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ABSTRACT Conventional Wireless capsule endoscopy (WCE) video summary generation techniques
apprehend an image by extracting hand crafted features, which are not essentially sufficient to encapsulate
the semantic similarity of endoscopic images. Use of supervised methods for extraction of deep features
from an image need an enormous amount of accurate labelled data for training process. To solve this, we use
an unsupervised learning method to extract features using convolutional auto encoder. Furthermore, WCE
images are classified into similar and dissimilar pairs using fixed threshold derived through large number
of experiments. Finally, keyframe extraction method based on motion analysis is used to derive a structured
summary of WCE video. Proposed method achieves an average F-measure of 91.1% with compression ratio
of 83.12%. The results indicate that the proposed method is more efficient compared to existing WCE video
summarization techniques.

INDEX TERMS Autoencoder, convolutional neural network, deep learning, image similarity, keyframe
extraction, video summarization, wireless capsule endoscopy.

I. INTRODUCTION

Wireless capsule endoscopy (WCE) is a non-invasive medical
imaging procedure used to screen the entire gastrointesti-
nal (GI) tract in order to detect various GI diseases [1].
WCE is considered as a robust diagnostic tool available
for the analysis of GI diseases. When a patient swallows
the capsule, it starts propelling through GI tract by peri-
stalsis action and capture video frames of various parts
of GI tract. The capsule capture images at the rate of
3 to 6 frames per second for over 8 hours and acquires around
90000-180000 frames [2]. The capsule travels at a very slow
speed of about 0.16-1 mm/s and captures 2-12 frames for
every Imm of its travelling distance [3]. Slow movement
results in huge number of redundant frames with high struc-
tural similarity. A physician has to invest a lot of time or
appoint an assistant to inspect these huge number of frames
and summarize the endoscopy video by eliminating redun-
dant frames. The major disadvantage associated in manual
summarizing is a chance of eliminating some of the frames
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with lesion symptoms while inspecting thousands of images.
Other methods work with the detection of lesions which
includes tumours, ulcers, polyps and Crohn’s disease. A few
approaches are proposed for detection of lymphangiectasias,
celiac disease and hookworms. All these methods deal with
detection of only one or two type of abnormalities. Majority
of the frames with other abnormalities still needs to be man-
ually reviewed by the gastro-enterologist. To overcome all
these drawbacks, developing an algorithm to generate video
summary without missing frames with sensitive information
is very significant. WCE video summarization tool allows
the physician to get a quick glimpse of overall content in
video and presence of possible abnormalities. Summarized
video consisting of only keyframes is reviewed by the physi-
cian. Any frames with sensitive information is found, physi-
cian can always refer to the adjacent frames in the original
video.

Problem of video summarization (VS) can be described
as selecting a small batch of frames from the video stream
consisting of large set of video frames that describe the
whole content of original video. VS is a technique of pars-
ing the sequence of video frames V into a shot set ¥ and
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extracting the set of keyframes ¢ [4]. Most of the state-of-
the-art VS methods use three main common steps [5]:

o Feature extraction from each frame and latent space
representation of extracted features.

o Temporal segmentation of video into shots. Each shot
consists group of sequential frames with certain similar
features.

« Finally, set of frames called as keyframes are extracted
from each shot which describes the entire content of the

