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ABSTRACT By combining the basics of self-similarity, scaling correlation, and statistical components,
Benoit Mandelbrot formulated the idea of a natural fractal entity, an entity described by those fundamentals.
As a result of these principles, fractal image codings are being used in many substantial applications already,
such as image compression, image signature, image watermarking, image attribute extraction, and even
image texture segmentation. Thus, while fractal image coding is relatively new in the field of image encoding,
it has gained broad acceptance at a rapid pace. In light of its beneficial qualities, such as quick decomposition,
high compression ratio, and the independence of resolution at any size make these applications conceivable.
However, compared to its advantages, fractal image coding is extremely time-complex and so remarkably
expensive, which hinders its prevalence. A wide hunting domain blocks for the relevant range blocks
caused this difficulty. We proposed several improvements to the Jacquin design in this paper. We first used
max-pooling as an alternative for the medium bonding of spatial contractions to validate the value of the
edge textures of the block. Secondly, we construct the odd-size pixel block alternative to an even-size pixel
block for validation of the symmetric central pixel (CP). Finally, before the search started, we proposed a
shortening of block space, using the central pixel of the block to convert each eight-bit pixel to a two-bit
pixel. As a consequence, the symmetrical CP of odd pixels block, reduction of block space, and edge pixel
selection accomplished faster coding and competitive image quality than existing known exhaustive search
algorithms.

INDEX TERMS Central pixel, statistical self similarity, symmetrical central pixel, IFS-Data.

I. INTRODUCTION
Fractal geometry, according to [65], can emulate natural
objects in a fake perspective rather than a real one. It was
not possible to decode the image of a natural object before
discovering the fractal geometry. Mandelbrot combined the
Julia set in a single pattern by continuous iteration of a
complex function until finally reaching an attractor and
conceptualized three substantial ideas in a single frame
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here, first, the constitution of self-similarity of a natural
object; second, the scaling dependence that opened the new
door of dimensionality as a fractional dimension; finally,
the statistical features of natural objects ([1]). Immediately
based on Mandelbrot’s research, [45] presented his signifi-
cant mathematical contribution concerning the existence and
uniqueness of a attractor as well as iterative operators of con-
traction. Following this development, [5] claimed the repro-
duction of natural image as a fractal attractor by introducing
Hutchinson’s iterative operators. Barnsley named this process
the Iterative Function System (IFS). An IFS coded image
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constitutes of two steps: First, fractal image encoding that
generates IFS, and Second, fractal image decoding uses its
collage theorem to reproduce almost even attractor based
on a set of the best IFS fit. Nevertheless, Barnsley’s claim
has not been successfully applied in the reproduction of the
original image in automated self-regulating fashion since
natural objects are not strictly self-similar, but are partially
or statistically self-similar. Following this, [48] proposed the
Partition Iterative Function System (PIFS), becoming the
first to claim that the similarity of natural objects could be
parts to parts and not always wholes to parts. This research
elicited a quick response in the image processing community.
However, in Jacquin’s method, the encoding time complex-
ity was massive due to a large number of domain blocks
searching for each range block. Thus, researchers began to
focus on how to reduce encoding time. A panel of researchers
attempted to reduce the encoding time by using elemen-
tary methods such as clustering domain blocks, classifying
blocks by choosing geometrical or statistical features, and
applying the Pixel approximation, Block partitioning, Hybrid
technique, Adaptive search method, Entropy search method,
Block size modification, Heuristic technique, Tree structure,
Parallel implementation, Features based technique, No search
method. However, following the Jacquin’s Technique, [6]
changed the search method for codebook to generate address
data that displayed a Gaussian-like distribution and coded
more effectively than a uniform (random) distribution by
using an entropy coding method. Reference [6] took a 12×12
pixels domain block while range block size is 4 × 4 pixels.
so every domain block consists of nine range blocks. Ref-
erence [72] applied the inner product to confirm the error
metric of the library and target blocks. Even [49] showed
classifications of blocks based on block geometry. Reference
[35] classified the domain blocks into 72 categories with
combinations of mean and variance and searched class wise
instead of all. Reference [71] used triangular form blocks
identified by its triplet of co-ordinate points where the match-
ing blocks theory would have been the typical angle points.

In quadtree partitioning, [64] implemented variable range
blocks by describing the reduction bit allocation as 0.29.
Reference [53] presented a coder that translated a block of
pixels into a position vector, for example, a 4×4 range block
becomes a 16-dimensional position vector. Consequently,
the coder takes the mean and variance of those position
vectors, which works as the identity of the blocks and uses
b-tree for indexing and finds the nearest domain blocks. Ref-
erence [73] first proposed to convert the gray valued pixels
in blocks into a binary pattern locally in texture classifi-
cation. References [85] and [102] omitted certain domains
based on a few basic standards. Reference [90] portrays
an enhanced formulation on the approximation of the near-
est neighbor search grounded on orthogonal projection and
pre-quantization of the fractal transmute parameters. Besides,
to further boost the efficiency of the new algorithm, an opti-
mized adaptive scheme for the estimated search parameter
is extracted. Reference [74] transformed eight neighboring

pixels into a binary arrangement with clockwise rotation
shown in Figure 2. Then, the patterns with CP formed a
particular block’s identity, for more detail ( [76], [77], [86]).

On the other hand, we suggested transforming all pixels
in the domain and range blocks into binary patterns at the
final stage of this analysis. After that, to get the optimum
distance between them, we applied the Hausdorff Metric
to the binary value of the blocks. The overall works in
this paper are to modify a series of stairs, the size of the
block, the spatial contraction factor, and its mechanism and
ultimately usages of the Central Pixel (CP) that converts
block-wise each 8-bits pixel into a 2-bits. Integrating all
modifications in a single frame, we tested a set of 36 standard
commonly used images shown in Figure 4 and displayed the
encode time of several sizes of images and blocks shown
in Table 3, while Figures 15, and 16 display visual pre-
sentations. Besides, we considered several Image Quality
Evaluation Techniques (IQETs) to explain image quality and
obtained a series of good results. In Max Pooling Odd Block
Pixel of Binarization using Central Pixel (MPOBPBCP)
method, we have achieved a dramatic result of about 89.82%
encoding time improvement on average compared to several
known existing methods shown in the Table 8 with competi-
tive image quality displayed in Table 5.
The paper is arranged as follows: in section II, we focused

on literature review, in section III, we showed theoreti-
cal considerations; in section IV, we included proposed
modification and its methodology on fractal coding; in
Section V, we present proposed algorithm of the method,
MPOBPBCPM; in Section VI, we kept detailing of the exper-
imental results; in section VII, we present conclusions and
further directions of improvement.

II. LITERATURE REVIEW AND ANALYSIS
After years of research, several Fractal Image Compression
(FIC) and other General Image Processing Methods (GIMP)
as well as Image Quality Evaluation Techniques (IQET)
developed and we demonstrated in Table 1. It is important
to discuss and review this literature.

