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ABSTRACT Collaborative consensus control of multiagent systems has become an important research topic
in the field of artificial intelligence in recent years. This paper deals with the couple-group consensus for
the first order discrete-time systems with input saturation constraints. Compared to most previous studies,
this article focuses on the control input constraints phenomenon in couple-group consensus problem. Based
on the relationship between competition and cooperation, a new negotiation protocol is designed to achieve
couple-group consensus. Furthermore, combining graph theory with Lyapunov theorem, the control gain
condition is obtained. Finally, the results of numeric modeling show that the method is correctness and
effectiveness.

INDEX TERMS Couple-group consensus, input saturation constraints, multiagent systems, cooperation-
competition.

I. INTRODUCTION
In recent years, with the extensively application of mul-
tiagent systems, the coordination control has been widely
discussed [1]–[6]. In the coordinated control of multiagent
systems, each agent needs to communicate with other agents
through receiving and broadcasting information among
neighbors. Only in this way can all agents are able to reach
a common state, such as position, phase, and velocity. The
sophistication of the consensus problems essentially depend
on the consensus control of the multiagent systems, such as
formation control, tracking control, attitude alignment, etc.
In order to study the consensus problems of the multiagent
systems, the interactions among agents can be regarded as a
network topology.Moreover, consensus control of themultia-
gent systems can be achieved under the appropriate protocols
and algorithms. For verifying the convergence of multiagent
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systems, some effective methods such as graph theory, matrix
theory and Lyapunov stability theory are used.

At present, the interconnections among agents become
more andmore complex, and the idea of group consensus is to
solve multitasks problems or decompose massive problems.
It is more common to urge agents to achieve different goals in
different sub-networks. The idea of this collective consensus
has been attracted attention in [7]–[11]. However, the above
work was to achieve group consensus on the premise of coop-
eration relationship. In fact, there are not only collaborative
relationship but also competitive relationship among agents.
It’s a universal phenomenon in real world such as the hunting
for intruders, race competition [12], [13]. The weights of
edges were negative to represent the competitive relationship
in [14]. Additionally, the switching topology of undirected
graph and bidirectional graph networks were further explored
in [15]. In [16], two control protocols were designed by
using the properties of Laplacian matrix to achieve finite time
consensus in antagonistic network. However, in the above
studies, input constraints have not been considered.
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Since input constraints of the systems are inevitable, input
saturation has attracted wide attention in control systems.
In [17]–[20], the stabilization problem of linear systems with
input saturationwas proposed. And low-gain feedbackwas an
effective method to design a family of linear control laws in a
semi-global stabilization framework [21]. The characteristic
of low-gain feedback is that given any bounded initial condi-
tions, the closed-loop system can always be kept in the online
domain by establishing small feedback gain parameters. The
Semi-global consensus tracking problem for linear multia-
gent systemswith actuator saturationwas studied in [21]–[23]
by using low-gain feedback. At the same time, there were
other researches on coordination tracking under saturation
constraints. For example, in multiagent systems, the prob-
lems with input saturation coordination tracking for single
integral system [24] and double-integrators [25]–[27] have
been studied. Ref. [28] solved the global consensus track-
ing problem for high-order multiagent systems with input
saturation. Using low-gain and high-gain feedback methods,
the semi-global coordinated tracking of linear multiagent
systems with input constraints was investigated in [29]. And
the conditions of achieving global consensus for the first
order discrete-time system and second system with input
saturation constraints were given in [30], but there wasn’t
competitive-cooperative relationship among agents. Ref. [31]
considered competition relationship between two groups.
Ref. [32] designed a hybrid fuzzy control strategy for the
goethite process and showed better control performance than
PID controller. Different form our research, we mainly study
the interaction between systems to achieve couple-group
consensus. Competitive relationship exists in real life, espe-
cially in the field of multiagent systems, while previous
research rarely takes into account the competitive relation-
ship between two groups in multiagent systems via input
constraints.

Thus, inspired by [30], [31], this paper proposes the fol-
lowing innovative ideas and methods.

1) Based on previous studies, this paper not only con-
siders the competition-cooperation relationship among
agents but also considers input constrains for first order
discrete-time multiagent systems.

2) A novel control protocol is designed to realize
couple-group consensus.

3) The sufficient condition of control parameter is
obtained to ensure consensus under designed control
protocol.