shot.
Many VS techniques for WCE use fusion of extracted

color, texture and shape features for shot segmentation
[6]-[9]. These methods mainly use distance between
information entropies of consecutive frame features with a
threshold for segmenting video into several shots. Clustering
techniques such as adaptive K-means and affinity propaga-
tion are adopted to extract keyframes. All these methods
employ hand crafted features such as histogram oriented
gradient (HOG) features, histogram based on Hue Saturation
Value (HSV) colour space, Gray level co-occurance matrix
(GLCM) based texture features. All these feature extraction
methods represent only low level attributes of a frame and
fails to represent the high level semantic similarity between
two consecutive frames [10]. In WCE video, colour and
texture content varies very little from one frame to next
consecutive frame. Therefore, colour and texture features
are not adequate to detect significant changes between two
successive frames [11]. Geodesic and Euclidean distance
are used to remove the redundant frames from WCE video
in [12]. Frames are considered as members of vector space to
extract the set of keyframes called as orthogonal vectors using
the computed distance. A sparse dictionary based method
is used in [13] to select the more representative frames by
fusing change in content information and gaze. Methods
described above results in inappropriate summaries due to
semantic gap. This poses a lot of practical challenges, when
accuracy is an important criterion for medical diagnosis. All
the constraints in the above methods lead the researchers to
develop a supervised learning method using Siamese neural
network (SNN) with linear SVM classifier [14]. SNN is capa-
ble of automatically learning semantic features in higher level
required for discriminating the endoscopic images into simi-
lar or dissimilar pairs. But the modelling of network weights
of the SNN depends on the robust labelled training data and
needs physician’s assistance for labelling. In another work,
[15] singular value decomposition (SVD) method is used on
both hand crafted and deep features to select keyframes. SVD
is applied on a frame cluster and keyframes pertaining to a
particular cluster are extracted. This will not capture more
similarity in frames resulting due to slow movement of the
capsule in some parts of GI.

To address all the above issues, unsupervised learning
approach using convolutional autoencoders is proposed to
extract features of endoscopic images. Many research out-
comes have shown that unsupervised feature extraction of
medical images lead to significant improvement compared
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to conventional convolutional neural network [16]-[18].
Motivated by SNN, in the proposed work deep unsupervised
image feature extraction network consisting of convolutional
autoencoder neural network (CANN) is used. Euclidean dis-
tance computed between features extracted from a pair of
GI tract images is used to classify the images as similar or
dissimilar pairs. WCE video stream is segmented into differ-
ent shots based on similarity measure. Finally, keyframes are
extracted from each shot to remove redundant frames based
on motion profile obtained by inter-frame motion energy
and direction. In WCE the change in each frame is due to
movement of the capsule. Therefore, it is possible to extract
keyframes which covers the entire WCE video space of a shot
with the help of motion analysis. Also, recent endoscopic
VS techniques have shown efficiency in employing motion
characteristics between consecutive frames for key frame
extraction [11], [19].

The remaining sections of the paper are outlined as
follows. In Section II proposed WCE VS technique is
described. Section III discusses implementation considera-
tions and performance of the proposed method for WCE
video sequences. A conclusion comments of the paper are
provided in Section IV.

Il. PROPOSED METHOD

WCE video consists of an ordered set of consecutive frames
represented as V = Iy, I, Is, . ..., I,, where I; denotes i
frame of the video and m is the number of frames in video.
During WCE, capsule moves at a slow pace along the GI
tract due to peristalsis action and captures a video sequence
V which consists images of various parts of GI tract. Slow
movement of the capsule in some parts of the GI tract such
as small intestine results in small or no changes from frame
to frame. In oesophagus, WCE video exhibits large changes
from frame to frame due to fast movement of capsule. There-
fore, a set of frames ¢ called as keyframes can be found which
summarizes V by eliminating redundant frames. The task of
finding ¢ given V involves the following function.

[} = aremin i@ Vil =00 200 ()
J

where D is measure of dissimilarity representing the criterion
of VS [20]. Proposed WCE VS method for constructing ¢
from V is shown in Fig. 1.

A. CONVOLUTIONAL AUTOENCODER NEURAL

NETWORK (CANN) FOR FEATURE EXTRACTION

CANN consists of an encoder and decoder networks. Encoder
of the CANN generates high level feature map of the
input by using several convolution and max-pooling lay-
ers. Decoder reconstructs the input from the feature map
by using strided transposed convolution layers. The pro-
posed CANN is designed based on the autoencoder network
described in [21] and its architecture is shown in Fig. 2.
Proposed feature extraction approach utilizes the power of
convolutional filtering to train CANN in unsupervised way.
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FIGURE 1. Proposed WCE video summarization method; F; and F; ; are the feature vectors of i and (i + 1)t sequential frames.
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FIGURE 2. Convolutional autoencoder architecture showing encoder and
decoder networks for extracting feature vector in endoscopic images.