A. FRACTAL IMAGE COMPRESSION (FIC)
We present a few approaches of FIC that has been devel-
oped into the current stage based on the input parameter and
expected output.

1) MODIFICATION OF BLOCK DIMENSION
Reference [15] proposed the B × B and (3B − 1) ×
(3B − 1) range and domain block sizes, claiming that the
encoding time decreased significantly when the finite-state
vector quantization (VQ) approach combined with partition
base fractal image coding with some adjustment and finally,
encoded image with 0.19 bpp. For each n × n range block,
[21] suggested the domain pool as 3n× 3n, 4n× 4n 5n× 5n
or 6n × 6n, reducing the computational time needed for a
brute force search to optimize image quality. Conci applied
the local fractal dimension (FD) to subdivide the blocks into
four classes. Reference [52] research on variable sizes of
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TABLE 1. Tabular format of literature review: A. Fractal Image
Compression (FIC): 1) Modification of Block Dimension (MBD), 2) Average
Pooling Method and Pooling Factor (APMPF) 3) Block Partitioning (BP)
4) Block classification (BC) 5) Reduction of ISO-Metrics Mapping in
numbers (R-ISO-MM) 6) Tree Structure (TS) 7) Features Based Technique
(FBT) 8) Parallel Implementation (PI) 9) No search Method (NSM).
B. General Image Processing Methods (GIPMS): 1) The CP and Block
Dimension (CPBD) 2) Spatial Contraction Method (SCM) 3) Block
Binarization Using Central Pixel (BBUCP). C. Image Quality Evaluation
Techniques (IQETs): 1) Objective Image Quality Evaluation Techniques
(OIQET) 2) Bits Allocation Techniques (BAT).

range and domain blocks in the fractal image coding to know
the effect of variability. Reference [20] explain a method of
dividing the original image into homogeneous blocks and
achieving a significant speedup compared to the exhaustive
search method.

2) AVERAGE POOLING METHOD AND POOLING FACTOR
The average pooling layer in Convolutional Neural Net-
works records the average pixel values in the template. ([3]).
It results in smoothing the pixel intensity of the block by
averaging entire pixels in block shown in Figure 9. In Fractal
Image compression, [46] used it with pooling factor of 1

2 . For
the same work, [6] takes the spatial contraction factor of 1

3
with even size of pixels block. Reference [114] used Lena,
Peppers, F16 and Boats images of size 256× 256 pixels with
contraction Factor of 1

2 . Reference [62] uses Lena image of
size 256× 256 pixels, range 8× 8, pooling factor 1

2 .

3) BLOCK PARTITIONING
Reference [72] proposed fixed square block partition (FSBP).
After that, [67] and [87] also use FSBP. These researches
show that FSBP is the simplest of all square block partitioning
schemes. In addition, [101] states that this type of block
partition is efficient in transforming individual object block
coding.

4) BLOCK CLASSIFICATION
Reference [34] classified the domain blocks into 72 cate-
gories and then searched by group. Reference [84] performed
on empirical studies using Fisher’s adaptive quadtree method
by excluding all unlikely domains and claimed a greater
speed by restricting the search to a reduced domain pool
where Soupe employed a parameter α ∈ (0, 1]. A merg-
ing scheme with quadtree segmentation was proposed by
[18] that would combine many analogous surrounding blocks

into a region. Chang states that each block is initially a
region, and fuse them geometrically if each area pair is adja-
cent. Chang then determines the coefficients of the iteration
function method and the corresponding error for the region
pair where the coder can correctly merge the region pair with
the lowest error, and the merging process continues until the
error reaches the selected threshold. Reference [20] modified
Fisher’s quadtree approach, what is quadrant decomposition
depending on the threshold value for the best match. Stating
the drawback of it, Chung proposed a sub-block approach to
partition the whole of original image into a set of variable-size
blocks with an interpolation technique and got an improved
result. Chung set the threshold values of the collage error, and
ε of 1500 and 4, respectively.

Reference [103] uses block variance and mean to clas-
sify image blocks, and so the range and domain blocks get
their respective classes based on the mean value, and thus
reduces the domain blocks searched for each range block.
Wu contended that the proposed algorithm achieved the same
reconstructed image quality as the exhaustive search and
would considerably reduce the run-time required.

Reference [92] utilized the neighboring concept used to
the improved vector quantization (VQ) method and named
it as a spatial correlation. Truong denoted four types of
range blocks as vertical, horizontal, and two diagonals and
matched domain to range blocks with the corresponding
direction by using MSE provided a threshold. So, it is full
search with classified domain and range blocks. Truong’s and
Jacquin’sMethods are almost similar except the classification
of range blocks. Reference [105] improves Fisher’s layout
and achieved 576 classes by using mean pixel value and
variance of blocks.

Reference [95] introduced a new two-step FIC acceleration
algorithm. First, the condensed statistical vector expressions
will speed up encoding twice as fast as the Baseline fractal
compression (BFC) without the BFC resulting loss of image
quality. Second, based on the fact that affine self-similarity
is equal to the absolute value of Pearson’s coefficient of
correlation, a new block classification approach of compact
arrangement sets is introduced to speed up coding process.
Results of the experiment and theoretical study demonstrate
that the suggested scheme achieves high performance in both
maintaining image quality and encoding efficiency.

Reference [8] suggests a sub-image classification system
that hierarchically partitions the domain pool and compares
a range to only those domains that belong to the same hierar-
chical group as the range It is a Fisher’s 24 model extension
research. Reference [107] uses a primal-dual algorithm along
with a median-based Fisher classification scheme to acceler-
ate the encoding speed and thus achieves the robust fractal
image coding. Reference [70] proposed a modified hierar-
chical classification strategy for fractal image coding using
adaptive quadtree partitioning to improve the compression
ratio of the lossless coding scheme.

Reference [78] presents a new way of mapping the domain
and the range blocks based on peer adjacent and mean

5030 VOLUME 9, 2021



M. Ahadullah et al.: Competitive Improvement of the Time Complexity to Encode Fractal Image

difference methods in which groups of four blocks share their
union as a common peer-adjacent domain block. Only range
blocks, R. in that domain (second hierarchy) are searched for
a given domain block, D in the top Hierarchy. Each range in
the second hierarchy will become a lower-hierarchy domain
and will continue to map ranges in the same domain. This can
reduce the number of computations, resulting in a much faster
runtime. Smaller range size provides more computational
time because more matching processes need to be calculated,
thus saving only small storage space.

Reference [55] introduces an approach to estimate fractal
texture identification’s affine parameters to reduce computa-
tional complexity by splitting image into several blocks of
various sizes. They used a variety of data chunks such as Frac-
tal Pattern Chunk (FPC), Intermediate Raster Chunk (IRC)
and more. Using these chunks, an image is stored in com-
pressed form.

