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ABSTRACT Recently, methods of scene classification that are based on deep learning have become
increasingly mature in remote sensing. However, training an excellent deep learning model for remote
sensing scene classification requires a large number of labeled samples. Therefore, scene classification with
insufficient scene images becomes a challenge. The deepEMD network is currently the most popular model
for solving these tasks. Although the deepEMD network obtains impressive results on common few-shot
baseline datasets, it is insufficient for capturing discriminative feature information about the scene from
global and local perspectives. For this reason, an efficient few-shot scene classification scheme in remote
sensing is proposed by combining multiple attention mechanisms and the attention-reference mechanism into
the deepEMD network in this paper. First, scene features can be extracted by the backbone that incorporates
global attention module and local attention module, which enables the backbone to capture discriminative
information from both the global level and the local level. Second, the attention-reference mechanism
generates the weights of elements in the earth mover’s distance (EMD) formulation, which can effectively
alleviate the effects of complex background and intra-class morphological differences. The experimental
results on three popular remote sensing benchmark datasets, Aerial Image Dataset (AID), OPTIMAL-31, and
UC Merced, illustrate that our proposed scheme obtains state-of-the-art results in few-shot remote sensing

scene classification.

INDEX TERMS Attention-reference mechanism, deepEMD network, few-shot learning, multiple attention,

remote sensing scene classification, representation learning.

I. INTRODUCTION

Scene classification issue is an increasingly popular research
topic in the field of remote sensing image recognition. With
the rapid development of remote sensing technology, scene
classification has been widely applied in urban management,
national defense, land resource management and natural dis-
aster detection [1]-[4]. Compared with common scene clas-
sification, few-shot scene classification in remote sensing is
conducted under the very lack of available labeled samples,
which aims to improve the dilemma faced by data-driven
deep learning models, such as one-shot learning and five-shot
learning [5], [6]. On the basis of the level of features for scene
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classification, existing methods can be typically divided into
traditional handcrafted features and deep learning features.
In traditional remote sensing scene classification, tradi-
tional handcrafted features can be subdivided into three types
based on the morphological differences of features: tex-
ture features, structural features, and spectral features [7].
In the current literature, most of the existing models that are
based on traditional handcrafted features, such as vector of
locally aggregated descriptors (VLAD), locality-constrained
linear coding (LLC) and spatial pyramid matching (SPM)
[8]-[10], extract the features that are passed to the classifier
to refine the features and enable the features to have trans-
lation invariance, scale invariance and sparsity to obtain a
more robust model. In most cases, artificially designing fea-
ture descriptors are typically expensive and time-consuming,
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which prevents models from fully utilizing the abundant
semantic knowledge in remote sensing images to solve such
issues.

With the rapid rise of deep learning, drawbacks of tradi-
tional machine learning methods have become more obvi-
ous. Recently, with the availability of massive amounts of
training data and high-performance graphic processing units
(GPU) [11], training deep neural networks to obtain deep
learning features has become increasingly popular [12]-[18].
Methods that rest on deep learning features intend to employ
deep neural networks, such as variational autoencoder
(VAE) [19], [20], long short-term memory (LSTM) [21]
and convolutional neural network (CNN) [22], which have
excellent representation learning performance to obtain scene
features. In previous work, the off-the-shelf CNN, such as
VGG16 [23], ResNet [24], DenseNet [25] and Inception-
V4 126], is typically utilized to extract features from an image
and then a classifier was adapted to achieve classification.
In contrast, the amount of information that is contained in
the extracted features has attracted more attention in recent
research. For this reason, the features of different layers
of various CNNs will be integrated to form the fused fea-
ture so that the performance of the model is promoted. For
instance, the features of two fully connected layers of VGG-
Net [23] are fused by discriminant correlation analysis [27].
To obtain a series of feature maps and filters for the input
image, the weighted deconvolution network is employed by
minimizing the reconstruction error between the input sam-
ple and the reconstructed sample [28]. In [15], the feature
fusion method is employed to fuse the features of the con-
volutional layer and the fully connected layer in VGG-Net
and CaffeNet, respectively. Then the new features that are
merged by the two networks can be further merged in a
linear combination. The prerequisite for these models to show
excellent performance is the existence of massive amounts
of labeled data. These models are data-driven because they
train a deep neural network model from scratch for each
new task with a large amount of labeled data by extensive
parameter updates using an optimization algorithm, such as
Adam, Adagrad, or SGD. Hence, if the new remote sensing
scene task only has few labeled samples and lacks similar
datasets, deep neural network models with a large number of
parameters will easily overfit. Therefore, fast adaptation is an
immense challenge when the labeled samples are extremely
scarce and the differences among different datasets are large.
For example, classic deep neural network models, such as
AlexNet [12], ResNet [24] and DenseNet [25], can obtain
up to 90% accuracy on UC Merced, OPTIMAL-31, Aerial
Image Dataset (AID) and other datasets [29]-[31] but lower
than 30% accuracy when only one labeled sample is given.