The important characteristic of CANN is encoder-decoder
neural network, which is trained for extracting high-level
feature vector. Encoder consists three convolution layers and
three max pooling layers. Decoder contains three transposed
convolution layers followed by unpooling layers. Adding
more layers will make the CANN more deeper and will
improve the reconstruction of the input images at the decoder.
But this increases the complexity of the model. CANN with
three layers is capable of extracting the high level features
from the image and decoder can reconstruct the image from
the extracted features using three layers. The achieved recon-
struction quality is sufficient for discriminating the pair of
images into similar and dissimilar pairs at the encoder. The
final goal of the CANN is to find feature vector for each input
image by minimizing the mean squared error (MSE) between
input and output over all image samples. The details of the
encoder and decoder layer parameters are given in Table. 1.
Each convolution layer uses a non-linear activation func-
tion called Scaled exponential Linear Unit (SELU) instead of
Rectified Linear Units (ReLU) used in other Convolutional
networks. SELU activation function is close to zero mean and
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unit variance. When propagated through multiple network
layers, SELU automatically converge towards zero mean and
unit variance. All these self normalizing parameters of SELU
makes learning highly robust in network with many layers
and utilizes strong regularization schemes [22]. For an input
image matrix x;, the encoder network computes encoder out-
put e; using

ei=o(xixf" +b) @)

where o denotes SELU activation function, * represents 2D
convolution operation, f" is ' convolutional filter kernel and
b denotes encoder bias. The decoder reconstructs the encoded
output using

zi=o(e " +b) 3

where z; is the reconstruction of the i input x;, f" is the n’"
transposed convolutional filter and b is the bias of the decoder.
Unsupervised training of the CANN aims to minimize the
cost function given by:
m
J©O) =) (i)’ @)
i=1

The gradients are calculated using the cost function given
in (4) and the network parameters are optimized through
stochastic gradient descent (SGD) to minimize the recon-
struction loss. Autoencoder training is based on the work
in [23]. Fig. 3 shows the training and testing performance of
the CANN for 50 epochs. Similarity between the two con-
secutive frames is decided based on features extracted from
the frames. To extract the features of an input image in an
unsupervised method, both encoder and decoder networks are
trained together. Input image is reconstructed by the decoder
using encoder extracted features. Level of feature extraction
is decided based on the reconstructed quality of images at the
decoder. After the encoder is trained to extract the high level
features, the decoder part of the CANN is removed and only
the encoder is retained. Encoded features and reconstructed
images of the CANN along with the input images are shown
in Fig. 4.

B. SIMILARITY ESTIMATION
Two consecutive frames in WCE video sequence is consid-
ered as an image pair. For any input image /; to the CANN,
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TABLE 1. Layer parameters of convolutional autoencoder.

FIGURE 3. Training and testing losses for 50 epochs of the CANN.

Layer Type Number of maps | Kernel Size Output
1 Convolution 20 5x5 20x256x256
2 Max Pooling 20 2x2 20x128x128
3 Convolution 50 3x3 50x128x128
4 Max Pooling 50 2x2 50x64x64
5 Convolution 64 3x3 64x64x64
6 Max Pooling 64 2x2 64x32x32
7 Unpooling 64 2x2 64x64x64
8 Transposed Convolution 64 3x3 64x64x64
9 Unpooling 50 2x2 50x128x128
10 Transposed Convolution 50 3x3 50x128x128
11 Unpooling 20 2x2 20x256x256
12 Transposed Convolution 20 5x5 20x256x256
= train
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the corresponding extracted feature Fea; is generated as,
Fea; = G (I;, W) &)