The rest of this paper is organized as follows. Section 2 lists
some useful preliminaries, graph theory and problem formu-
lations. Section 3 studies the first order discrete-time system
and presents a sufficient condition of control parameters to
achieve couple-group consensus. Several simulations are pre-
sented in Section 4 to verify the correctness of the theoretical
results. Finally, the conclusion is drawn in section 5.
Note: In this paper, R and Rn×n stand for the one dimen-

sional real space and the n × n real matrices respectively. In
denotes n− dimensional identity matrix. Given a matrix A,

AT denotes its transpose and ‖A‖ denotes its operator norm.
Spectral radius of n× n real matrix A is denoted by ρ (A) =
max {|λi| , i = 1, 2, · · · , n}, where λi is a eigenvalue of A.
The matrix A > (≥) 0 or A < (≤) 0 means that A is
positive (positive semi-definite) or negative (negative semi-
definite), which implies all the corresponding eigenvalues are
positive (non-negative) or negative (non-positive). The Kro-
necker product is denoted by⊗, which satisfies the following
conditions

‖A⊗ IN‖ = ‖A‖ ,

(A+ B)⊗ C = A⊗ C + B⊗ C,

(A⊗ B) (C ⊗ D) = (AC)⊗ (BD) ,

rank (A⊗ B) = rank (A) rank (B) .

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
In the beginning, the graph theory, interconnection topology
and necessary mathematical notations are introduced.

Themultiagent systemwithN+M agents can be described
by a weighted undirected graph G = (V , ζ,W ), where V =
{v1, v2, · · · , vN+M } denotes the node set indexed by a related
agent set I = {1, 2, · · · , N +M} , ζ = V × V denotes the
edges set and W =

(
wij
)
(N+M)×(N+M) ∈ R(N+M)×(N+M)

denotes the adjacency matrix, where wij > 0 if (j, i) ∈ ζ
and wij = 0 otherwise. Assuming that wij = wji for i 6= j
and wii = 0 for i ∈ I . Let Ni = {j ∈ V : (j, i) ∈ ζ } be the
set of neighbors of node i in G. When i 6= j, the Laplacian
matrix is L =

(
lij
)
(N+M)×(N+M) with lij = −wij and when

i = j, lii =
N+M∑
j=1,j 6=i

wij. The eigenvalues of L can be denoted

as λi, i = 1, 2, 3, · · · ,N +M .

B. PROBLEM FORMULATION
A first order discrete-time multiagent system with input sat-
uration constraints is considered. And there is cooperation-
competition relationship among N +M agents.
Assume that there are N agents in one group andM agents

in the other one. So the network contains two sub-network
G1 = (V1, ζ1,W1) and G2 = (V2, ζ2,W2), where V1 =
{v1, v2, · · · , vN } and V2 = {vN+1, vN+2, · · · , vN+M } are
node sets of two groups, ζ1 and ζ2 are the edge sets of
two groups, W1 and W2 are adjacency matrices of G1
and G2, respectively. I1 = {1, 2, · · · , N } and I2 =

{N + 1,N + 2, · · · , N +M} are the index sets of two sub-
networks. Note that V = V1∪V2 and V1∩V2 = ∅. The neigh-
bors sets of two groups are N1i =

{
vj ∈ V1

∣∣(vj, vi) ∈ ε } and
N2i =

{
vj ∈ V2

∣∣(vj, vi) ∈ ε }, ∀i ∈ I .
Consider a first order discrete-time multiagent system with

N +M identical agents whose dynamics are given by

xi (k + 1) = Axi (k)+ Bδ (ui (k)) , i ∈ V , (1)

where xik ∈ Rn, ui(k) ∈ Rm represent state and desired con-
trol signal of agent i, and δ(ui(k)) = [δ(ui1(k)),δ(ui2(k)), · · · ,
δ(uim(k))]T , the matrix A ∈ Rn×n, B ∈ Rn×m.
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Each δ (·) is the saturation function