5) REDUCTION OF ISO-METRICS MAPPING IN NUMBERS
Reference [104] proposes a method by utilizing the best poly-
nomial approximation to decide whether a block of a domain
is fairly similar to the block of specified range. They use
just 2 or 4 isometrics to speed up compression in the fractal
code instead of 8 isometrics claiming that the probability
distribution of 8 isometrics is not average.

6) TREE STRUCTURE
Reference [4] obtains quantitative results about the measure
of distance employed in the search by deriving an incremental
procedure for bounding the pixels in the domain row. In a
tree structure, [4] organizes the domain blocks, and uses the
scheme to guide the search. Reference [38] introduces the
number and locations of the local extreme points in a row
inside an image block known as the classification features
composed of a three-layer tree classifier for the search dis-
tance of similarity matching to speed the encoding cycle
preserving the accuracy of the reconstructed image.

7) FEATURES BASED TECHNIQUE
References [56], [57] suggested an effective method of zero
contrast prediction to determine whether or not the con-
trast factor for a domain block is zero, and to measure the
corresponding difference between the range block and the
transformed domain block efficiently and precisely. Refer-
ence [29] proposed a classification scheme of three classes
based on the edge properties of image blocks in the sense of
self-similarity and claimed improvement using a class-based
threshold. Reference [89] differentiated the blocks by using
standard deviations. Reference [39] applies a fuzzy structure
cataloger to sort image blocks and on the other hand, for the
same purpose [93] serves Particle Swarm Optimization. Ref-
erence [62] use the fractal encoding approach for statistical
loss analysis and construct a box-plot to identify the loss value
distribution, then split it into several sections, and assign it to
the specified model. Eventually, experimental results show
the method’s efficacy.

8) PARALLEL IMPLEMENTATION
Reference [91] states that the dihedral operations for assign-
ing domain blocks require eight separate MSE computations
between the specified range block and the chosen domain
block, but these eight operations entail extensive computing
in the frequency domain obtained by the use of the discrete
cosine transform (DCT). Consequently, these DCT compu-
tations on a real-time processor are trivial, and make this
new algorithm very realistic. Thus, parallel implementation
is important for calculating the MSE using all the DCT
coefficients of the eight orientations of a given image set.
By converting into coordinates, Truong defines these eight
orientations for a block of a domain. For each direction of the
original block, Truong forms explicit DCT formulas. Using
these formulas, the data under consideration can be grouped
together and avoided the repeated calculations of the various
operations and hence the computation time reduced. Given
that the DCT has good energy compaction, only part of the
DCT coefficients need to be used in realistic situations to
find the scalar component. Thus, in the frequency domain,
the coder will further reduce the computational difficulty
in reducing least-square error. Reference [75] proposes the
reduction of fractal encoder’s time complexity, taking into
account the data dependency between different operating
modules, which effectively uses parallelism preserving the
image quality.

9) NO SEARCH METHOD
Every time-consuming component [36] modifies is parameter
search, error calculation, number of range blocks, and domain
search for fractal coding and accelerated with new techniques
as no search. Reference [36] splits the range block R into
smaller sets and fixes the domain block position according to
that of range block. By defining a concept as same degree,
[36] tests the similarity between two blocks to induce the
range block location and the corresponding domain block.

B. GENERAL IMAGE PROCESSING METHODS (GIPMS)
1) THE CP AND BLOCK DIMENSION
Reference [40] suggested Gray-Tone Spatial-Dependence
Matrices and demonstrated on how resolution cells connected
to the nearest neighbors in 3 × 3 and 4 × 4 pixels block
(shown in Figure, 1). Reference [42] proposed a region
descriptor named as center-symmetric local binary pattern
(CS-LBP) descriptor which combines the strengths of the
Scale Invariant Feature Transform (SIFT) descriptor [63] and
LBP (Local Binary Pattern) [74] texture operator. Heikkila
claimed the several advantages of the descriptor, such as
tolerance to illumination changes, robustness on flat image
areas, and computational efficiency. The Center Symmetric
Local Binary Co-occurrence Pattern was suggested by [94],
and the feature is extracted based on the diagonally symmetric
elements around the center.Motivating on the concept of Cen-
ter Symmetric and diagonally symmetric, we recommended
odd size pixels for both blocks and spatial contraction size.
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FIGURE 1. Gray-tone spatial-dependence matrices.

FIGURE 2. Block pixel binarizing model of [74].

2) SPATIAL CONTRACTION METHOD
Reference [11] claims that max-pooling as a Spatial Con-
traction has become popular recently because of its better
performance and is suitable for sparse images. Reference
[51] experiences that max-pooling works better than average
pooling (not yet used in FIC) for computer vision tasks such
as image classification. [112] displays both cases of even
and odd pooling sizes based on the location information,
turning it into displacement function and finds better results
for max-pooling.

3) BLOCK BINARIZATION USING CENTRAL PIXEL
Reference [73] first proposed to convert the gray valued
pixels in blocks into a binary pattern locally in texture classi-
fication. Reference [74] transformed eight neighboring pixels
into binary patterns keeping the central pixel intact and finally
made a pair between the central pixel and combining of other
corresponding binary 8-neighboring pixels together, and thus,
they formed a particular block’s identity to recognize block
in texture shown in Figure 2. References [77] and [76] use

this idea in facial recognition. Reference [86] suggests an
approach to image compression based on Local Binary Pat-
tern (LBP) as a dispersion of local contrast by binarizing
each neighbor of 3 × 3 matrix using the central pixel value
as a threshold, resulting in an 8-bit binary code along with
the initial value of the central pixel altogether a local block
descriptor (BD) stored in a newly proposed Local Binary
Compressed format. Szoke shows the results of improvement
in compression ratio.

C. IMAGE QUALITY EVALUATION TECHNIQUES (IQETs)
There are two classes of IQETs, Subjective, and Objective.
Besides, at the time of Fractal image encoding, bits allocation
is also a vital part. We need to review Objective IQETs and
bits allocation in this section.

1) OBJECTIVE IMAGE QUALITY EVALUATION TECHNIQUES
Reference [115] claims that the deterioration of decoded
images in fractal coding derives mainly from the poor
self-similarity of the input image induced by the collage
errors in the encoding process, thereby producing a changed
image that satisfies good self-similarity and well approxi-
mates the original image. Zou then suggested a procedure
for optimizing the number of range blocks utilizing collage
error. Reference [108] states that one can categorize IQETs
as methods of full-reference (FR), no-reference (NR), and
reduced-reference (RR). For example, the mean squared error
(MSE), the peak signal-to-noise ratio (PSNR), and the Struc-
tural Similarity Index (SSIM) are FR methods. Reference
[108] claims that No Reference SSIM (NSSIM) scores an
image quality without previous training or learning and can
automatically calculate image quality by measuring image
luminance, contrast, structure, and blurriness. WPSNR is a
reflection of PSNR metric generalization that calculates the
perceptually weighted distorted parameter of a block using
the Lagrange clockwise bit-allocation method in the encoder.
WPSNR explains the visual benefit due to the results of two
subjective standardized tests [30].