where G(.) is a non-linear mapping function of encoder and W
is the network parameters of the encoder part of the CANN.
Euclidean distance between features of the image pair is
computed and classified as similar or dissimilar pair based
on the fixed threshold. To learn the threshold, Euclidean
distance between 20000 consecutive WCE image pairs in
feature space is computed and the observations made are:
i) Euclidean distance varies between around 0 to 270 ii) Sim-
ilar pair of images have distance close to 0 iii) Dissimilar pair
of images have larger distance close to 270 iv) Images with
few dissimilar patches have distance approximately equal to
20. Based on all the above observations and suggestions from
gastroenterologist, a threshold of 20 is fixed for classification.
Losing frames with significant lesions can be avoided by
selecting small threshold, despite small threshold results in
few number of frames in each shot. Euclidean distance for
similarity judgement is calculated as:

Dis; i1 = ||(Fea; — Fea;j11)| |2 (6)
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FIGURE 4. Visualization of extracted features and reconstructed images
of CANN (a) Input images to CANN, (b) Features extracted by encoder
network and (c) Decoded images by decoder network.

where Dis; ;41 is the Euclidean distance of the features Fea;
and Fea; | extracted from i and i + 1"* WCE frames respec-
tively. Based on Dis; ;+1, the image pair is considered as
similar or dissimilar by (7). Similar and dissimilar pair of
images are labelled as 1 and O respectively.

S = {1, Dl:S,‘,H_] <20 @
0, DlS,'J.,.] > 20

C. SHOT SEGMENTATION

WCE video content contain similar content from frame
to frame. Therefore, other shot detection methods which
are proposed for multimedia cannot be used with WCE
video [24]. In this article, the concept of video shot is defined
as group of contiguous frames segmented based on similar-
ity changes between two consecutive frames. Proposed shot
segmentation method is shown in Fig. 5. Shot boundary is
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FIGURE 5. WCE video shot segmentation based on frame similarity.

detected when the similarity label is set to 0. WCE shot
segmentation which incorporates frame matching, separates
shots consisting of frames with high similarity.

D. KEYFRAME EXTRACTION
Video summarization of WCE video can be concluded with
keyframe extraction in each shot. Frames in each shot has
high similarity and consist a lot of redundancy. These redun-
dant frames contributes very less or no information for cov-
ering the entire WCE video. Motion analysis between frames
within a shot gives an idea of redundant frames [4]. If a
pair of frames exhibit larger motion then the frames are
likely to be considered as less redundant. Inherent intra-shot
redundancy is reduced to retrieve keyframe representation by
analysing capsule’s motion. Motion profile which constitutes
motion score, motion direction and motion energy denoted
as My, My, E,, respectively is derived from every shot before
extracting keyframes.

First, the relative inter-frame motion score is estimated for
a considered i shot S}, given as

My, = (Mg(n).n=1,2,.....n), 8)

where n; is the number of frames in S, and My, (n) is intra-shot
motion score between successive pair of frames. Motion score
M, for a frame pair (I,1’) consisting of matched feature
positions (X, X’), which is also the difference in average
distance between (I, I’) given by

1 o ) o .
M= — Zldam,xm) -~ Zld(x,’n,x;n> )
m= m=
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where X is the X features center of mass computed by:
X=— X (10)

where « is number of matched feature pairs detected [25] and
each (x, x),) is a matched feature pair in (X, X’). Matched
features in a pair of frames is as shown in Fig. 6. d(x;;;, %) 18
the euclidean distance between x,,, and X,,,.

FIGURE 6. Matched features between pair of consecutive frames.