δ(uih(k)) =


1, uih ≥ 1,
uih, |uih| < 1,
−1, uih ≤ −1,

Remark 1: There are both competition and cooperation in
the network. In other words, each agent cooperates with its
neighbors in the same sub-network, while competes with its
neighbors which lie in the other sub-network. In addition,
there exist input saturation constraints δ (ui) in the system (1),
which obviously can influence the group consensus. When
the saturation happens, the controlled object can’t receive the
desired control signal so that it causes the instability of the
system (1).
Remark 2: Compared with [31], where only considers the

influence of system matrix A = I and B = I , the dynamics
of agents is more complex in this paper. The system model
in Ref [31] is a special circumstance of this paper. Moreover,
Ref [31] only considered competition-cooperation relation-
ship among agents. However, input saturation is inevitable in
system. So it is essential to consider input saturation.
Remark 3: Ref. [30] considered single group consensus,

and all agents reach consensus. In Ref [31], [33], not only
cooperation relationship in single group but also compe-
tition relationship between couple group were considered.
Couple-group consensus means that different groups interact
with each other. Since competitive relationship exists in real
life, it is meaningful to consider competition-cooperation
relationship among agents.
Definition 1 [31]: If the states of the agents inG satisfy the

following two conditions:

lim
k→+∞

∥∥xi (k)− xj (k)∥∥ = 0, ∀i, j ∈ I1

lim
k→+∞

∥∥xi (k)− xj (k)∥∥ = 0, ∀i, j ∈ I2

then multiagent system (1) is said to reach group consensus
asymptotically. Different groups will converge to the opposite
value.
Assumption 1: The undirected graph G is connected.
Assumption 2: The pair (A,B) is controllable.
Assumption 3: ATA = In.
Definition 2 [31]: L =

(
lij
)
∈ R(N+M)×(N+M) is defined

as

lij =


wij, i ∈ I1, vj ∈ N2i, i ∈ I2, vj ∈ N1i,

−wij, i ∈ I1, vj ∈ N1i, i ∈ I2, vj ∈ N2i,∑
k 6=i,k=1

|wik | , i = j.

Lemma 1 [31]: In Definition 2, L =
(
lij
)
≥ 0 and

rank (L) = N +M − 1, if G has a spanning tree.
Lemma 2 [30]: The matrix L̄, as shown at the bottom

of the page, is obtained through appropriate adjustment of
Laplacian matrix L =

(
lij
)
. The matrix L̄ has the following

two properties:
1) all non-zero eigenvalues of L̄ have positive real parts;
2) L̄ has no zero eigenvalue, if and only if the graphG has

a globally reachable node.

III. MAIN RESULTS
In this section, the first order discrete-time multiagent sys-
tem with input constraints is investigated. Based on above
assumptions, the sufficient condition is given to achieve
couple-group consensus.

In order to realize couple-group consensus, we suppose
that each agent cooperates with its neighbors in the same
sub-network. If its neighbors lie in different sub-network,
the agent will compete with them. For the system (1), a novel
control protocols is designed as

ui (k) =



−ηBTA
[∑

νj∈N1i
wij
(
xi (k)− xj (k)

)
+

∑
νj∈N2i

wij
(
xi (k)+ xj (k)

)]
, i ∈ I1

−ηBTA
[∑

νj∈N2i
wij
(
xi (k)− xj (k)

)
+

∑
νj∈N1i

wij
(
xi (k)+ xj(k)

)]
, i ∈ I2

(2)

where η > 0 is a control gain.
Remark 4: From [33], ‘‘−’’ represents cooperation rela-

tionship among agents and ‘‘+’’ represents the competitive
relationship.

The system (1) can be written as the flowing form

x (k + 1) = (IN+M ⊗ A) x (k)+ (IN+M ⊗ B) δ (u (k)) , (3)

where x =
[
x1, x2, · · · , xN+M ]T ∈ R(N+M)×n , δ (u (k)) =

[δ (u1 (k)) , δ (u2 (k)) , · · · , δ (uN+M (k))]T ∈ R(N+M)×m.
Theorem 1: Suppose that Assumption 1, 2 and 3 hold. The

multiagent system (1) can achieve couple-group consensus
if control gain η ∈

(
0, 2

ρ(L)‖BTB‖

)
, where ρ (L) is spectral

radius,
∥∥BTB∥∥ denotes its operator norm.

Proof: Combine the control protocol (2) of agent i as
well as the Definition 2, the control protocol u (k) of the
system dynamics (3) can be

u (k) = −η
(
L ⊗ BTA

)
x (k) , (4)

where x (k) denote the sates of all agents.

L̄ =


l2,2 − l1,2 · · · l2,N − l1,N · · · l2,N+M − l1,N+M

...
...

...
...

...
lN ,2 − l1,2 · · · lN ,N − l1,N · · · lN ,N+M − l1,N+M

...
...