During the decoding process, encoded IFS-data extracted
from the image was decoded into a fractal image by the
decoder. Therefore, for every corresponding original image
(reference), we need a group of numerical measurements
of fractal image quality with the correct tools. Reference
[32] grouped numeric measures of image quality accord-
ing to their findings. However, we kept the Image Quality
Evaluation Techniques (IQETs) into a single set comprising
seventeen measures. These are as follows: The Mean Square
Error (MSE) confirmed a pixel intensity error. An image
signal test compared to its Noise is tested by SNR and PSNR.
Further, Weighted Peak Signal to Noise Ratio (WPSNR)
([30], [61]) was used to validate PSNR.We applied the Struc-
tural Similarity Index Metric (SSIM) [100] to determine the
similarity of structure. Besides, the Edge Strength Similarity
IndexMetric (ESSIM)( [19]), and ( [111]),Multi-Scale Struc-
ture Similarity Index (MSSSIM) [100], Spectral Similarity
Index (SRSIM) [109], andNoReference Structural Similarity
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Index Metric (NSSIM) [108] were used to certify SSIM val-
ues. Tomeasure the similarity of feature information, we used
the Features Similarity Index Metric (FSIM) [110]. We apply
Contrast Per Pixel Variance (CPPD) [17] and Entropy Differ-
ence (ED) [97] to Contrast and Luminance tests. GMSD tool
tested the Gradient Magnitude Similarity Deviation. Finally,
the tools of Sparse Feature Fidelity (SFF) [16] and Image
Fidelity Measure (IFM) ( [31], and [32]) tested the fractal
decoded image to justify the quality. In Table 5, we showed all
numerical test results. We tried all of these seventeen quality
tools to evaluate the decoded fractal image and got a set of
competitive results.

2) BITS ALLOCATION TECHNIQUES (BATS)
During fractal image encoding, bits per pixel (bpp) is very
significant. Original and fractal decoded image need to be
confirmed the bits allocation. It varies on research needs,
for example, Jacquin used 6 bpp in original image while
Fisher used 8 bpp. It signifies the compression ratio. [22],
[24], and [89] used 6 bits for each the domain blocks posi-
tioning in fractal image encoding. [22] used 3 bits for the
eight isometrics. Reference [25] used 8 bits for the brightness
adjust. [9] used 2 bits for the contrast adjust when quantize
to 0.25, 0.50, 0.75, so bits required per block are 25 bits.
As a result, the total bits required for a image to encode
are 25×ndb

total pixel in image , and compression ratio, CR = bppuncomp
bppcomp

,
( [27]). The way we approach requires 25 bits per block,
so average bpp is 0.151.

D. GENERAL SUMMARY AND COMMENTS ON
LITERATURE REVIEW
A fractal image encoding suffers from the optimal and com-
petitive balance between encoding time and image quality in
the spatial domain with even size pixel block and contrac-
tion factor, the key results from the above literature review.
The possible explanations for this are the block dimen-
sionality, contraction factors, contraction methods, time, and
space required between two blocks for error findings in full-
search. As a result, If we look into Table 9, it shows the aver-
age of PSNR, bpp, and ET(s) with respective image and block
sizes of proposed methods. On the other hand, most recent
research in the literature review shown in Tables 6, and 7
shows encoding time is a bit expensive compare to PSNR
and bpp. All the results taken from the literature review are
influential for future expansion to compress the images using
fractal theory. The writers discussed a solution to the issues
in Section IV.

III. THEORETICAL CONSIDERATIONS
In this section, we present the mathematical ideas behind
fractal theory. For more details, see [2], [33], [37].

A. MATHEMATICS INSIDE FRACTAL THEORY
We take an image, IM in complete metric space (IM ,f ) com-
prising all the properties of metric space, where the set IM is

mapped to IM again by a distance function f as

f : IM × IM → IM . (1)

Since IM is an image vector so it has spatial coordinate and
pixel intensity. If we introduce some other extra properties
here to make it a Hausdorff space, we need to confirm that
no open set in the space (IM , f ) has common elements. Let P
and Q be two compact sets in IM such that

P ∩ Q = Φ. (2)

Hence if px ,qy ∈ (IM ,f ) then ∃ px ∈ P and qy ∈ Q, px 6= qy.
The distance between the two sets P and Q in space (IM ,f )
can be calculated by using the Hausdorff metric such as,

H (P,Q) = max{h(P,Q), h(Q,P)} (3)

References [104], and [7] state that an object to be considered
by IFS codes, three important steps are essential that can be
written mathematically, Firstly, average Pooling, the process
of smoothing is actually averaging of pixel intensity, Ix,y
block by block, where x and y are the pixel coordinates for
square block and Ix,y = f (x, y), and κ × κ average pooling.
For details, reader can see [12], and [13]

Tp(Ix,y) =
1
κ

κ∑
x=1

( κ∑
y=1

1
κ
(Ix,y)

)
. (4)

Secondly, block intensity transformation, which can be found
by using

TI (Ix,y) = sIx,y + o (5)

where s and o are the contrast and brightness respectively.
Finally, geometric transformation by using

Tg(Ix,y) = agIx,y + bg (6)

where Tg is the transformation function and ag and bg are
the coefficients of isometric transformation and translation
vectors respectively, while g = 1, 2, . . . 8, is a translation
index. Thus, [7], [104] shows an overall transformation as
follows:

Toverall(Ix,y) = Tp(Ix,y) ◦ TI (Ix,y) ◦ Tg(Ix,y) (7)

Now, if we apply this transformation Toverall iteratively on all
domain blocks separately, and combine them in a single plot,
no doubt we can then reach a fixed point according to the
Banach contraction mapping principle. This collection of all
transformed domain blocks matched with the corresponding
range blocks can be used to build a decoded image on the
theory of collage. Mathematically,

Itrans =
N⋃
n=1

Toverall(Ix,y). (8)

Hence using Eq (3)

H (IM ,A) 5
ε

1− s
(9)

VOLUME 9, 2021 5033



M. Ahadullah et al.: Competitive Improvement of the Time Complexity to Encode Fractal Image

FIGURE 3. Encoding process diagram.

IM is the original image and A is the fractal decoded image
as an attractor in each instance. But in line with Lipchitz
contraction mapping, we may have:

H (IM , Itrans) 5 ε. (10)

So now, with the help of Eq (9) and Eq (10), we combine
and establish the following:

H (IM ,A) ≤
1

1− s
H (IM , Itrans). (11)

Finally, after combining Eq (8) and Eq (11), we recognize

H (IM ,A) ≤ (1− s)−1H (IM ,
N⋃
x=1

Toverall(Ix,y)). (12)

IV. PROPOSED MODIFICATION ON FRACTAL CODING
METHOD
In this section, the entire process of fractal coding based on
the proposedmodifications are discussed as the Encoding and
Decoding Process diagram shown in Figures 3, and 14.

