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ABSTRACT In the context of failure control of servo system driven by twinmotors, there are still no available
results to compensate unknown actuator failures which seem inevitable in practice by adaptive backstepping
technique. Therefore, to rise the reliability of the system, we aim at addressing such a problem by proposing
an adaptive robust actuator failure compensation control scheme based on backstepping technique for servo
system driven by twin motors. Unlike the traditional backstepping, the estimation of unknown coefficient
of intermediate state variable is introduced in coordinate changes. In addition, matching and non-matching
uncertainties have been fully considered in the controller design. Simulation results show that the designed
controller can ensure the boundedness of all the signals no matter actuator failures occur or not.

INDEX TERMS Servo system, adaptive control, twin motors, actuator failure.

I. INTRODUCTION
The servo system has been widely used in many fields
including industry, military and vehicle [1] etc. To get higher
movement performances, servo system driven by twin motors
is usually used and the performance of such a servo sys-
tem has been received extensive attention [2]–[4]. Unknown
nonlinearities in input signal such as backlash and dead
zone are deeply studied [4]. It is clear that the purpose
is to eliminate their influences and to rise the controlled
performance.

Besides improving the performance of the system under
partial control information missing [5], [6], more and more
attention has been paid to the problem of system reliability
including the studies on fault detect, fault tolerant control
etc [7]–[17]. Actuator failure is an common fault and seems
inevitable in practice control systems. Such failures which
may lead to instability or even catastrophic accidents are
often uncertain in time, value and pattern. The reliable control
becomes more difficult under such unknown actuator fail-
ures. To address this problem, several schemes have been
proposed in recent twenty years. Compared to other meth-
ods, an adaptive approach [7]–[14] can handle system para-
metric uncertainties by online estimating unknown parame-
ters with update laws. As a promising approach, backstep-
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ping technique [8]–[10] and [18]–[20] has been widely used
in the controller design of a class of nonlinear systems.
In [8]–[10], backstepping technique is used in the design of
adaptive failure compensation scheme for a class of nonlinear
systems. Transient performance was guaranteed by using pre-
scribed performance bound in [8] while backlash hysteresis
existing in practice of actuator failure systems was studied
deeply in [9]. In [10], an important result which removes
the assumption on finite failure number was established.
However, in the context of the failure control of servo system
driven by twin motors [2], there is still no results available
based on adaptive approaches. In this note, we aim to address
such a problem and propose an adaptive failure compensation
control scheme technique for servo system driven by twin
motors. Clearly, unknown parameter a = KL

JL
of x3 in (8)

makes traditional backstepping technique become incapable
in the design of adaptive controller. Our idea is to introduce
the estimation of ϑ = 1

a in the virtual control design and the
coordinate changes (14). And then, we use proj to guarantee
this estimation ϑ being bounded. To compensate the effects
caused by matching and non-matching uncertainties ω1 and
ω2, the property of inequality about tanh(·) is used. Finally,
an adaptive robust compensation control scheme is proposed
and all uncertainties caused by unknown parameters, match-
ing and non-matching terms and unknown actuator failures
can be compensated successfully.
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FIGURE 1. Structure of the servo system driven by twin motors.

The main contributions of this paper are as follows:
(1) The control problem is investigated for servo system
driven by twin motros with unknown parameters, matching
and non-matching uncertainties, unknown actuator failures.
(2) In addition, we use inequality of tanh(·) to handle the
effects caused by matching and non-matching uncertainties.
(3) Moreover, unlike the traditional backstepping technique
the estimation of ϑ = 1

a is introduced in coordinate changes
to compensate unknown parameter a as the coefficient of x3.
It is shown that the proposed adaptive robust controller can
ensure the boundedness of all the signals of the closed loop
whether or not actuator failures occur.

The rest of the paper is organized as follows. In section 2,
we formulate the servo system driven by twin motors with
unknown actuator failures. An robust adaptive control scheme
and the main results about stability are proposed in section 3.
The simulation studies is given in section 4. Finally, the paper
is concluded in section 5.