Consequently, to solve few-shot scene classification issues
in remote sensing, it is a desirable method to promote the
ability of model representation learning. Currently, most of
the tasks of few-shot learning are solved by methods in
meta-learning. Compared with machine learning on data,
meta-learning is conducted at the task level [32]-[34], which
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enables the model to learn more general meta knowledge.
Meta-learning has been extensively utilized in various tasks,
such as regression [35], [36], classification [37], [38], and
reinforcement learning [39], [40]. Meta-learning aims to
learn how to learn using a series of tasks; to simulate the few-
shot situation, each task is composed of a training set and
a testing set, which makes the meta-learning methods quite
suitable for solving the few-shot learning problem. In the field
of remote sensing, manually collected scene images quite
differ from collected natural images. For instance, the scenes
change greatly in the intra-class, and the scenes in the inter-
class are similar due to the differences in shape, background
and lighting [22], [41]. Hence, how to measure the degree of
similarity among tasks has become another critical challenge,
that is, the challenge of selecting tasks with large inter-class
differences and small intra-class differences for training.
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FIGURE 1. Our framework for 1-shot scene classification.

Aiming at these challenges, the deepEMD network [42],
attention mechanism and reference mechanism are intro-
duced into our proposed scheme for scene classification in
remote sensing. The deepEMD network is adopted to solve
the overfitting of deep neural network models since labeled
samples are extremely scarce. The attention mechanism can
help the proposed model capture salient features. In addition,
the reference mechanism is applied to yield weights of ele-
ments for calculating the earth mover’s distance (EMD). Our
proposed architecture is shown in Fig. 1. First, a carefully
selected backbone is employed to generate the embedding of
the scene image. Second, to generate discriminative image
embedding, a multiple attention module that contains the
global attention and local attention is adopted in the proposed
architecture. Salient features can be properly extracted by the
global attention module from the global perspective, that is,
extracted at the feature map level, to improve the model’s
ability to resist noise, such as messy backgrounds and mor-
phological differences. Local attention pays more attention
to important local subtle features and can promote the perfor-
mance of model representation learning by enhancing local
features and suppressing other local features, which can alle-
viate the problems of small inter-class differences and large
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intra-class differences. With the multiple attention module,
which makes the model pay more attention to informative
features, our proposed model achieves more excellent and
efficient performance. Last, classification is conducted for a
query image embedding by searching for the nearest category
embedding. The EMD is employed to measure the distance
between two images, in which the weight between elements is
calculated by the attention-reference mechanism in the EMD
formulation. The remote sensing scene classification model
can be trained by different scene data to recognize the new
unseen scene image. Our proposed scheme is evaluated on
three public datasets, and the experimental results show that
our proposed multi-attention deepEMD network (MAEMD-
Net) outperforms the existing methods and obtains state-of-
the-art performance in few-shot scene classification.

Our main contributions in this work are described as
follows:

1) A novel framework, called MAEMD-Net, is proposed
to solve few-shot scene classification in remote sens-
ing. MAEMD-Net can construct an embedding space
in which the distance between samples of the same
category is small, and the distance between samples of
different categories is large.

2) Global attention mechanism and local attention mech-
anism are proposed to promote the ability of model
representation learning, and attention-reference mech-
anism is proposed to yield the weights between ele-
ments in the EMD formulation. Ablative analyses of
different mechanisms are proposed to illustrate how
each mechanism facilitates the performance of the pro-
posed model.

3) Experiments on three popular remote sensing scene
datasets, UC Merced [29], OPTIMAL-31 [30],
AID [31], show that our method on few-shot tasks
notably outperforms state-of-the-art methods and
obtains new state-of-the-art results.

The remainder of the paper is structured as follows: The pro-
posed framework and algorithms are introduced in Section II.
Section III shows the experimental results and discussion.
The conclusion is presented in Section I'V.

Il. THE PROPOSED SCHEME

The whole architecture of the proposed MAEMD-Net is elab-
orated. The training process of the proposed model is divided
into two steps, namely, pre-training and meta-training. The
entire model includes three main parts: backbone network,
attention modules, and attention-reference mechanism.