A. BLOCKS PREPARATION
First, we chose the standard Zelda gray-scale image (ID-32 of
Set-A), and then we resized it as shown in Figures 8, and 7,
where range and domain blocks are Center and diagonally
symmetric. Reference [10] mentions the thinning algorithms
yields suitable result in, considering 8-neighbors around any
random pixel regarded as a central pixel. Apart from, [79]
states that researchers mainly uses the thinning algorithms

FIGURE 4. Original images Set-A.

FIGURE 5. Original images Set-B.

to extract significant features, layer by layer from a digital
image. Following this, we then looked at pc = P(x+1, y+1)
as a central pixel of eight neighbors of any block in a pixel
coordinate structure for the purpose of fractal image coding.
That is, for any pixel, pc has two upright and two horizontal
neighbors as N4(p) and four diagonal neighbors as ND(p) as
shown in Figure 6. In an image block, the one CP, and the
eight neighbors around CP with pixels intensity [0, 2b − 1 |
b = 1, 2, . . . 8] of each represents intensity of any position
with in the block. In spatial coordinate, their position vectors
are follows:

N4(p) : (x, y+ 1), (x + 2, y+ 1), (x + 1, y), (x + 1, y+ 2)

ND(p) : (x, y), (x + 2, y+ 2), (x + 2, y), (x, y+ 2).

Subsequently, the 8-neighbors as N4(p) ∪ ND(p) = N8(p).
A spatial function in the image plane relates pixel intensity
and position. Mathematically, the central pixel, pc, [0, 2b −
1] = f (x + 1, y + 1), helps to binarize the block intensity
using the intensity of as threshold. We made two copies of
resized Zelda standard image, and partitioned both as range
and domain blocks of size α × β and (ps × α) × (ps × β)
respectively, as shown in Figures 7 and 8, where α = β =

2d + 1 and ps = 2p + 1. We applied 3 × 3 pixels as
the size of the range block to get the central pixel of each
block, d = 1, 2, 3, 4, and p = 1, 2, 3, 4 depending on image
size. Algorithm 1 supports the code to prepare initial blocks.
Besides that we require five more steps to process the blocks
according to Algorithms 2, 3, 4, 5, and 6

B. POOLING METHOD
Pooling, the image spatial contraction method (ISC) are
mainly two types; Average Pooling and Max Pooling, where
the first one, commonly used in the Base Line Method pro-
posed by Jacquin.
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Algorithm 1 Domain and Range Blocks Pre-Processing
1: procedure Split(I ) F I = V × H pixels
2: Read: I F shown in Figure 10(OI-1)
3: if V = H then
4: loop:
5: Split I F

size of domain blocks = ps× (2d + 1)× ps× (2d + 1),
ps = 2p+ 1, p = 1, 2, 3, 4

6: goto loop.
7: close;
8: Write: The domain blocks F D,

shown in Figure 10(D)
9: repeat

10: loop at 4: for Range blocks F block = (2d+1)×(2d+1),
where d = 1, 2, 3, 4, in Figure 10(R)

11: until the total range blocks = H
(2d+1) ×

V
(2d+1)

12: close;
13: Write: Range blocks F Range blocks,

R,,shown in Figure 10(R)
14: return

Algorithm 2 Spatial Contraction of Domain Block by Using
Max-Pooling
1: procedureMax-Pooling(D, ps) F Geometric

Contraction
2: Read: The domain blocks F D, from algorithm 1 and

shown in Figure 10
3: tdb2 = [(vs/srb)/ps]2; F Total of domain blocks

(tdb)2

4: for i← 1 to srb(d)× tdb do F srb(d), the size of
range block

5: for y← 1 to srb(d)× tdb do
6: Max-Pooling F

spatial contraction using (13), in total = V
(2d+1) ×

H
(2d+1)

as shown in Figures 9, and 11
7: Write: Contracted domain blocks, F AMP-1, shown

in Figure10, and 11 right part
8: return

Algorithm 3 Eight-Isometrics Mapping on Domain Blocks
1: procedure Isometric-Mapping(D, ωro, ωre) F As

discussed in IV-C
2: Read: Contracted domain blocks, D F

shown in Figure 10(AMP-1) from algorithm 2
3: Apply the isometric mapping F for each block

geometrically using ( 18, and 19 on block matrix
4: Write: Eight transformed domain blocks, by using
T1 . . . T8 shown in Figures 10, and 12.

5: return

1) ISC BY MAX-POOLING METHOD
Reference [51] experiences that max-pooling has been found
to work better than average pooling for computer vision

Algorithm 4 Apply Contrast Mapping on Domain Block
1: procedure Contrast-Mapping(T1(D) . . . T8(D)) F

Numeric contraction applied on Pixels result in contrast
2: Read: Eight transformed domain blocks, T1 . . . T8 F

shown in Figures 10, and 12 from algorithm 3
3: Calculate ŝq F the value of ŝq for each block as

shown in (24)
4: create S F a set
S = {av(ŝq)− std(ŝq), av(ŝq), av(ŝq)+ std(ŝq)}

5: for τ ← 1 to 8 do
6: for n← 1 to S(n) do
7: Construct Domain Blocks, Dc = Dτ × S(n)
F Each block results in Dτ × S(n)=8 × 3, c = 1 to 24,
and τ = 8

8: Write: Total domain blocks = M
ps×(2d+1) ×

M
ps×(2d+1) × τ × S(n) F One of eight domains, (Tτ (D))
only, and (Tτ (D)) reproduces Tτ (D) − 01, Tτ (D) − 02,
Tτ (D) − 03 shown in Figures 10, where τ = 1. Thus
total of three, ŝq ∈ S and eight, τ

9: return

Algorithm 5 Calculating Offset for Range Block
1: procedure Offset(R) F Offset improves brightness
2: Read: Each range block F Total of M

(2d+1) ×
M

(2d+1) ,
from algorithm 1

3: Calculate gq F the value gq for each block
using (25) as a part of optimization.

4: Write: Block offset values, gq for each block, in total
=

M
(2d+1) ×

M
(2d+1)

5: return

Algorithm 6 Reprocessing Range Block (RRB)
1: procedure RRB(gq, R) F Reprocessing Range

Block(RRB)
2: Read: Block offset value, gq from algorithm 5
3: Construct R(new) F Apply the

value of gq to each block to construct new range blocks,
R(new) = R(old)− gq × ones(size(R))

4: Write: Reprocessed range block, R(new), in total =
M

(2d+1) ×
M

(2d+1)
5: return

TABLE 2. The proposed method used three sizes of images and blocks:
Total blocks produced in the proposed and some known methods.

tasks such as image classification. On the other hand,
the Max-pooling measures the pixel value in each block as
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FIGURE 6. Eight neighboring pixels of CP.

FIGURE 7. Domain block windows.

the maximum for every function map, Mathematically,

Imax = max
([
xx,y

])
(13)

Reference [11] claims that max-pooling has become pop-
ular recently because of its better performance and is suit-
able for sparse images. All the comprehensive research on
Jacquin’s fractal transform code, however, used average pool-
ing when we first thought about moving to Max-pooling by
encouraging its benefits. We used the Algorithm, 2 to get
spatial contraction in domain block.