...
...

...
lN+M ,2 − l1,2 · · · lN+M ,N − l1,N · · · lN+M ,N+M − l1,N+M

 ∈ R(N+M−1)×(N+M−1).
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Consider the Lyapunov function

J (x (k)) =
1
2
xT (k) (L ⊗ In) x (k) . (5)

From Eq. (5), we have J (x (k)) ≥ 0, J (x (k)) = 0 if and
only if x (k) = 0.

Then combine with Eq.(3) and (5), the difference of
J (x (k)) with respect to k , i.e.

1J (x (k)) = J (x (k + 1))− J (x (k)) (6)

Since L = LT for undirected graphs, we obtain

1J (x (k))

= J (x (k + 1))− J (x (k))

=
1
2
xT (k + 1) (L ⊗ In) x (k + 1)−

1
2
xT (k) (L ⊗ In) x (k)

=
1
2
(Ax (k)+ Bδ (u (k)))T (L ⊗ In) (Ax (k)+ Bδ (u (k)))

−
1
2
xT (k) (L ⊗ In) x (k)

=
1
2
δT (u (k))

(
L ⊗ BTA

)
x (k)+

1
2
xT (k)

×

(
L ⊗ ATB

)
δ (u (k))

+
1
2
δT (u (k))

(
L ⊗ BTB

)
δ (u (k))

= −
1
η
δT (u (k)) u (k)

+
1
2
δT (u (k))

(
L ⊗ BTB

)
δ (u (k))

≤ −δT (u (k))
(
1
η
I(N+M)n −

1
2

(
L ⊗ BTB

))
δ (u (k))

≤ 0.

The last inequality comes from the property that
uT δ (u) ≥ δ (u)T δ (u). Combining with Eq.(6), we have
1J (x (k)) ≤ 0, since η ∈

(
0, 2

ρ(L)‖BTB‖

)
. 1J (x (k)) = 0 if

and only if δ (u) = u = 0, i.e.
(
L ⊗ BTA

)
x = 0.

Next, we will prove
(
L ⊗ BTA

)
x = 0 if and only

if xi = xj, i, j ∈ I1 or I2. Note that
(
L ⊗ BTA

)
x = 0 implies

that
(
L̄ ⊗ BTA

)
p = 0,where the matrix L̄ is introduced in

Lemma 2, p =
[
pTi ; p

T
j

]T
, pi = xi − x1, i ∈ {2 , 3, · · · , N },

pj = xj + x1, j ∈ {N + 1,N + 2, · · · , N +M} . It is obvi-
ously that the eigenvalues of L̄ are positive from Lemma 2,
i.e. rank

(
L̄
)
= N +M − 1.

It is worth noticing that
(
L̄ ⊗ BTA

)
p = 0 equals to

pT
(
L̄ ⊗ A−1B

)
= 0 from Assumption 3. From system (1),

we have p (k + 1) = (IN+M−1 ⊗ A) p (k) = 0. Then, com-
bining with Eq. (4), we get(

L̄ ⊗ BTA
)
p (k + 1) =

(
L̄ ⊗ BTA2

)
p (k) = 0.

Obviously, pT (k)
(
L̄ ⊗ A−2B

)
= 0. Then, continuing to

iterate, we obtain

pT (k)
(
L̄ ⊗ A−qB

)
= 0, q = 2, 3, 4, · · · , n+ 1.

Hence,

pT (k)
(
L̄ ⊗ A−(n+1)

[
AnB · · ·AB,B

])
= 0. (7)

Note that rank [AnB · · ·AB,B] = n since Assumption 2
is satisfied. From Assumption 3 we know the matrix A
is non-singular. So rank

(
A−(n+1) [AnB · · ·AB,B]

)
= n.

Then rank
(
L̄ ⊗ A−(n+1) [AnB · · ·AB,B]

)
= rank

(
L̄
)
,

rank
(
A−(n+1) [AnB · · ·AB,B]) = (N +M − 1) n.

Therefore, the solution of Eq.(7) is p = 0, i.e pi = 0,
pj = 0, so 1J (x (k)) = 0 if and only if xi = xj, i, j ∈ I1 or
I2. Thus, from Definition 2 the system (1) can asymptotically
reach the group consensus.
Corollary 1: If the system (1) describes as the following

form

xi (k + 1) = xi (k)+ δ (ui (k)) , i ∈ V . (8)

The system (8) reach the group consensus if η ∈
(
0, 2

ρ(L)

)
.