A. PRE-TRAINING

In pre-training, multiple iterations are performed on a task
until convergence. Algorithm 1 summarizes the process of
pre-training, including sampling and updating of parame-
ters w, which is the same as the common training process.
The goal of pre-training is to allow the model to learn a set of
parameters to fit samples. Accordingly, pre-training allows
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Algorithm 1 Model Pre-Training
Input: p(D): distribution over data points, «: step size
hyperparameter
Output: base learner
1: randomly initialize w;
2: repeat
3 sample D ~ p(D);
4 calculate grad = VL(f,,, D);
5
6

update parameters w <— o — o * grad;
. until convergence;

Algorithm 2 Model Meta-Training
Input: p(7): distribution over
hyperparameter

Output: meta learner

1: randomly initialize n;

2: repeat

3: sample batch of tasks T ~ p(T);

4 for each 7; € 7 do;

5: sample {Dsupport» uneiy} ~ p(Ti);

6: calculate embeddings of Dgyppors and D gyery:

tasks, B: step size

Esupporl > Equery 5

7: get weightsuppor, Weightquery using Egyppor,
Eguery by attention-reference mechanism;
8: calculate flow,, = EMD(weightpport,
weight gyery, COSt_matrix);
9: calculate test loss Ly, (flowy,, cost_matrix,
unery)§
10: evaluate grad = V, L, (flow,;, cost_matrix,
unery);
11: update parameters n <— n — 8 * grad;
12: end for;

13: until convergence;

the model to learn a set of general parameters w on a task,
which is convenient for fine-tuning in the meta-training stage.

B. META TRAINING

Compared with pre-training, the purpose of meta-training is
to allow the model to acquire the ability to learn to learn. With
this ability, the model can rapidly adapt to various tasks 7 in a
small quantity of samples and episodes. The proposed scheme
promotes the training data from samples D to tasks t. Each
task 7; includes a support set Dy,pporr and a query set Dyyery,
which is typically referred to as an episode. In addition,
in an episode, N categories (N-way) and K samples (K-shot)
of each category are obtained from the training set as the
support set Dgypporr, and the remaining samples of the N
categories are utilized as the query set Dyyery. As shown in
algorithm 2, meta-learning trains on a mass of tasks, which
contains sampling tasks and updating weights 5, i.e., meta-
level update. Generally, training at the task level enables the
model to have more robust generalization performance, and
can also simulate the effect of the few-shot scenarios.
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C. BACKBONE NETWORK
Given a remote sensing scene image, the model needs to be
able to retrieve scene images with the same category as the
query picture from the existing data set, which is typically
referred to as image retrieval. Specifically, the query image
is paired with the image database, and then the correspond-
ing category of the query image can be obtained. Similarly,
metric-based few-shot learning also requires image similarity
measurement, whose premise is to learn an effective embed-
ding space. In this embedding space, the input image is
mapped into an embedding vector, so that the distance metric
can be used to measure the level of similarity between images.
The CNN has recently achieved remarkable results in var-
ious computer vision challenges, which also confirms the
effectiveness of the CNN. The CNN typically consists of
a series of layers, such as the nonlinear activation function
layer, convolutional layer, fully connected layer and pool-
ing layer. By carefully designing these layers, the CNN can
extract desirable hierarchical features and obtain excellent
results. A CNN typically has a large number of trainable
parameters, so training an excellent CNN usually requires a
large amount of data as support. Compared with traditional
hand-designed feature descriptors, such as SIFT and HOG,
the CNN can not only extract informative features, but also
substantially lower the cost of manually designed feature
descriptors. There have been many well-designed network
models with excellent performance, such as VGG, ResNet,
DenseNet, SENet, InceptionNet and SqueezeNet. ResNet-18
is carefully selected as the backbone for extracting remote
sensing scene image features in this paper. The global average
pooling operation and fully connected layer at the end are
removed, so that embedding feature maps with significant
discrimination can be obtained.

D. MULTIPLE ATTENTION

Multiple attention consists of two components: a global atten-
tion mechanism and a local attention mechanism. From a
global perspective, the discriminative information between
different feature maps of the input features can be mined
by using a global attention mechanism, so that category
features can be extracted efficiently. Compared to the global
attention mechanism, the local attention mechanism pays
more attention to the salient information of the input fea-
tures in different spatial positions, which can promote the
representation learning ability of the model. The schematic
of the multiple attention module is shown in Fig. 2. To fully
utilize the computing resources of the device, multiplication
is performed in parallel for the global attention module and
local attention module element-wise, and then the generated
features are summed element-wise to obtain discriminative
features.