2) SIZE OF MAX-POOLING
Reference [112] displays both cases of even and odd pool-
ing sizes based on the location information, turning it into
displacement function. Zheng knows, in his study, that in
even cases all units have displacements in both horizontal
and vertical directions. However, in the odd case, Zheng
found that the translation would be zero in the horizontal
and vertical directions, respectively, if the maximum value
would contain in the central row or column. What Zheng
has mentioned is nothing more than symmetric pixels and
their consistency. Eventually, the odd pooling size returns

FIGURE 8. Range block windows.

FIGURE 9. Max and average pooling.

image data with a peak centered around the central pixel,
where even pooling size will not be regarded as consistent
when the researcher needs to maintain the peak positions
during pooling. So, if researchers think of convolution as an
interpolation between the given pixels and a center pixel,
by pooling even sizes, they can not interpolate to a center
pixel. For an odd-sized pooling in CNN (ConvNet), each of
the previous layer pixels will be symmetrically around the
output pixel. In the Fractal Image Coding system, the Average
Pooling size has been an even in size as 2 since the time the
baseline method has started. However, In our study, we used
an odd in size as ps = 2p + 1, and reduced [ps × (2d +
1)]× [ps× (2d + 1)] block size to [2d + 1]× [2d + 1] block
size by using max-pooling, for illustration, every 3×3 pixels
block condenses to 1 × 1, that means the spatial contraction
factor is 1

3 rather than 1
2 , which is commonly used by all
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researchers. We need to switch to transform the blocks as
follows after the contraction has done. Pooling size (ps) as a
contraction factor, one can use in the Algorithm, 2. Besides,
some more theoretical ideas about how to build an automated
self-regulating system need to demonstrate as follows;

C. DOMAIN BLOCK’s TRANSFORMATIONS
The overall transformation expressed in (7) can be shown
in the form of automated self-regulating system by using
the (14):

T

 x
y
z

 =
 a b 0
c ρ 0
0 0 s

 x
y
z

+
 e
f
g

 (14)

where (x,y) is the arbitrary spatial coordinates of pixels, and
z is the pixel intensity for corresponding spatial coordinates.
The parameters a, b, c, ρ are responsible for geometric trans-
formations, s for contrast adaption, e and f are the translation
vectors for luminance adjustment, and the Figures 12 and 10
show the processes, separately for the single domain as well
as full image respectively.

1) GEOMETRIC TRANSFORMATION
To transform domain blocks, one can use eight Isometric-
Transformations (ITs) based on the alternate form of (14).
The Equations (15), and (16) are the vector operators to get
transformed blocks and implemented by using Algorithm 3.

Tro =

 cosω −sinω 0
sinω cosω 0
0 0 1

 (15)

Tre =

 cos2ω sin2ω 0
sin2ω −cos2ω 0
0 0 1

 (16)

Here, for rotation ωro = [0◦, 90◦, 180◦, 270◦] and for
reflection ωre = [0◦, 45◦, 90◦,−45◦], and these eight values
of ω transform each domain into eight domains. Considering
to the homogeneous coordinates system, we let the intensity
vector, z = 1 so that the column vector becomes, xy

1

 (17)

According to [7], and [104], the (14) should have at
least three properties as discussed in III-A. In this section,
we addressed only geometric aspect by the following equa-
tions, (18), and (19) by using (15), and (16);

Tg(

 xy
1

) =
 cosω −sinω 0
sinω cosω 0
0 0 1

 xy
1

 (18)

and

Tg(

 xy
1

) =
 cos2ω sin2ω 0
sin2ω −cos2ω 0
0 0 1

 xy
1

 (19)

Themagnified transformed domain block results in according
to Figure 12.

FIGURE 10. For a whole image blocks, eight isometric transformations
with 3 scale factors is taken to adjust contrast, T1-01, T1-02, T1-03.

FIGURE 11. Domain blocks max-pooling.

FIGURE 12. For a domain, eight isometric transformations:T1. Invariant
transform, T2. 90 degree CCW rotation, T3. 180 degree rotation, T4.
270 degree CCW rotation, T5. Reflection on horizontal axis, T6. Reflection
on vertical axis, T7. Reflection on y = −x line, T8. Reflection on y = x line.

2) IMAGE CONTRAST AND BRIGHTNESS ADJUSTMENT
From (14), the contrast, s and brightness, g of a gray-scale
image can be calculated by introducing the third dimension,
z in the spatial coordinates. The (14) can be rearranged as
follows;

⇒ T

 x
y
z

 =
 ax + by+ e
cx + dy+ f
sz+ g

. (20)
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It is clear here we are having an equation for depicting the
intensity function,

T (z) = sz+ g (21)

where, the variable z and T (z) are the domain and range block
intensity respectively.We can estimate a linear regression line

T̂ (z) = ŝqz+ gq (22)

and thus we get the following error,

E =
∑
{T (z)− T̂ (z)}2 =

∑
{T (z)− gq − ŝqz}2 (23)

where z = f (x, y), however, to optimize the error in (23), one
can take partial derivatives with respect to gq and ŝq and solve
the equation to get ŝq, gq

ŝq =
λ
∑
z× Î (z)−

∑
z
∑
Î (z)

λ
∑
z2 − (

∑
z)2

(24)

and

gq =
1
λ

[∑
Î (z)− ŝq

∑
z
]

(25)

where λ is the number of pixels in each block and the mini-
mum error in Equation 23 will support to match between the
blocks pair as D2d+1, and R2d+1, where the pixel intensity of
range block is as follows:

R2d+1 = ŝq ∗ D2d+1 + gq. (26)

Algorithms 4 and 5 are expected to bring this theoretical
aspect into effect.

D. FINDING CENTRAL PIXEL OF EACH BLOCK
First, we must find the central pixel for each block during the
block feed process that was achieved by the function,

I α+1
2 ×

β+1
2
= B(

α + 1
2

,
β + 1
2

). (27)

where, α = β = 2d+1, where d = [1, 2, 3, 4]. Algorithms 7
suggests executing this approach.

E. THE BLOCK PIXEL BINARIZING PRINCIPLE
Reference [66] notes that since the optical character analysis,
identification, and classification of natural images involves
a prior image binarization, the implementation of classical
global thresholding methods in such a situation makes it diffi-
cult to maintain the visibility of all characters, and claims that
regional binarization is thus substantially important. Eventu-
ally, they states that the image binarization is one of the most
important preprocessing measures contributing to a substan-
tial decrease in the quantity of information sent for further
analysis and to an improvement in its speed. Following this,
we set a function to convert the intensity values of pixels
in each individual block to logical binary digits using the
following function.

