in time domain. According
to the function in (6), the modulus of Orthogonal-Chirp-
Waveforms is constant. Thus, the blue line which stands
for the Orthogonal-Chirp-Waveforms is a straight line and
regarded as the reference. The orange line denotes the Chirp-
Tradeoff-Total waveform and the yellow line denotes the
Chirp-Tradeoff-Total-PAPR waveform. The data is shown
in Table 4. It can be observed that the conventional DFRC
waveform has higher peak altitude than our novel DFRC
waveform. As assumed above, our novel DFRC waveforms
are designed under the PAPR constraint with r = 1.5, while
the PAPR of conventional DFRC waveform is r = 4 via cal-
culations. The auto-correlation sidelobes (ACSLs) in range
direction are shown in Fig. 6, all the signals are processed
by hamming window. It can be observed that the ACSL
of Orthogonal-Chirp-Waveforms is −26.52dB, the ACSL of
Chirp-Tradeoff-Total waveforms is −6.41dB, and the ACSL
of Chirp-Tradeoff-Total-PAPR is−7.75dB. It means that our
proposed DRFC waveforms have the lower sidelobes than
the conventional DRFC waveforms. In addition, in practi-
cal systems, the conventional DRFC waveforms will suf-
fer from more severe degradation due to a large distortion
accrued in the signal transmitting process. Thus, our novel
DFRC waveforms achieve better radar performances with
lower PAPR.

VI. CONCLUSION
In this paper, the novel DFRC waveforms with the total
transmitted power and PAPR constraints are designed.
By minimizing the MUI energy and controlling the trade-
off parameter to allocate the priority of performance between
radar and communication system. The optimization model is
a non-convex problem with one quadratic equality constraint
and a series of quadratic inequality constraints. This problem
has been solved using the SDR technique. Numerical simula-
tions demonstrate that our novel DFRC waveforms achieve
better performance in radar system without sacrificing the
communication performance. In the future, we will do more
researches on theDFRCwaveform designwhen the imperfect
estimations of the channel matrix are considered.
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