1) GLOBAL ATTENTION MECHANISM

In the process from an input image to feature embedding,
finding a suitable embedding space has a vital role in the
final model performance. A suitable embedding space should
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FIGURE 2. The schematic of multi-attention module.
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FIGURE 3. The schematic of global attention module. Conv denotes the
convolutional layer.

have the characteristics that scene images that belong to the
same category are located near each other in the embedding
space, and scene images of different categories are sepa-
rated from each other in the embedding space. However,
the feature embedding that is obtained in the actual situation
generally exists a large deviation from the expected feature
embedding, when the samples have noise interference, such
as background differences, morphological differences, etc.
This interference will directly affect the embedding represen-
tations of different categories in the embedding space, which
may cause the model to misjudge the input scene. Conse-
quently, a global attention mechanism is proposed to filter out
representative feature maps from feature maps and improve
the model’s feature extraction capability. A schematic of the
global attention module is shown in Fig. 3.

The scene feature X = [x1, ..., x¢] can be extracted by the
backbone, where k represents the quantity of feature maps,
and each feature map is represented by x; € R Assume
that the same type of scene image is represented by H =
[X1, ..., X,], where n refers to the quantity of images that
belong to the same category.

The input feature x is firstly conducted by the convolution
operation, i.e.,

wé = LeakyReLU (f**3(x)) 1)

where the convolution operation using the filter size of 3x3 is
denoted as £3*3(-), which can further promote the level of
features. The amount of convolution kernels is the same as the
initial. The non-saturated activation function, Leaky ReLU,
is adopted to enhance the ability of the model for nonlinear
representation. This operation is performed twice in parallel
to obtain two outputs.

Global max pooling and global average pooling opera-
tions are then performed to capture global information from
two perspectives. Two global feature representations are
obtained, that is, xgyp and xgap, which refers to the global
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maximum pooling feature and the global average pooling
feature, respectively,

wyp = Global_Max_Pooling(w®) )
w4 p = Global_Avg_Pooling(w?) 3)

Subsequently, the two global feature representations are
sent to the shared channel transformer to generate global
attention features. The shared channel transformer is actually
amultilayer perceptron (MLP) including an input layer, a sin-
gle hidden layer and an output layer. Element-wise summa-
tion and nonlinear transformation are performed to integrate
the output attention features. This transformation is described
as follows:

yé = o (MLP(Global_Max_Pooling(w?)) + MLP
(Global_Avg_Pooling(w?)))
= o(Wa(Wi(Wgyp + b1) + b2) + Wa (Wi

(Weap + b1) + b2)) “
where o refers to the sigmoid function, W; and W, represent
the weight parameters of the hidden layer and the output
layer, respectively, in the multilayer perceptron, and their
corresponding bias parameters are b and by, respectively.

The output features with global attention, which can be

utilized to capture the vital image features from the global
perspective, are achieved by element-wise multiplication and
global attention of the input features:

n=XQ)r* )
where X denotes the input feature. Considering the overall
situation, the more important feature maps that have a vital
role in the performance of the final model will be given more
attention. Correspondingly, the feature maps that interfere
with the final classification result will be suppressed. In this
case, the performance of the model will also be improved.

2) LOCAL ATTENTION MECHANISM

Generally, most of the existing excellent neural network
models are data-driven, that is, expected class features can
only be learned with the support of massive amounts of
data. Nonetheless, few-shot learning refers to training models
in the setting of few training samples. These models are
typically restricted and even perform worse than traditional
methods. Therefore, how to make the model still learn out-
standing representation ability in the case of few labeled
samples is a key issue. One of the most common methods is to
introduce the attention mechanism into the model to alleviate
the problems caused by insufficient training samples.

In a local area, some features may contribute more to the
final classification result than the surrounding features. These
discriminative local features are captured by the local atten-
tion mechanism. A schematic of the local attention module is
shown in Fig. 4.