9(Ix′×y′) =

{
1 if Ix′×y′ ≥ pc
0 if otherwise

(28)

Algorithm 7 CPs for Domain and Range Blocks
1: procedure CPE(D(new),R(new)) F Central Pixel

Extraction (CPE)
2: Read: New domain and Range blocks from algo-

rithms 4, and 6
3: if Block = Domain block then
4: Find CPs, Cp(D) = B(α+12 ,

β+1
2 ) F central

pixel of the block, where α = β = 2d + 1
5: else
6: Find CPs, Cp(R) = B{α+12 ,

β+1
2 } F CPs, Cp(R)

in (28)
7: Write: The total CPs, Cp(D), and Cp(R) F in total

M
ps×(2d+1) ×

M
ps×(2d+1) × τ × S(n), and M

(2d+1) ×
M

(2d+1)
respectively

8: return

where Ix′×y′ = Local Pixel Intensity of the blocks in N8(p),
and inclusive pc, the Central Pixel and x′ × y′ is the array of
pixels in block. Algorithm 8 recommends this strategy to be
executed.

F. DEMONSTRATION OF BLOCK INTENSITY SHIFT USING
CENTRAL PIXEL
Ψ B
α×β is a logical binary-valued α × β order matrix, and it is

formed by using (27), and (28)

Ψ B
α×β = f (Iα×β )

= f (


I1×1 · · · I1,β
... I α+1

2 ,
β+1
2

...

Iα,1 · · · Iα,β

)

= f (

 22 · · · 25
... 36

...

27 · · · 36

)
=

 0 · · · 0
... 1

...

0 · · · 1

 . (29)

G. HUNTING DOMAIN BLOCKS FOR CORRESPONDING
RANGE BLOCKS
When the algorithm 9 begins to hunt domain blocks for
corresponding range blocks, it changes the pixel intensity of
both blocks into binary values and then calculates the optimal
error between the domain and range blocks. This is performed
by employing the most favorable values of o and s. Thus,
we have a collection of the most advantageous domain blocks
for every corresponding range block as shown in Figure 13.

H. FRACTAL IMAGE PRODUCTION
Algorithm 10 can produce a fractal-image displayed
in Figure 20 from any arbitrary image of the same size as
the original shown in Figures 4.
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Algorithm 8 Block Pixel binarizing(BPB): The Domain and
Range Blocks
1: procedure BPB((Cp(D),D(new)),(Cp(R), R(new))) F

BPB using Cp(D), Cp(R) for Domain and Range blocks,
respectively

2: Read: New domain and range blocks, and corre-
sponding CPs, F from algorithms 4, 6,
and 7

3: if Block set = Domain block then
4: Binarize Block ′s Pixel of Domain, F shown

in (28), and demonstrated with Example in 29
5: else
6: Binarize Block ′s Pixel of Range, F The

CP(block) will check the 8-neighboring pixel intensity of
block and itself

7: Write: The binarized domain, and Range blocks
D(new), and R(new), in total = M

ps×(2d+1) ×
M

ps×(2d+1) ×

τ × S(n), and M
(2d+1) ×

M
(2d+1) , respectively.

8: return

Algorithm 9 Collection of IFS-Data: By Searching the
Best-Fit Domain Block
1: procedure IFS-Data(D(new), R(new))
2: Read: The latest range and domain blocks with binary

intensity from algorithm 8, respectively.
3: calculate, error
4: error , L = norm(D(new)− R(new))
5: if L< ε

1−ŝq
then F ε is any suitable standard error

6: preserve, IFS − Data F the corresponding
IFS − Data, xifs, yifs, ŝq, gq and tifs

7: else
8: go to new search
9: Write: A complete set of IFS-Data [xifs, yifs, ŝq, gq,
tifs]

10: return

FIGURE 13. Blocks mapping: using Hausdorff Metric.

V. ALGORITHM OF THE METHOD, MPOBPBCPM
We addressed the following algorithms for the proposed
method, and we achieved a series of results by running a
sequence of codes using Matlab programming through these
Algorithms addressed in Section V.

Algorithm 10 Fractal Decoding Algorithm
1: procedure Fractal-Image(IFS-Data) F Fractal Decoding

of IFS-Data to get Attractor Image
2: Read AI , F Any Arbitrary Image (AI) with the same

sizeM ×M of the original image, F shown in Figure 11
3: Load IFS − Data F From algorithm 9
4: Resize AI F using max-pooling where pooling

factor, 1
ps .

5: Prepare, Dp F initial preparation of Domain block
from dummy image

6: Transform, xifs, yifs F Spatial pixel coordinate into
Dp

7: Transform, ŝq F intensity Block-wise intensity
transform into each Dp

8: Add, gq F Vector addition of offset into Dp
9: Apply, tifs F ISO-metric transforms to build each
Dp, finally

10: if input = [xifs, yifs, ŝq, gq, tifs] then
11: calculate Rq = ŝq ∗ Dp + gq ∗ ones(size(Dp)). F

IFS-data set Provides all the information
12: else
13: Repeat F Step 6 to 9
14: Write: Rq as fractal image.
15: return

FIGURE 14. Decoding process diagram.

VI. DETAILING OF THE EXPERIMENTAL RESULTS
The writers have demonstrated the encoding speed of the
proposed algorithm with the objective quality assessments of
the decoded image in this section. In the experiment, we used
all sixty-six images from set A and B in Figure 4, and 5.

A. THE EXPERIMENTAL RESULTS ON ENCODING TIME
We have exhibited the encoding time of thirty six different
sizes of images with several odd pixels blocks in Figures 15.
Table 3 shows the encoding speed, while Figure 16 represents
the box-plot of processing time. The improvement of the
process time complexity of the proposed method proves the
efficiency and overall effectiveness of the scheme through
Table 8. The Result of Encoding time of Set B images dis-
played in Table 4.
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TABLE 3. Encoding Time (s) (ET) of several sizes of images and blocks:
The final row shows the Mean ET (MET), image s of Set A.

FIGURE 15. Visual display of fractal image encoding time.

B. THE EXPERIMENTAL RESULTS ON OBJECTIVES
QUALITY MEASURES
The Algorithm 10 of decoder generated the fractal images of
Figure 20 using the corresponding IFS-Data with competitive

TABLE 4. Encoding Time (s) (ET) of another Set B of images and blocks:
The final row shows the Mean ET (MET).

FIGURE 16. Box-plot of encoding time for several sizes of images and
blocks.

values of objective image quality shown in Table 5. The com-
petitive results indicate the efficiency of the Algorithms of the
proposed method.

C. ANALYSIS, COMPARISONS, AND DISCUSSIONS
Thirty-six images were used by authors, and each has three
sizes and two block groups shown in Table 2, where we view
comparable image sizes, total blocks, and percentage differ-
ence in total-blocks. The Figure 15 shows the compatibility
of image size with the block size by displaying the nature
of fluctuation of encoding time. For instance, 135 − 5 and
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FIGURE 17. ET (s) versus PSNR.

FIGURE 18. ET(s) vs CPPD, NLSE, and ED.