II. MODELS AND PROBLEM STATEMENT
We consider the servo system driven by twin motors [2]
shown in Figs.1. The mathematical model can be described
as follows

θ̇L(t) = ωL(t); θ̇j(t) = ωj(t)

ω̇L(t) =
KL(θ1(t)− θL(t))+ KL(θ2(t)− θL(t))

JL
+ w1(t)

ω̇j(t) =
KTjuj(t)+ KL(θj(t)− θL(t))

Jmj
+ w2j(t) (1)

where θL(t), ωL(t), JL , KL are angle position, angular veloc-
ity, moment of inertia from load transformed into motor side,
stiffness coefficient of transmission mechanism, respectively.
The effect caused by load is not directly shown in above
system model (1). Instead, it has been considered in param-
eters θL(t), ωL(t), JL . Parameters θj(t), ωj(t), Jmj,KTj, uj(t)
(j = 1, 2) are angle position, angular velocity, moment
of inertia, electromagnetic torque coefficient and control
signal of jth motor, respectively. w1(t),w2j(t)(j = 1, 2)
are unknown nonlinear modeling errors and denote match-
ing, non-matching uncertainties. The effects generated by

reducers and the backlash caused by gears are ignored in the
establishment of the mathematical model of the servo system
driven by twin motors shown in Figs.1. So the mathematical
model (1) is an ideal model.

In order to simplify system model, we let

x1 = θL(t); x2 = ωL(t)

x3j = θj(t); x4j = ωj(t) (2)

Then we have

ẋ1 = x2; ẋ3j = x4j

ẋ2 =
KL(x31 − x1)+ KL(x32 − x1)

JL
+ w1(t)

ẋ4j =
KTjuj(t)+ KL(x3j − x1)

Jmj
+ w2j(t) (3)

To obtain the strict feedback structure, letting

x3 = x31 + x32
x4 = x41 + x42 (4)

Then we have

ẋ1 = x2

ẋ2 =
KLx3 − 2KLx1

JL
+ w1(t)

ẋ3 = x4

ẋ4j =
KTjuj(t)+ KL(x3j − x1)

Jmj
+ w2j(t) (5)

All interior parameters of these twin motors are the same.
Namely, KT1 = KT2, Jm1 = Jm2. Then we have

ẋ1 = x2

ẋ2 =
KLx3 − 2KLx1

JL
+ w1(t)

ẋ3 = x4

ẋ4j =
KTjuj(t)+ KL(x3j − x1)

Jmj
+ w2j(t) (6)

Letting

a =
KL
JL
, b2 =

KL
Jmj
, ρ =

KTj
Jmj

(7)

System model can be rewritten as

ẋ1 = x2
ẋ2 = ax3 − 2ax1 + w1(t)

ẋ3 = x4
ẋ4 = ρu1(t)+ ρu2(t)+ b2x3 − 2b2x1 + w2(t) (8)

where w2(t) = w21(t) + w22(t). We let 2a = b1 and
b = (b1, b2)T , then

ẋ1 = x2

ẋ2 = ax3 + (b1, b2)
(
−x1
0

)
+ w1(t)

ẋ3 = x4

ẋ4 = ρ
2∑
j=1

uj(t)+ (b1, b2)
(

0
x3 − 2x1

)
+ w2(t) (9)
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Namely,

ẋ1 = x2

ẋ2 = ax3 + bT f1(x1)+ w1(t)

ẋ3 = x4

ẋ4 = ρ
2∑
j=1

uj(t)+ bT f4(x1, x3)+ w2(t) (10)

where known function

f1 =
(
−x1
0

)
; f4 =

(
0

x3 − 2x1

)
Remark 1: The following difficults exist in the controller

design.

• The unknown parameter ϑ = 1/a will be estimated to
handle the unknown parameter a in term ax3. In addition
b1 = 2a is also estimated by designing an adaptive oper-
ator in the proposed adaptive control law to compensate
the unknown effect caused by 2ax1.

• Compare to common triangular system, there is a
nonzero coefficient composed by multiple parame-
ter a in front of system state x3 in the second
state differential equation. Such an unknown param-
eter makes the controller design become more and
more difficult and traditional backstepping becomes
unavailable. We will eliminate the effect of this
unknown parameters by designing an adaptive estima-
tor of 1

a and introduce this estimator in the proposed
controller.

As we all know, actuator failure is inevitable in the servo sys-
tem driven by motors. Such as aging of electrical components
and traction loss from input to output always exist. Similar to
[8]- [10], failure of the jth actuator at time instant tjf can be
modeled as follows

uj = σjνj + ūj, (∀t ≥ tjf )

σjūj = 0 (11)

where σj, ūj, tjf are unknown constants and 0 ≤ σj ≤ 1.
The signal νj is the input of the j − th actuator. An actuator
with its input equal to its output, i.e. uj = νj is regarded
as a failure-free actuator. Easily, we can get the following
situations:

• σj = 1,
It indicates uj = νj. The jth actuator works normally.