Next, motion direction sequence My, = {Mgm,n =
1,2,..... n;} is computed using (11), which classifies motion
direction as forward, backward and no-motion depending on
capsule’s movement inside GI tract.

forward = 1,
backward = —1,

nomotion = 0

if My;(n) < THy
if M;(n) > TH, (11)
otherwise

My (n) =

Considering wide range of motion analysis through a
large number of experiments, threshold values THy and TH),

13695



IEEE Access

B. Sushma, P. Aparna: Summarization of WCE Video Using Deep Feature Matching and Motion Analysis

are selected as —0.12 and 0.12. Finally, Motion energy
En = {Ep(n),n = 1,2,..... n;} is computed for the
features associated with each frame pair by:

o
En=Y|Jwm— x| (12)
m=1

An example motion profile of a 40 frames shot from video
sequence captured in stomach in which the frame sequence
exhibits forward, backward and no-motion is shown in Fig. 7.
Based on the obtained motion direction signal M, of the cap-
sule endoscope, an example shot is segmented into 8 different
continuous runs consisting forward, backward and no-motion
indicated as F, B and NM respectively. Frame with mini-
mum motion energy is selected as keyframe in each segment.
Another motion profile of a short shot of 14 frames of video
captured in colon which exhibits only forward and no-motion
is shown in Fig. 8. Keyframe selection in a video shot of 70
frames captured in a small bowel with motion profile is shown
in Fig. 9. In all the frame shots the keyframe indicators are
marked by green circles.

Ill. RESULTS & DISCUSSIONS

A. DATASETS

The proposed WCE VS method is evaluated using two
datasets. Both the datasets are having frame resolution of
320 x 320. The dataset-1 is a publicly available dataset
called as KID. It consists of 3 WCE videos and the com-
plete description of this dataset is available in [26] and [27].
Another WCE dataset employed in this work is the dataset-
2 collected from department of gastroenterology, Manipal
hospital, Bangalore, India. Video sequences consists frames
of complete WCE examination from 20 different patients.
Both the datasets are captured by Intromedic Miro-Cam
WCE capsule. Around 50000 WCE frames are resized to
a resolution of 256 x 256, captured at different location
of the GI tract from different patients is used for training
CANN. Batchwise training is performed using mini-batch
size of 32 samples and the number of epochs used for each
batch is 50. For evaluating the performance of the proposed
technique, keyframes of around 20 video sequences includ-
ing 3 video sequences of KID-dataset are located with the
help of an expert gastroenterlogist. Around 5000 similar and
dissimilar pair of frames are identified to test the similarity
judgement performance. These frame pairs and keyframes are
used as ground-truth summary to compare the performance
of the proposed technique with other WCE VS methods. The
details on frame resolution, frame motion characteristics and
GI organ at which the frames are acquired is given in Table. 2.
Video sequences in KID dataset covers all the GI organs and
exhibits organ dependent motion characteristics. The results
of the proposed method and other methods are computed
using an Intel core i5-7200 2.5GHz CPU, 8GB RAM and
NVIDIA GeForce 940MX GPU.
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B. EVALUATION PARAMETERS

The performance of the proposed method is evaluated by
F-score and compression ratio (CR) on 3 video sequences of
KID-dataset and 4 video sequences captured in different parts
of Gl tract. F-score is computed using (13) which is a function
of precision (p) and recall (r) computed using (14) and (15)
respectively.

2rp

F-score = (13)
r+p
_ TP (14)
P=TrpiFp
TP
r=— (15)
TP + FN

TP (True-positive) is the number of correct matches
between keyframes extracted from proposed method and
ground-truth summary. FN (False-negative) is number of
frames which are in the result but not present in ground-truth
summary. FP (False-positive) is number of frames in the
ground-truth but not in result. Compression ratio (CR) is
calculated using (16), where Ny is number of WCE keyframes
extracted using proposed method and N, is total number of
keyframes in a video sequence. T, is the time required to
generate video summary of the considered video sequences.