FIGURE 19. Scatter plot of MDSIM versus MSSIM, SRSIM, MSSIM, ESSIM,
and SSIM containing linear fit, Non par-density, density ellipse curve.

270− 9 are more compatible than 540− 9. Figure 16 shows
that 270− 5 attains minimum interquartile range (IQR) with
three outliers while 135−5 has no outlier and 270−9 has two,
which are very close to max value. Thus, we can conclude to
reprocess pixel optimization further. Table 3 displays the raw
data of the encoding time of images of different sizes. Table 3
shows 0.040 (s) and 0.829 (s) respectively minimum and
maximum average time for 135−5, and 540−5, and depicts
encoding times (ET) of thirty-six images, where Lena image

FIGURE 20. MPOBPBCPM-Fractal decoded image.

TABLE 5. Image quality evaluation tools: Objective quality measures for
thirty six Fractal decoded Images, of Set-A using proposed:CPPD-Contrast
Per Pixel Deviation, ED-Entropy Difference, ESSIM- Edge Based Similarity
Index Metric, FSIM- Features Similarity Index Metric, GMSD-Gradient
Magnitude similarity Deviation, IFM-Image Fidelity Metric, MDSIM- Mean
Deviation Similarity Index, MSE-Mean Square Error, MSSIM- Multi-scale
Structural Similarity Index Metric, NLSE-Normalized Least Square Error,
NSSIM- No Reference Structural Similarity Index Metric, PSNR-Peak Signal
to Noise Ratio, SFF-Sparse Feature Fidelity, SNR-Signal to Noise Ratio,
SRSIM-Spectral Similarity Index Metric, SSIM -Structural Similarity Index
Metric, W(PSNR)-Weighted PSNR.

TABLE 6. Comparison: PSNR and encoding time with some known
methods of different size of Lena image.

(Image ID-18) of different sizes are comparable initially with
the methods proposed by [4], [34], [44], [89], and [43] and
according to Table 8, we find definite improvement according
to the size declared in Table 2. Table 6 represents Encoding
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TABLE 7. Bits per pixel and compression ratio (round up to whole
number) of several known methods.

Time (s) and PSNR (dB), where PSNR and process time are
27.881 dB and 0.250 (s) for Lena image, however the average
PSNR is about 23.03 dB for the same group shown in Table 5.
Figure 17 displays ET (s) versus PSNR (dB) plot, and the
graph shows a linear fit with a negative correlation, and it
proves that better optimization in pixels between Fractal and
original images effects time complexity. Figure 18 shows ET
(s) versus CPPD, NLSE, and ED plots, where we use linear,
spline, and kernel fits. A simple linear fit is a model of a
relationship between two continuous variables, while Spline
fit is a smoothing spline that varies in smoothness according
to the lambda value, as we choose 0.01. The smoothing spline
can help to see the expected value of the distribution of
dependent across independent. On the other hand, the Ker-
nel Smoother option produces a curve formed by repeatedly
finding a locally weighted fit of a simple curve at sampled
points in the domain. Implying this method, we can observe
the relationship between variables and determine the type
of analysis or fit to perform [50]. For both prediction effi-
ciency and model complexity, the mean deviation similarity
index (MDSI) metric indicates a competitive balance. At the
same time, MDSI(M) is effective, active, and reliable. It per-
forms reliably, for both natural and synthetic images [69].
The Figure 19 represents scatter-plot of No Reference Struc-
tural Similarity Index Metric (NSSIM), Spectral Similarity
Index Metric (SRSIM), Multi-Scale Similarity Index Metric
(MSSIM), Edge Strength Similarity Index Metric (ESSIM),
and Structural Similarity Index Metric (SSIM) concerning

TABLE 8. Average % improvement of proposed method in comparing to
some known methods.

TABLE 9. Several recently known methods on FIC mainly analyzed Lena,
Baboon, Bridge, Couple, Crowd, Man, Peppers, Plane Boats, Cameraman
images. The proposed method also analyzed all images and even more.

Mean Deviation Similarity Index Metric (MDSIM). The neg-
ative correlation indicates an inverse relation.

For further comparison, Table 9 shows very recent methods
for ET (s), PSNR, and bpp. We have compared four mod-
els of images to compare all mention methods in Table 9.
In comparison to bpp and ET (s) of the proposed method are
superior, and PSNR is competitive where the average of IFM,
SFF, ESSIM, and NSSIM is 0.99 that indicates image quality
is quite good.

Table 8 reflects the encoding time percentage change
where the minimum boost is approximately 10.71% com-
pared to [43]. Hu utilizes a 4FFT algorithm for image com-
pression coding scheme based on Fourier transform energy
concentration and results in 0.280(s) shown in Table 8.
On the other hand, [113] works on Lena image with result
of 0.38 (s) and the average encoding time of four images is
0.52(s), while proposed method achieves in 0.078, and 0.073.
Reference [113] removed the most inappropriate domain
blocks according to each range block to decrease the search
space. Before the best matching search, Zhou optimized
the mapping error by adjusting the mapping scheme for
the sub-blocks based on an image feature while we pro-
posed max pooling, odd pixel block, symmetric central pixel,
and binarization of block intensity before the best-matching
search and which result in competitive outcomes. Reference
[107] uses four types of images, Pirate, Boat, Peppers, and
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Living-room with size 512 × 512 and blocks size 8 × 8
results in SSIM 0.89. Reference [55] shows the SSIM, and
FSIM values in average, respectively: 0.959, and 0.984.
The proposed method achieved the same features resulted
in 0.84 and 0.89 average of size 540−5. Besides, the values of
MSSIM, NSSIM, SRSIM, and ESSIM are 0.92004, 0.99211,
0.93837, and 0.99211 respectively. These values suggest that
the decoded fractal images are outstanding in terms of fea-
tures, and structures. Image size less than 243 × 243 pixels,
MSSIM shows the value of −∞.

VII. CONCLUSIONS AND FURTHER DIRECTIONS OF
IMPROVEMENT
The author lifts this scheme to a point where it is substantially
comparable to the standard fixed-size block coding method
based on full search, after successfully developing the process
with multiple changes. By operating on IS0 standard image
sets A and B, the author’s coding scheme compresses to
0.1513 bits per pixel on an average with a compression ratio
of 53 that is still suitable for preserving the image quality
shown in Table 7. Unlike the method of Jacquin compris-
ing an exhaustive search strategy with simplified transfor-
mation classes, our effortless search procedure requires no
domain classes. However, in the improvement and implemen-
tation of the research on extensive domain search, the author
believes that a great deal of work needs to explore to pro-
duce even better outcomes, considering the success of this
research. For example, [81] used Lena, Peppers, Cameraman
(C-man) of size 256×256 pixels with block-size 4×4 pixels
and results in 0.049(s), while the proposed method achieve
it by 0.167 (s). Thus, the author’s proposed algorithm will
increase its efficiency in combination with other rapid fractal
algorithms.
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