• 0 < σj < 1,
It indicates uj = σjνj. The jth actuator is called partial
loss of effectiveness.

• σj = 0,
It indicates uj = ūj. The ith actuator is called total loss
of effectiveness.

σj, ūj are unknown and can be seen as the time-dependent
jump parameters. A specific failure corresponds to a group
of values of σj, ūj.With the failuremodel given in (11), system

(10) can be rewritten as

ẋ1 = x2
ẋ2 = ax3 + bT f1(x1, x2)+ w1(t)

ẋ3 = x4

ẋ4 = ρ
2∑
j=1

(σjνj + ūj)+ bT f4(x1, x2, x3, x4)+ w2(t) (12)

To design the adaptive control law, the following assumptions
are made.
Assumption 1: There is at least one actuator being not

total loss of effectiveness. Any actuator can change only
from normal to partial failure or total failure and only fails
once.

From Assumption 1, we know that there is a finite time
instant Tf and no new failure will occur after Tf .
Assumption 2: Unknown parameters ρ, a, b lie in a known

bounded set, respectively and these bounded sets don’t
include zero.

From (7) and the actual meanings of parameters
KL , JL , Jmj,KTj, the sign of a, b, ρ are known.
Assumption 3: Unknown nonlinear function w1(t),w2(t)

are satisfied in the following bounded conditions

|w1(t)| ≤ δ1(x1, x2); |w2(t)| ≤ δ2(x1, x2, x3, x4) (13)

where δ1(x1, x2), δ2(x1, x2, x3, x4) are known functions.
Assumption 4: Reference signal yr (t) and its i-order

(i = 1, 2, . . . , 4) derivatives are known and bounded.

III. DESIGN OF EVENT-TRIGGER CONTROLLER
The control objective is to design a robust adaptive fail-
ure compensation control scheme to guarantee all signals
bounded under any failure of actuators and to realize the
output signal y = x1 tracking to the reference signal yr effec-
tively. To obtain a suitable control law and update laws for
controller parameters based on the backstepping approach,
we first make the following coordinate changes

z1 = x1 − yr ;

z2 = x2 − α1 − y(1)r ;

z3 = x3 − ϑ̂α2 − y(2)r ;

z4 = x4 − α3 − y(3)r (14)

where z1 is tracking error and αi(i = 1, 2, 3) is virtual control.
ϑ̂ is the estimation of parameter ϑ = 1

a . Virtual control
αi is an actively constructed control variable. In step i, our
objective is to design a virtual control law αi−1 which makes
zi tends to zero. Then we will give the recursive design steps
by backstepping approaches.
Remark 2: Different from the general lower triangular

system whose controller can be designed by using back-
stepping, an unknown parameter a as the coefficient of x3
exists. Thus the traditional backstepping can not be used for
the controller design. To solve this problem, an estimation
of ϑ = 1/a is introduced in coordinate changes. Then the
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uncertainty caused by unknown parameter coefficient a can
be compensated and backstepping technique can be carried
out.
Step 1: From system model (12) and coordinate transfor-

mation (14), we have

ż1 = ẋ1 − y(1)r
= x2 − y(1)r
= z2 + α1 (15)

Considering the following Lyapunov function

V1 =
1
2
z21 (16)

The derivative of Lyapunov function is

V̇1 = z1ż1
= z1(z2 + α1) (17)

Virtual control α1 can be chosen as

α1 = −c1z1 (18)

where c1 is a positive constant. Then we have

V̇1 = −c1z21 + z1z2 (19)

Step 2: From system model, we know that the derivative of
z2 is

ż2 = ẋ2 − α̇1 − y(2)r
= ax3 + bT f1(x1, x2)+ w1(t)− α̇1 − y(2)r (20)

Clearly, we know α1 is dependent on variables x1 and yr .
So we can get

ż2 = ax3 + bT f1(x1, x2)+ w1(t)

−(
∂α1

∂x1
ẋ1 +

∂α1

∂yr
y(1)r )− y(2)r

= ax3 + bT f1(x1, x2)+ w1(t)