First, the local response normalization operation (LRN) is
performed to strengthen discriminative features from a local
area while suppressing neighboring features. This operation
is a deep learning technique to improve accuracy. Specifi-
cally, the LRN aims to create a competitive mechanism for the
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FIGURE 4. The schematic of local attention module. Conv and LRN denote
the convolutional layer and the operation of local response
normalization, respectively.

activity of local neurons, which makes the value with a larger
response become relatively larger and inhibits other neurons
with smaller feedback to enhance the generalization ability of
the model. The output feature z;,y can be calculated by:

min(k—1,i+m/2)

zi’y = hi’y/<n +a Z

Jj=max(0,i—m/2)

) B
(h@,y)z) (6)

where hfc,y represents the activation value after applying the
i-th filter at position (X, y), the sum operation is to run
over m adjacent filters in the same spatial position, and k
represents the total amount of filters in the layer. The con-
stants 1, o, m, B are hyperparameters whose values can be
adjusted according to the performance of the model on the
validation set.

Second, the max-pooling operation and average-pooling
operation are performed along the channel dimension with
regard to new local response features zi’y, and the output
feature maps are concatenated along the channel dimension.
In addition, a convolutional layer with a size of 7x7 filter is
used to integrate the concatenated feature maps into a local
attention feature map y! € R">*#_ The width and height of
the output feature map are denoted as W and H, respectively,
which are consistent with the width and height of the input
image. To further refine the yielded local attention feature
map, a convolutional layer with a filter size of 3x3 is added,
and the amount of filters remains the same as the previous
layer. Specifically, these operations can be described as:

7/’ = o (W4(W3[Max_Pooling(Z); Avg_Pooling(Z)]
+b3) + ba)
= 0 (Wa(WslZy,s Zhyo] + b3) + ba) @)
where W3, b3, W4 and by are learnable parameters, and o
refers to the sigmoid function. Last, local attention can be

combined with the input features by element-wise multipli-
cation, and then the improved features of local attention can

be obtained ¢:
t=xQv' ®)

where X denotes the input feature.

E. ATTENTION-REFERENCE MECHANISM
In the EMD formulation, the weight between each pixel has a
vital role in the distance calculation. To obtain the accurate
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FIGURE 5. The schematic of attention-reference module.

weights between the pixels of the two images, attention-
reference mechanism is proposed in eq. (9).

weightp = X ® yj ® J//fA ©)]

where X denotes the input feature, y§ represents the global
attention of input feature A, and y?‘ represents the local
attention of input feature A. In addition, to intuitively under-
stand attention reference mechanism, the attention-reference
mechanism is visualized in Fig. 5. The module contains two
sub-modules: global attention module and local attention
module. Input feature B is referenced by using the global and
local attention of input feature A so that the weights can be
obtained. Specifically, firstly, the global attention and local
attention are generated using input feature A. Input feature
B successively performs the dot product on them to obtain
the weights of the input feature B relative to input feature
A. As mentioned above, global and local attention modules
can consider more comprehensive information. Compared
to other weight generation methods, our attention-reference
mechanism can fully take into account the overall situation
and resist the influence of the complex background.

F. DeepEMD NETWORK
The main idea of the deepEMD network intends to adopt the
EMD to measure the level of similarity between the category
features and the query embedding. The EMD is initially
introduced to solve image retrieval problems. When pairwise
distances between all element pairs are given, the optimal
matching flow between the two structures can be obtained
via the EMD that costs the least overhead. In our proposed
method, the embedding of each category and the feature
embedding of the query image is extracted via the back-
bone with the global attention mechanism and local attention
mechanism. The weights of the elements in the EMD formu-
lation are generated by the attention-reference mechanism.
The deepEMD network learns an embedding space, where
classification is achieved by calculating the distance between
the query embedding and the embedding of each category.
In this work, all EMD calculations are implemented via
the OpenCV framework. The EMD formulation is given
in eq. (10).

def EMD(weight1, weight2, cost_matrix) (10)
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where weight 1 represents the weight of input feature B rela-
tive to input feature A, weight2 represents the weight of input
feature A relative to input feature B, and the cost_matrix
represents the cost of transforming from input feature A to
input feature B.

IIl. EXPERIMENT AND ANALYSIS

A. DATASET DESCRIPTION AND EVALUATION METRIC

All experiments are based on three remote sensing benchmark
datasets, i.e., UC Merced (21 categories, 2100 images) [29],
OPTIMAL-31 (31 categories, 1860 images) [30], AID
(30 categories, 10000 images) [31]. Each dataset is randomly
divided into two disjoint subsets according to the scene cate-
gory: one subset as the base class Cp,se for auxiliary training,
and another subset as the novel class Cy,,.; for evaluation.
Details of category segmentation are presented in Table 1. For
each category in Cpgse, the original segmentation method is
followed by these datasets to divide the samples into training
samples and validation samples. In our experiments, the for-
mer is employed to update the parameters, and the latter is
employed to adjust the hyperparameters of the model.