IV. SIMULATION
In this section, three examples are provided to verify the
effectiveness of the proposed theoretical results.

FIGURE 1. The topological graph of example 1.

Example 1: Consider a multiagent system, where the agent
1 and agent 2 are in the first group and the agent 3 is in second
group. The topology graph is shown in Fig. 1, where the
coupling strength between each pair of agents is 1 and the
corresponding Laplacian matrix is

L1 =

 2 −1 1
−1 1 0
1 0 1

 (9)

By Eq. (9) the max eigenvalue of the Laplacian matrix L1
is 3.

From the condition is given in Corollary 1, let η = 0.09,
A = B = I2. Simulation results shown in Fig.1 verify the
correctness of the Corollary 1. In addition, from Fig.2 the
agent 1, 2, which located in the same group converge to same
value meanwhile the agent 3 converges to the opposite value
since competition relationship exists in system. Fig. 3 shows
that input u of each agent converges to zero when t → +∞.
Clearly, the input saturation δ (u) of agents belongs to [−1, 1]
in Fig.3.
Example 2: Consider the multiagent system with six

agents, where agent 1, 2 and 3 are in the same group and the
rest of agents are located in other group. The topology graph
is shown in Fig. 4, where the coupling strength between each
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FIGURE 2. The trajectories of the agents.

FIGURE 3. Saturated input δ(uih(k)).

FIGURE 4. The topological graph of example 2.

pair of agents is 1. Then, the corresponding Laplacian matrix
is

L2 =


5 −1 −1 1 1 1
−1 5 −1 1 1 1
−1 −1 5 1 1 1
1 1 1 5 −1 −1
1 1 1 −1 5 −1
1 1 1 −1 −1 5

 (10)

FIGURE 5. The trajectories of four agents.

FIGURE 6. The 3D graphs of six agents’ trajectories.

FIGURE 7. Input constraints of all agents.

The max eigenvalue derived of (10) is six. Let
η = 0.3,A = I2,B = I2. Clearly η satisfies the condition
of the Corollary 1. The trajectories of the six agents are
shown in Fig. 5, which indicates that all agents converge
to two adverse subgroups. Obviously, all agents achieve
couple-group consensus since states of agents where in same
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FIGURE 8. The topological graph of example 3.

FIGURE 9. The trajectories of four agents.

FIGURE 10. The input saturation constraints.

group to converge same value. The state of another group con-
verges to the opposite value since competition-cooperation
relationship between two groups. It reflects the trajectories of
all agents completely in Fig.6. Six small circles represent the
initial states of all agents and two five-pointed stars represent
the final states of all agents. From the Fig. 6, we know that the
group consensus can be achieved. Each of the input constraint
shown in Fig. 7 converges to zero as t → +∞ and all input
constraints δ (u) ∈ [−1, 1].
Example 3: Consider a multiagent system with four

agents described by the graph in Fig.8. Let A =[
1
√
2
,− 1
√
2
;

1
√
2
, 1
√
2

]
, B =

[
1
3 , 0; 0,

1
2

]
. Obviously,

A satisfies theAssumption 3. In order to achieve couple-group

FIGURE 11. The 3D graph of all agents.

consensus, the control gain η is set to 0.3. The trajectories of
the four agents are shown in Fig. 9. The results show that
all agents converge to two subgroups. It means that they
achieve group consensus. And all input constraints shown
in Fig. 10 converge to zero when t →+∞. Four circles rep-
resent the initial states of four agents and two stars represent
the final states of all agents in Fig.11. Obviously, the multia-
gent system achieves couple-group consensus finally.

V. CONCLUSION
In this paper, the couple-group consensus is investigated for
the first order discrete-time multiagent system with input
constraints. Based on the idea of competition and coopera-
tion, a novel control protocol is proposed to achieve group
consensus. For multiagent system under undirected topology,
the sufficient condition is given to ensure group consen-
sus. The Lyapunov stability theory, the knowledge of the
input saturation constraints and the matrix theory are used to
achieve the asymptotic group consensus. It’s worth noticing
that the condition in this paper also satisfies the case which
exists only input saturation constraints. The simulations of
numeric modeling show that the system can achieve couple-
group consensus. It shows that the condition of control gain
is correctness for couple-group consensus.
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