−(
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )− y(2)r

= a(z3 + ϑ̂α2 + y(2)r )+ bT f1(x1, x2)+ w1(t)

−(
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )− y(2)r (21)

With (14) we can get

ż2 = az3 + aϑ̂α2 + ay(2)r + b
T f1(x1, x2)+ w1(t)

−(
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )− y(2)r (22)

Note that ϑ̃ = ϑ− ϑ̂ , then aϑ̂α2 = a(ϑ− ϑ̃)α2 = α2−aϑ̃α2

ż2 = az3 + α2 − aϑ̃α2 + ay(2)r + b
T f1(x1, x2)+ w1(t)

−(
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )− y(2)r (23)

Considering the following Lyapunov function

V2 = V1 +
1
2
z22 +

|a|
20ϑ

ϑ̃2
+

1
20a

ã2 +
1
2
b̃T0−1b b̃ (24)

where â is the estimation of parameter a and b̂ is the estima-
tion of parameter b. ã = a−â and b̃ = b−b̂ denote estimation
errors. 0ϑ , 0a are positive constants and 0b is a positive
definite design matrix. With (19) and (23), the derivative of
V2 is

V̇2 = −c1z21 + z1z2 + z2ż2 −
|a|
0ϑ
ϑ̃
˙̂
ϑ −

1
0a
ã ˙̂a− b̃T0−1b

˙̂b

= −c1z21 + z1z2 + z2
(
az3 + α2 − aϑ̃α2 + ay(2)r

+bT f1(x1, x2)+ w1(t)− (
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )

−y(2)r
)
−
|a|
0ϑ
ϑ̃
˙̂
ϑ −

1
0a
ã ˙̂a− b̃T0−1b

˙̂b (25)

Choosing α2 as

α2 = −c2z2 − z1 − ây(2)r − b̂
T f1(x1, x2)

+(
∂α1

∂x1
x2 +

∂α1

∂yr
y(1)r )+ y(2)r

−δ1(x1, x2)tanh(
δ1(x1, x2)z2

ε1
) (26)

where c2 is a positive constant. So we have

V̇2 = −
2∑
i=1

ciz2i + az2z3 − aϑ̃α2z2

+ãy(2)r z2 + b̃T f1(x1, x2)z2 + w1(t)z2

−δ1(x1, x2)z2tanh(
δ1(x1, x2)z2

ε1
)

−
|a|
0ϑ
ϑ̃
˙̂
ϑ −

1
0a
ã ˙̂a− b̃T0−1b

˙̂b

≤ −

2∑
i=1

ciz2i + az2z3 − aϑ̃α2z2 + ãy
(2)
r z2

+b̃T f1(x1, x2)z2 + |w1(t)z2|

−δ1(x1, x2)z2tanh(
δ1(x1, x2)z2

ε1
)

−
|a|
0ϑ
ϑ̃
˙̂
ϑ −

1
0a
ã ˙̂a− b̃T0−1b

˙̂b

≤ −

2∑
i=1

ciz2i + az2z3 + |δ1(x1, x2)z2|

−δ1(x1, x2)z2tanh(
δ1(x1, x2)z2

ε1
)

−
|a|
0ϑ
ϑ̃( ˙̂ϑ + sign(a)0ϑ z2α2)

−
1
0a
ã( ˙̂a− 0ay(2)r z2)

−b̃T0−1b ( ˙̂b− 0bf1(x1, x2)z2) (27)

Note that the following properties of function tanh(·)

0 ≤ |χ | − χ tanh(
χ

ε
) ≤ 0.2785ε (∀ε > 0) (28)

Well, as we know, all continuous approximate functions of
sign(·) have similar property, for example sg(·) in [21]. With
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(28), we can get

|δ1(x1, x2)z2| − δ1(x1, x2)z2 tanh(
δ1(x1, x2)z2

ε1
) ≤ 0.2785ε1

Then we have

V̇2 ≤ −
2∑
i=1

ciz2i + az2z3 + 0.2785ε1 −
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ1 )

−
1
0a
ã( ˙̂a− τ a1 )− b̃

T0−1b ( ˙̂b− τ b1 ) (29)

where

τϑ1 = −sign(a)0ϑ z2α2
τ a1 = 0ay

(2)
r z2

τ b1 = 0bf1(x1, x2)z2 (30)