TABLE 1. Class segmentation on three datasets.

category UC Merced OPTIMAL-31 AID
Ct otal 21 31 30
Chase 16 25 24
Cnovel 5 6 6

To simulate the few-shot scenario, in each training episode,
the amount of categories in the support set from the base class
set is equivalent to the number of categories in the support set
from the novel class set, i.e., C} ., = C3,,,;- Specifically, for
5-way 1-shot learning, C¥ is set to 5, and K* is set to 1. In all
settings, the amount of data for each category in the query set
K1 is set to 15 to follow the protocol in [43]. Likewise, in the
testing phase, each episode uses the same approach for the
novel class set.

To accurately evaluate the performance of models,
the average classification accuracy is regarded as the eval-
uation criterion, which is specifically defined as:

1 &S
Acc = — —_— (11)
T ; C‘b“aseKS

where S’ represents the amount of samples that are accurately
classified in the i-th task, and 7T represents the amount of
tasks, that is, the amount of episodes. As one of the most
common performance metrics, it calculates the average of the
multiple evaluation results.

B. EXPERIMENTAL SETTINGS

Experiments in this work are all trained and evaluated on
Pytorch and implemented on the AMD Ryzen 7 3700X
8-Core processor with 3.60GHZ, RAM with 32.00 GB, and
the GPU Tesla P100 with 16 GB of memory. The whole
training process consists of two parts: pre-training and meta-
training. The model uses the traditional method to pre-train
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from scratch and then adopts meta-training to promote the
generalization performance of the model, which is similar to
transfer learning. The Leaky ReL U is carefully selected as the
activation function of the proposed model. The parameters
of all convolutional layers are initialized with the kaiming
normal distribution. Whether it is the pre-training stage or the
meta-training stage, the stochastic gradient descent algorithm
is employed as the optimizer of the proposed model, in which
the weight decay and momentum values are separately set to
0.0005 and 0.9, separately. The initial value of the learning
rate is 0.1. For a fair comparison, the proposed model and
other benchmark models are trained on the same training set
and evaluated on the same test set. In addition, all experimen-
tal results are the average values obtained in 600 episodes by
following the protocol in [43].

C. COMPARISON WITH BACKBONES

In most cases, the classification accuracy is often utilized to
measure the performance of neural network models. When
practical problems need to be solved, the time complexity and
space complexity of the model need to be taken seriously,
which will determine the cost of solving this problem. For
this reason, floating-point operations (FLOPs) and param-
eters (params) are typically applied to quantify these two
kinds of complexity. For instance, for the DenseNet series of
networks, as the width and depth of the network continue to
increase, the classification accuracy will also increase, but it
is worth noting that the hardware overhead and time overhead
that are required for training will also increase. Too many
parameters tend to increase the difficulty encountered by the
model in obtaining the best embedding representation of the
input image, and it is difficult to achieve the expected effect.

TABLE 2. Performance analysis of different backbones in the same
setting.

Method Top-1 Accuracy  FLOPs Params
VGG-16 88.68% 1.56 x 101°  138.36M
DenseNet-121 89.62% 2.87 x 109 7.98M
DenseNet-169 91.98% 3.39 x 109 14.15M
SENet 95.52% 2.08 x 1010 115.00M
ResNet-18 95.28% 1.82 x 109 11.70M
ResNet-34 96.46% 3.67 x 10° 21.80M
ResNet-50 98.11% 4.11 x 10° 25.56M
ResNeXt-50 97.88% 4.26 x 10° 25.03M
SqueezeNet-1.1 ~ 91.75% 3.52 x 108 1.24M
Inception-V4 82.78% 4.92 x 1010 42.68M

When the classification performance of models is rela-
tively close, smaller time complexity and space complexity
are typically preferred. Deep neural network models with
different architectures are compared using the UC Merced
dataset. The classification accuracy rate on the test set is
tabulated in Table 2. By comparative analysis, ResNet-18 is
empirically applied as the backbone of our proposed model.
Although ResNet-18 does not have the highest in classifica-
tion accuracy, it has the best overall performance considering
the time complexity and space complexity.
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TABLE 3. Few-shot classification results of the proposed model using
various attention mechanisms on the UC Merced dataset. All accuracy
results are average values obtained in 600 episodes.