CR=1- Ne (16)
N;
C. PERFORMANCE COMPARISON
Proposed method is compared with the other methods which
involves different feature extraction, shot segmentation and
key frame extraction methods. Methods with which the pro-
posed method is compared are discussed below:

« HSV-KMC: WCE images exhibits different mucosal
feature characteristics. Color is one of the significant
feature. GI organ vary in color features for different
organs. These color features are extracted in Hue Sat-
uration Value HSV) color space [28], since the infor-
mation associated with H component is more indicative
in representing the differences in WCE images. Color
feature vector is extracted by using histogram of H and
S. Shot is detected when the consecutive pair of frames
are having different color feature vector [9]. In each
shot the key frames are extracted by using K-means
clustering (KMC) method [29], [30].

e« CTS-KMC: In this method, fusion of color, texture and
shape (CTS) features are considered for shot detection.
Color feature vector is created in HSV color space. Local
binary pattern (LBP) algorithm is used to extract tex-
ture features [31]. Shape features are represented using
HoG [32]. Entropy of extracted features for each frame
is used for segmenting the video into different shots [8].
KMC algorithm is used for key frames extraction.

e SIFT-KMC: Scale-invariant feature transform (SIFT)
algorithm [33] is used to detect key feature points in
an image using Difference of Gaussian (DoG) oper-
ator. Number of inlier matched features between pair
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FIGURE 7. Keyframe selection of a 40 frame shot in video sequence captured in stomach based on motion profile. (a) Keyframes.
(b) Motion signal partitioned into segments. (c) Motion energy signal.

of frames is used to detect a shot. More feature o SIFT-MA: This method uses SIFT for feature extraction
matches between the corresponding pair of frames and number of features matches to detect a shot. Key
is considered as more similarity between the frames. frames are extracted based on motion analysis (MA) as
A shot is detected when the feature matches are less proposed in this method.

than a set threshold. Key frames are extracted using o SURF-KMC: Speeded Up Robust Features (SURF)
KMC. method [34] is a common feature extraction method in
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FIGURE 8. Keyframe selection of a 14 frame shot in colon video based on motion profile.
(a) Keyframes. (b) Motion signal partitioned into segments. (c) Motion energy signal.

computer vision. Features are extracted using SURF and
feature matches are used to detect a shot. Keyframes are
extracted using KMC.

o SURF-MA: This method uses SURF for feature extrac-

tion and number of features matches to detect a shot. Key
frames are extracted based on motion analysis.
In the above SIFT and SURF based methods, matched
feature points are retrieved between the pair of consecu-
tive frames. The ratio of number of matched features to
total number of features detected in both the frames is
used to detect the shot. If the ratio is less than 0.15, it is
considered as the two frames are in different shots.
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The comparison results for F-score on both the datasets is
shown in Table. 3 and Table. 4. The CR comparison results
are given in Table. 5.

Itis very critical to achieve high accuracy in medical image
analysis. The proposed method achieves high accuracy and
high compression performance compared to other works.
This indicates that it can eliminate redundant frames by
extracting few keyframes which preserve informative frames.

In the proposed method, WCE video is summarized
based on two significant steps: shot identification and
keyframe extraction. Shots are detected based on the frame
feature matching. More similar features are required for
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FIGURE 9. Visualization of a small bowel video shot with motion profile. (a) Keyframes (b) Partitioning of Motion signal. (b) Keyframe
extraction based on motion energy.
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TABLE 2. Test video sequences.

Test Video | Frame Resolution | Captured GI organ Motion Type Video length | Capsule Source
Sequence in frames

Video-1 320x320 Small Intestine No or very less motion | 5922 Manipal
Video-2 320x320 Colon Moderate to fast motion | 3000 Intromedic Hospitals,
Video-3 320x320 Esophagus Fast motion 390 Mirocam Bangalore.
Video-4 320x320 Stomach irregular motion 450

KID-1 320 x320 All GI organs All types of motion 65000

KID-2 320 x320 All GI organs (irregular, fast, slow 62000 MDSS Reserch
KID-3 320 x320 All GI organs and no motion) 62500 Group [26]
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FIGURE 11. F-score and compression performance for different motion direction thresholds. (a) KID-dataset (b) Dataset-2.

frame matching. The frame similarity threshold has direct
influence on F-score as shown in Fig. 10a. Each plot for
a specific test video sequence indicates the performance

measure variation according the change in similarity thresh-
old. Also it can be observed from Fig. 10b that similar-
ity threshold has less impact on compression performance.
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TABLE 3. Comparison of Recall, Precision and F-score values of the proposed method with other methods on KID dataset.