Step 3: The derivative of z3 is

ż3 = ẋ3 −
˙̂
ϑα2 − ϑ̂ α̇2 − y(3)r

= z4 + α3 + y(3)r −
˙̂
ϑα2 − ϑ̂ α̇2 − y(3)r

= z4 + α3 −
˙̂
ϑα2 − ϑ̂(

2∑
i=1

∂α2

∂xi
ẋi

+

2∑
i=0

∂α2

∂y(i)r
y(i+1)r +

∂α2

∂ b̂
˙̂b+

∂α2

∂ â
˙̂a)

= z4 + α3 −
˙̂
ϑα2 − ϑ̂

(∂α2
∂x1

x2 +
∂α2

∂x2
(ax3

+w1(t)+ bT f1(x1, x2))+
2∑
i=0

∂α2

∂y(i)r
y(i+1)r

+
∂α2

∂ b̂
˙̂b+

∂α2

∂ â
˙̂a
)

(31)

Considering the following Lyapunov function

V3 = V2 +
1
2
z23 (32)

The derivative of V3 is

V̇3 ≤ −
2∑
i=1

ciz2i + az2z3 + 0.2785ε1 −
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ1 )

−
1
0a
ã( ˙̂a− τ a1 )− b̃

T0−1b ( ˙̂b− τ b1 )+ z3ż3 (33)

Following we analyze the term z3ż3

z3ż3 = z3

(
z4 + α3 −

˙̂
ϑα2 − ϑ̂

(∂α2
∂x1

x2 +
∂α2

∂x2
(ax3

+bT f1(x1, x2)+ w1(t))+
2∑
i=0

∂α2

∂y(i)r
y(i+1)r

+
∂α2

∂ b̂
˙̂b+

∂α2

∂ â
˙̂a
))

(34)

Then α3 can be chosen as

α3 = −c3z3 − âz2 + ϑ̂
(∂α2
∂x1

x2 +
2∑
i=0

∂α2

∂y(i)r
y(i+1)r

)
+ϑ̂

∂α2

∂x2
(âx3 + b̂T f1(x1, x2))+ ϑ̂

∂α2

∂ b̂
τ b2

+ϑ̂
∂α2

∂ â
τ a2 − δ̄1(x1, x2, x3)tanh(

δ̄1(x1, x2, x3)z3
ε2

)

+τϑ2 α2

where

δ̄1(x1, x2, x3) ≥ |ϑ̂
∂α2

∂x2
w1(t)| (35)

Remark 3: We will use proj(·) to guarantee ϑ̂ being
bounded. So above bound function δ̄1(x1, x2, x3) can be found
easily.

With (33)-(35), we have

V̇3 ≤ −
3∑
i=1

ciz2i + ãz2z3 − ( ˙̂ϑ − τϑ2 )α2z3 + z3z4

+0.2785ε1 −
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ1 )−

1
0a
ã( ˙̂a− τ a1 )

−b̃T0−1b ( ˙̂b− τ b1 )− ϑ̂z3
∂α2

∂x2
(ãx3 + b̃T f1)

−ϑ̂
∂α2

∂ b̂
z3(
˙̂b− τ b2 )− ϑ̂

∂α2

∂ â
z3( ˙̂a− τ a2 )+ |z3δ̄1|

−z3δ̄1(x1, x2, x3)tanh(
δ̄1(x1, x2, x3)z3

ε2
) (36)

Then

V̇3 ≤ −
3∑
i=1

ciz2i − ( ˙̂ϑ − τϑ2 )α2z3 + z3z4

+0.2785(ε1 + ε2)−
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ1 )

−
1
0a
ã( ˙̂a− τ a1 )− b̃

T0−1b ( ˙̂b− τ b1 )

−ϑ̂z3
∂α2

∂x2
(ãx3 + b̃T f1(x1, x2))+ ãz2z3

−ϑ̂
∂α2

∂ b̂
z3(
˙̂b− τ b2 )− ϑ̂

∂α2

∂ â
z3( ˙̂a− τ a2 )

≤ −

3∑
i=1

ciz2i − ( ˙̂ϑ − τϑ2 )α2z3 + z3z4

+0.2785(ε1 + ε2)−
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ1 )

−ϑ̂
∂α2

∂ â
z3( ˙̂a− τ a2 )−

1
0a
ã( ˙̂a− τ a1 − 0az2z3

+0aϑ̂z3
∂α2

∂x2
x3)− ϑ̂

∂α2

∂ b̂
z3(
˙̂b− τ b2 )