5-way

Model I-shot  5-shot  10-shot

Without global and local attention mechanism 60.60% 79.40% 84.00%
Only with global attention mechanism 59.51% 78.00% 86.80%
Only with local attention mechanism 56.07% 77.36% 86.60%
With global and local attention mechanism 61.16% 80.39% 88.84%

D. COMPARISON WITH MULTIPLE ATTENTION
The effect of the proposed multiple attention mechanism on
model performance is studied.

o The proposed model without multiple attention: Global
attention and local attention are all excluded from the
proposed model.

o The proposed model with global attention: Global atten-
tion is included in the proposed model, while local
attention is not included.

o The proposed model with local attention: Local attention
is included in the proposed model, while global attention
is not included.

o The proposed model with multiple attention: both global
attention and local attention are designed to the proposed
model.

Multiple attention is composed of two parts: global atten-
tion and local attention. Table 3 tabulates the experimen-
tal results with different attention mechanisms on the UC
Merced dataset. For the model that is only combined with the
global attention mechanism or the local attention mechanism,
it can slightly pose a performance drop, while a combination
of both the global attention mechanism and the local attention
mechanism can achieve a noteworthy performance promotion
of 4.84% over the baseline in the 5-way 10-shot setting.
The reason may be that a single attention is too focused
on one perspective while disregarding another perspective.
The combination of the global attention mechanism and local
attention mechanism (i.e., multiple attention) simultaneously
achieves the best results by adopting two attention mecha-
nisms. This confirms that there is an interaction between the
two attention mechanisms and both are indispensable, since
removing either mechanism causes performance degradation.
Moreover, Table 3 shows that the global attention mechanism
has a more vital part because of the greater degradation
compared with the local attention mechanism.

To more intuitively analyze the role of multiple atten-
tion, the features extracted by the backbone without multiple
attention and with multiple attention are visualized through
t-SNE, as shown in Fig. 6 and Fig. 7. It is observed that
multiple attention can make samples of the same category in
the embedding space more clustered and samples of different
categories are scattered from each other, which enables the
classifier to achieve better performance when measuring the
similarity between samples. Accordingly, this also verifies
the superior performance of multiple attention.
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FIGURE 6. Embedding spaces formed without multiple attention in the
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FIGURE 7. Embedding spaces formed by multiple attention in the 6-way
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FIGURE 8. 5-way 1-shot accuracy with different distance metrics on the
same test dataset.

E. COMPARISON WITH VARIOUS DISTANCE FUNCTIONS

To analyze the effect of the cost matrix in the EMD
formulation among all element pairs calculated by using
different distance metrics on the model performance, five
different distance metrics are compared with the UC Merced
dataset: Chebychev, Manhattan, Cosine, Dot and Euclidean.
The experimental results with different distance metrics are
shown in Fig. 8. For a fair comparison, all experiments are
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FIGURE 9. Experiment of 5-way 1-shot classification with different
reference mechanisms using the UC Merced dataset in the pre-training
stage.

conducted on the same test dataset. When the model reaches
convergence, the performance of the model with the cosine
distance is prominently more superior than that of the other
models on the test set, which exceeds the closest result by
nearly 8%. This may be explained by the difference in the
sparsity of the embedding space due to the lack of training
samples.

F. COMPARISON WITH REFERENCE MECHANISM

Our proposed attention-reference mechanism is compared
with the cross-reference mechanism. Fig. 9 shows the exper-
imental results. When the multiple attention module remains
the same, the proposed MAEMD-Net with the attention-
reference mechanism significantly outperforms the previous
DeepEMD with the cross-reference mechanism by approxi-
mately 2% in the 5-way 1-shot solution of the pre-training
stage using the UC Merced validation set. This shows that the
attention-reference mechanism can provide more comprehen-
sive and accurate reference coordinates, while resisting the
interference of the complex background.

G. COMPARISON WITH MODELS
To further confirm the effectiveness of the proposed scheme,
five state-of-the-art models are compared as follows:

1) PROTOTYPICAL NETWORK

The prototypical network [43] attempts to find an embedding
space in which the distance between samples that belong to
the same category is small, while the distance between sam-
ples that belong to different categories is large. The Euclidean
Distance is selected to measure the distance between samples
in this embedding space, and the idea of the nearest neighbor
is applied to classify the test set.

2) MAML

Model-Agnostic Meta-Learning (MAML) [36] aims to find
a universal initialization, with which the model can converge
to the optimum in a small number of iterations.
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TABLE 4. Few-shot scene classification results of different models on different datasets in the 5-way scenario. All accuracy results are average values
obtained in 600 episodes.