Parameters | Test Video | HSV-KMC | CTS-KMC | SIFT-KMC | SIFT-MA | SURF-KMC | SURF-MA | Proposed
Method
KID-1 0.57 0.79 0.82 0.80 0.78 0.78 0.94
Recall KID-2 0.54 0.74 0.80 0.79 0.73 0.73 0.92
KID-3 0.51 0.72 0.81 0.83 0.69 0.76 0.93
Average 0.54 0.75 0.81 0.81 0.73 0.75 0.93
KID-1 0.58 0.78 0.53 0.61 0.69 0.81 0.92
Precision KID-2 0.61 0.76 0.55 0.63 0.79 0.91 0.94
KID-3 0.55 0.81 0.59 0.69 0.68 0.88 0.95
Average 0.58 0.78 0.56 0.64 0.72 0.86 0.94
KID-1 0.57 0.78 0.65 0.69 0.73 0.79 0.93
F-Score KID-2 0.57 0.75 0.65 0.70 0.75 0.81 0.93
KID-3 0.53 0.76 0.68 0.75 0.68 0.81 0.94
Average 0.56 0.76 0.66 0.72 0.72 0.80 0.93

Setting high similarity threshold can tend to reject frames
with significant lesions. Therefore, it is necessary to choose
low threshold value. In shot detection a threshold of 20 is set
for similarity estimation which detects even a small signifi-
cant change between pair of frames and avoids loss of infor-
mative frames. Video shot is partitioned into different motion
segments based on a threshold and a keyframe is extracted
in each segment. Construction of motion profile proved to be
strong over thresholds THy and TH),. Low threshold values
—0.12 and 0.12 are chosen to detect even a weak motion
between the frames, because THy and TH)j, has direct impact
on F-score and CR. F-score and CR for datasets considered in
this work for different motion direction thresholds is shown
in Fig. 11. From the performance graph, it can be observed
that F-score is maximum at 0.12. Video shot is partitioned
into less number of segments at higher threshold and less
keyframes are selected. Therefore, CR increases for the larger

VOLUME 9, 2021

thresholds. But accuracy is very important and threshold at
which high accuracy is achieved is considered in the work.
As shown in Fig. 12, summarization performance in-terms of
F-score decreases as CR increases. Each plot for a particular
test video sequence indicates how the F-score varies as CR
varies. It can be observed from Fig. 12b that video with slow
motion (Video-1 in dataset-2) has high F-score of around
93% at high CR of 95%. Video with fast motion (Video-4
in dataset-2) achieves high F-score of 91% with 70% CR.
The accuracy drastically drops as the CR increases which
is directly impacted by increase in THy and THj. Larger
THy and TH), gives high CR as more number of frame pairs
are considered as no motion frames and this results in less
motion segments. This will lead to an excessive rejection
of significant frames and affects summarization performance
interms of accuracy. The results clearly indicate that the
proposed method is potential with consistent performance
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TABLE 4. Comparison of Recall, Precision and F-score values of the proposed method with other methods on Dataset-2.

Parameters | Test Video | HSV-KMC | CTS-KMC | SIFT-KMC | SIFT-MA | SURF-KMC | SURF-MA | Proposed