−b̃T0−1b ( ˙̂b− τ b1 + 0bϑ̂z3
∂α2

∂x2
f1(x1, x2)) (37)
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where

τϑ2 = τ
ϑ
1

τ a2 = τ
a
1 + 0az2z3 − 0aϑ̂z3

∂α2

∂x2
x3

τ b2 = τ
b
1 − 0bϑ̂z3

∂α2

∂x2
f1(x1, x2) (38)

So we have

V̇3 ≤ −
3∑
i=1

ciz2i − ( ˙̂ϑ − τϑ2 )α2z3 + z3z4

+0.2785(ε1 + ε2)−
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ2 )

−ϑ̂
∂α2

∂ â
z3( ˙̂a− τ a2 )−

1
0a
ã( ˙̂a− τ a2 )

−ϑ̂
∂α2

∂ b̂
z3(
˙̂b− τ b2 )− b̃

T0−1b ( ˙̂b− τ b2 ) (39)

Step 4: The derivative of z4 is

ż4 = ẋ4 − α̇3 − y(4)r

= ρ

2∑
j=1

(σjνj + ūj)+ bT f4(x1, x2, x3, x4)

+w2(t)− α̇3 − y(4)r (40)

The derivative of α3 is

α̇3 =
∂α3

∂x1
x2 +

∂α3

∂x2
(ax3 + bT f1(x1, x2)+ w1(t))

+
∂α3

∂x3
x4 +

3∑
i=0

∂α3

∂y(i)r
y(i+1)r +

∂α3

∂ϑ̂

˙̂
ϑ

+
∂α3

∂ â
˙̂a+

∂α3

∂ b̂
˙̂b (41)

Different from traditional backstepping technique, in the
following we will give the control law and adaptive update
laws of unknown parameters. Similar to [7]-[9], the structure
of adaptive failure compensation controller can be written as

νj = sign(ρ)κT$

where κ is a desired parametric vector and $ is a known
vector. Both are 3 dimensional vectors. They can be described
as

κ = (κ1, κ21, κ22)T ; $ = ($1,$21,$22)T (42)

Because κ is unknown, it can not be directly used in the
νj design. Instead, we use its estimation to generate the input
signal νj. Then we can get
Control Laws:

νj = sign(ρ)κ̂T$ (43)

where κ̂ be its estimation. Let Ti is the time instant of actuator
failure occurrence and set QiT denotes the actuators of total
failure in interval (Ti,Ti+1](i = 0, 1, · · · , f ) andQiT ∪Q̄iT =
1, 2. Let Tf = +∞ and T0 = 0. In time interval (T0,T1], all

actuators work normally. In interval (Ti,Ti+1], vectors κ and
$ should be chosen to satisfy∑

j∈Q̄iT

ρσjνj = α −
∑
j∈QiT

ρūj, t ∈ (Ti,Ti+1] (44)

By fixing$ as

$1 = α; $2j = 1(j = 1, 2) (45)

κ can be chosen as

κ1 =
1∑

j∈Q̄iT

|ρ|σj

; κ2j =
ρūj∑

j∈Q̄iT

|ρ|σi

(j ∈ QiT );

κ2j = 0, (j ∈ Q̄iT ) (46)

α can be regarded as the virtual control signal in this step and
chosen as

α = −c4z4 − z3 + y(4)r +
∂α3

∂x1
x2 +

∂α3

∂x3
x4

+

3∑
i=0

∂α3

∂y(i)r
y(i+1)r +

∂α3

∂x2
b̂T f1 +

∂α3

∂x2
x3â− b̂T f4

+
∂α3

∂ϑ̂
τϑ3 +

∂α3

∂ â
τ a3 +

∂α3

∂ b̂
τ b3

−δ̄2(x1, x2, x3, x4)tanh(
δ̄2(x1, x2, x3, x4)z4

ε3
)

+ϑ̂(0bf4 − 0b
∂α3

∂x2
f1)
∂α2

∂ b̂
z3 − ϑ̂0a

∂α3

∂x2
x3
∂α2

∂ â
z3 (47)

where

δ̄2(x1, x2, x3, x4) ≥ |w2(t)−
∂α3

∂x2
w1(t)| (48)

and update laws are

˙̂b = proj(τ b3 ); τ
b
3 = τ

b
2 + ϑ̂(0bf4z4 − 0b

∂α3

∂x2
f1z4)

˙̂a = proj(τ a3 ); τ
a
3 = τ

a
2 − ϑ̂0a

∂α3

∂x2
x3z4

˙̂
ϑ = proj(τϑ3 ); τ

ϑ
3 = τ

ϑ
2

˙̂κ = −0κ$ z4 − 0κ lκ (κ̂ − κ0) (49)

where 0κ is a positive definite matrix. lκ is a positive con-
stant and κ0 is a constant vector. proj(·) denotes a projection
operator. It can guarantee that the estimations b̂, â, ϑ̂ are
all bounded. We choose Lyapunov function in time interval
(Ti,Ti+1]

V = V3 +
1
2
z24 +

∑
j∈Q̄iT

σj|ρ|

2
κ̃T0−1κ κ̃ (50)

where κ̃ = κ − κ̂ . 0κ is a positive definite matrix. The
derivative of V is

V̇ ≤ −
3∑
i=1

ciz2i − ( ˙̂ϑ − τϑ2 )α2z3 + z3z4 + 0.2785(ε1

+ε2)−
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ2 )− ϑ̂

∂α2

∂ â
z3( ˙̂a− τ a2 )

VOLUME 9, 2021 547



J. Wan et al.: Adaptive Robust Failure Compensation Control for Servo System Driven by Twin Motors

−
1
0a
ã( ˙̂a− τ a2 )− ϑ̂

∂α2

∂ b̂
z3(
˙̂b− τ b2 )

−b̃T0−1b ( ˙̂b− τ b2 )+ z4
(
ρ

2∑
j=1

(σjνj + ūj)

+bT f4(x1, x2, x3, x4)+ w2(t)− y(4)r

−
∂α3

∂x1
x2 −

∂α3

∂x2
(ax3 + bT f1(x1, x2)

+w1(t))−
∂α3

∂x3
x4 −

3∑
i=0

∂α3

∂y(i)r
y(i+1)r −

∂α3

∂ϑ̂

˙̂
ϑ

−
∂α3

∂a
˙̂a−

∂α3

∂b
˙̂b
)
−

∑
j∈Q̄iT

σj|ρ|

2
κ̃T0−1κ

˙̂κ (51)

Note that

ρ

2∑
j=1

(σjνj + ūj) =
∑
j∈Q̄iT

ρσjνj +
∑
j∈QiT

ρūj

With (45), we have

ρ

2∑
j=1

(σjνj + ūj) = α

Then with virtual control α given in (48), we have

V̇ ≤ −
4∑
i=1

ciz2i − ( ˙̂ϑ − τϑ2 )α2z3 + 0.2785(ε1 + ε2

+ε3)−
|a|
0ϑ
ϑ̃( ˙̂ϑ − τϑ2 )− ϑ̂

∂α2

∂ â
z3( ˙̂a− (τ a2

−ϑ̂0a
∂α3

∂x2
x3z4))−

1
0a
ã( ˙̂a− (τ a2 − ϑ̂0a

∂α3

∂x2
x3

z4))− ϑ̂
∂α2

∂ b̂
z3(
˙̂b− (τ b2 + ϑ̂(0bf4z4 − 0b

∂α3

∂x2
f1

z4)))− b̃T0
−1
b ( ˙̂b− (τ b2 + ϑ̂(0bf4z4 − 0b

∂α3

∂x2
f1

z4)))−
∂α3

∂ϑ̂
z4(
˙̂
ϑ − τϑ2 )−

∂α3

∂a
z4( ˙̂a− (τ a2 − ϑ̂0a

∂α3

∂x2
x3z4))−

∂α3

∂b
z4(
˙̂b− (τ b2 + ϑ̂(0bf4z4 − 0b

∂α3

∂x2
f1z4)))−

∑
j∈Q̄iT

σj|ρ|

2
κ̃T0−1κ ( ˙̂κ + 0κ$ z4) (52)

With update laws (50), we can get

V̇ ≤ −
4∑
i=1

ciz2i +
∑
j∈Q̄iT

σj|ρ|

2
κ̃T lκ (κ̂ − κ0)

+0.2785
3∑
i=1

εi (53)

Note that

κ̃T lκ (κ̂ − κ0) ≤ −
1
2
lκ ||κ̃||2 +

1
2
lκ ||κ − κ0||2 (54)