method

Video-1 0.76 0.89 0.72 0.70 0.78 0.82 0.91

Recall Video-2 0.72 0.85 0.74 0.71 0.70 0.75 0.89

Video-3 0.69 0.78 0.76 0.72 0.72 0.78 0.90

Video-4 0.64 0.72 0.73 0.69 0.73 0.77 0.92

Average 0.70 0.81 0.73 0.70 0.73 0.78 0.90

Video-1 0.72 0.84 0.89 0.94 0.87 0.89 0.94

Precision Video-2 0.58 0.79 0.86 0.90 0.80 0.88 0.92

Video-3 0.51 0.79 0.89 0.82 0.76 0.82 0.95

Video-4 0.53 0.81 0.84 0.81 0.82 0.89 0.91

Average 0.59 0.80 0.80 0.86 0.81 0.87 0.93

Video-1 0.74 0.86 0.79 0.80 0.82 0.85 0.92

F-Score Video-2 0.64 0.82 0.79 0.79 0.74 0.80 0.90

Video-3 0.58 0.78 0.75 0.76 0.73 0.80 0.92

Video-4 0.59 0.76 0.73 0.74 0.77 0.82 0.91

Average 0.64 0.80 0.76 0.77 0.77 0.82 0.91

TABLE 5. Comparison of the proposed method with other methods interms of F-score (FS) and compression ratio (CR) results in %.
Test Video HSV-KMC CTS-KMC SIFT-KMC SIFT-MA SURF-KMC SURF-MA Proposed
Method
FS CR FS CR FS CR FS CR FS CR FS CR FS CR

KID-1 5724 7460 | 7837 715 | 6534 6230 | 68.87 634 | 73.30 6430 | 79.21 63.80 | 92.78 88.80
KID-2 5698 7230 | 7472 68.6 | 6492 70.75 | 70.04 69.57 | 75.16 71.60 | 81.37 72.20 | 93.06 86.20
KID-3 5343 7096 | 76.25 663 | 6845 7036 | 74.86 68.78 | 68.12 7243 | 8091 73.62 | 9421 85.62
Video-1 74.16 89.50 | 86.19 862 | 78.79 8831 | 80.12 8531 | 8191 87.35 | 84.79 85.27 | 91.91 91.27
Video-2 6438 7790 | 81.88 742 | 78.88 83.57 | 7876 815 | 74.19 84.20 | 79.79 82.60 | 89.92  90.60
Video-3 5778 757 | 1836 733 | 7528 81.94 | 76.21 79.26 | 73.04 81.56 | 80.03 81.09 | 92.06 75.09
Video-4 58.84 825 | 7649 805 | 73.14 8159 | 74.13 7994 | 76.81 79.32 | 81.89 75.16 | 91.14 69.16
Average | 60.40 73.61 | 78.89 7432 | 72.11 77.01 | 74.71 75.39 | 76.64 77.25 | 81.14 76.24 | 92.15 83.82

with greater than 90% accuracy achieved for video sequences
of different motion characteristics.

Similarity and motion detection thresholds have a key role in
deciding the summarization performance interms of accuracy
and compression ratio. Thresholds are set to get maximum
accuracy in this work. With the set thresholds, proposed
method achieves an average F-measure of 91.1% with com-
pression ratio of 83.12%. Significant number of experiments
prove the efficiency and potential of the proposed method.
Improvement is required in several areas which accounts for

IV. CONCLUSION

In this article a framework to obtain summary of WCE video
content is proposed. Manual reviewing of the huge amount of
frames captured during the WCE procedure is a challenging

task for the physician interms of time and accurate diagnosis.
In this work an efficient computer aided WCE video sum-
marization method is presented. convolutional autoencoder is
trained to extract high level deep features, which are suitable
for segmenting video into shots. This method avoids labo-
rious procedure of labelling large number of WCE image
pairs. The change in two successive frames of WCE video
is due to capsule motion, which varies in different parts
of GI tract. Keyframes are extracted based on the motion
profile constructed for each video shot. This method elimi-
nates frames with very small temporal difference and retains
candidate keyframes which covers sufficient WCE video.

13702

future work. When a capsule travels in GI tract, the frames
captured are completely or partially degraded due to poor illu-
mination and obscured by secreted fluids. These frames are
uninformative or partly informative. It is beneficial to detect
and remove the uninformative frames to reduce the video
content for the review. Restoration techniques for improving
the quality of partially degraded frames warrant future work.
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