So

V̇ ≤ −
4∑
i=1

ciz2i +
∑
j∈Q̄iT

σj|ρ|

2
(−

1
2
lκ ||κ̃||2

+
1
2
lκ ||κ − κ0||2)+ 0.2785

3∑
i=1

εi (55)

Namely,

V̇ ≤ −
4∑
i=1

ciz2i −
∑
j∈Q̄iT

σj|ρ|

4
lκ ||κ̃||2 +5i (56)

where

5i = 0.2785
3∑
i=1

εi +
∑
j∈Q̄iT

σj|ρ|

4
lκ ||κ − κ0||2 (57)

Theorem 1: Consider the servo system driven by twin
motors (1), with unknown parameters and unknown actua-
tor failures described by (11). Under the Assumption 1 to
Assumption 4 and with the control laws (43)-(48) and the
update laws (49), all signals of the closed-loop system are
bounded.

Proof: From (56), in time interval [0,T1] signals κ̃ , zi
are bounded. Note that ϑ̃ , ã, b̃ are bounded due to the proj(·)
operator in update laws. Therefor we can get V is bounded in
interval [0,T1].

Note that the difference between V (T+1 ) and V (T−1 ) is only
the coefficients in front of the term κ̃T0κ κ̃ . Since all the
possible jumping on κ are bounded, V (T+1 ) is bounded, then
V (T−2 ) is bounded. Similar to the above analysis, we can get
V (T−j+1) is bounded from the bound of V (T+j ). Also in time
interval (Tf ,∞), it can be shown that V (t) is bounded. Then
we have z, ϑ̃, κ̃, b̃, ã bounded in [0,∞]. Further more, all
signals are bounded including virtual control αi(i = 1, 2, 3),
α state xi and input signal νi. ��

IV. SIMULATION STUDIES
Now we consider the servo system driven by twin motors
given in (12). Unknown modelling errors ω1 and ω2 are
given as

ω1 = 0.1sin(x1 + 2x22 ); ω2 = 0.1cos(x4) (58)

In simulation, the parameters of the servo system are taken
as Jmi = 6kg · m2(i = 1, 2),KTi = 0.04N · m/A(i = 1, 2),
JL = 6kg ·m2,KL = 0.16N ·m/A. The design parameters are
selected as c1 = 35, c2 = 5, c3 = 5, c4 = 2, ε1 = ε2 = 1,
0a = 0ϑ = 0.001, 0κ = 0.001E3, 0b = 0.001E2, where
E2,E3 denotes identity matrix.

The initial values are chosen as x1(0) = x2(0) = x3(0) =
x4(0) = 0, and â = 0, b̂ = 0, ϑ̂ = 0, κ̂ = 0. The reference
signal is set as yr = 0.5sint . To illustrate the effectiveness
of this proposed control scheme, the following four cases are
considered.

Case 1. All actuators work normally during the operation
of servo system. Namely no failure occurs. Figs.2-3 show
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FIGURE 2. Tracking (Case 1).

FIGURE 3. Output signal (Case 1).

FIGURE 4. Tracking (Case 2).

the simulation results. The tracking performance including
tracking error is shown in Fig.2 and the output signal is given
in Fig.3.

Case 2. We suppose at t = 10, the first actuator loses
its effectiveness by an unknown value 90%. The respective
has been shown in Fig.4 including tracking error and output
signal. Fig.5 shows the compare of the tracking error between
these first two cases.

FIGURE 5. Tracking errors (Case 1 and Case 2).

FIGURE 6. Tracking errors (Case 3).

FIGURE 7. Tracking errors (Case 4).

Case 3. We suppose at t = 10, the first actuator is stuck
at an unknown value 30. The tracking error and output signal
are shown in Fig.6.

Case 4. A comprehensive failures is considered in this case.
We suppose the first actuator loses its effectiveness by an
unknown value 50% at unknown time instant t = 10 and
the second actuator is stuck at an unknown value 20 at t = 20.
The tracking error and output signal are shown in Fig.7.
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Based on the above simulation results, we can get that the
tracking performance of the system can be achieved success-
fully whether or not failures occur.

V. CONCLUSION
An adaptive robust control scheme is proposed by using back-
stepping techniques to compensate unknown actuator failures
for servo system driven by twin motors. The boundedness of
all signals of closed-loop system can be guaranteed whether
or not failures occur. The simulation studies also have verified
the established theoretical results.
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