UC Merced OPTIMAL-31 AID
Model 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot
Prototypical Network 50.45% 79.82% 84.40% 54.53% 73.91% 87.54% 61.49% 81.97% 85.38%
MAML 51.90% 70.80% 82.45% 64.20% 81.84% 88.30% 67.00% 75.48% 79.02%
Relation Network 57.70% 65.79% 70.83% 66.42% 80.33% 81.24% 65.99% 77.04% 78.90%
RS-MetaNet 57.23% 76.08% 81.23% - 56.32% 74.48% 80.57%

DeepEMD 52.28% 77.82% 85.05% 74.39% 89.50% 92.20% 70.80% 83.22% 87.80%
MAEMD-Net(ours) 61.16% 80.39% 88.84% 76.70% 90.18% 93.93% 74.52% 88.91% 91.89%

TABLE 5. Few-shot scene classification results for different models according to different shot and different way on the UC Merced dataset. All accuracy
results are average values obtained in 600 episodes.

3-way Acc. 4-way Acc. 5-way Acc.
Model 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot
Prototypical Network 70.38% 88.58% 91.18% 68.31% 83.92% 87.02% 50.45% 79.82% 84.40%
MAML 73.33% 86.20% 90.47% 60.00% 84.10% 86.85% 51.90% 70.80% 82.45%
Relation Network 76.62% 85.45% 86.51% 61.04% 77.47% 79.96% 57.70% 65.79% 70.83%
DeepEMD 71.33% 85.38% 90.26% 62.53% 81.57% 87.50% 52.28% 77.82% 85.05%

MAEMD-Net(ours) 77.27% 90.48 % 91.85% 74.18% 86.25% 89.44% 61.16% 80.39% 88.84%
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FIGURE 10. Original scene images and the attention maps derived from GradCAM++.

3) RN learn a general metric space from a series of tasks to achieve

Relation Network (RN) [44] is made of two modules, namely classification in the metric space.
relation module and embedding module. The embedding
module is responsible for learning the embedding represen-
tation of samples, while the relation module attempts to
learn the method of measuring the embedding representation.
Compared with non-parametric distance measures, such as
the Euclidean Distance, this method obtains more intrinsic
information between samples.

5) DeepEMD NETWORK
DeepEMD [42] uses the EMD as a measurement of the simi-
larity between two images, and cross-reference mechanism is
designed to yield the weights needed to calculate the EMD.
The comparative analysis between our proposed method
and the previously mentioned state-of-the-art methods is
presented in Table 4. It can be observed that the proposed
4) RS-MetaNet method outperforms other methods by an immense margin as
RS-MetaNet [45] uses a meta-training method to upgrade the well as obtaining new state-of-the-art performance on three
level of learning from samples to tasks, and then learns to datasets. Although the proposed method slightly outperforms
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the prototypical network on the UC Merced dataset of the
5-way 5-shot scenario, it exceeds the prototypical network
by more than 4% in other scenarios. Moreover, compared
to other models, our proposed model also shows substan-
tial improvement, e.g., 1-shot (3.46%) on the UC Merced
dataset; 1-shot (2.31%) on the OPTIMAL-31 dataset. The
significant performance improvement is mainly due to our
proposed multiple attention module and attention-reference
mechanism. The global attention module and local attention
module help the model capture informative features from
different perspectives, and the attention-reference mechanism
can provide more accurate weights for the calculation of the
EMD.

In addition, to further analyze the efficiency of our pro-
posed method, the proposed method is also compared with
state-of-the-art methods on the UC Merced dataset. In differ-
ent few-shot scenarios, the number of classes is separately set
to 3, 4 and 5, and the sample size of each class is separately
set to 1, 5 and 10. As shown in Table 5, the results of the
proposed model outperform all other state-of-the-art models
in different few-shot scenarios. The efficiency of the proposed
model is once again confirmed.

H. VISUALIZATION OF MULTIPLE ATTENTION

To deeply understand the performance effects of multiple
attention module on the proposed model, some visualiza-
tion examples are provided, as shown in Fig. 10, which
are achieved by the Grad-CAM++ [46]. (a) Original scene
images. (b) Grad-CAM++ visualization results without
multiple attention module. (¢) Grad-CAM++ visualization
results with multiple attention module. The lighter areas in
the feature map represent the greater significance of the
corresponding areas for classification. Six scenes are chosen:
an airplane, a harbor, an overpass, a parking lot, a river
and a storage tank. Fig. 10 shows that the backbone with
the multiple attention module better extracts discriminative
information for these scenes. The primary objects in each
scene are precisely captured, which substantially contributes
scene classification and embodies the effect of the multiple
attention module and the powerful representation learning
capability of the MAEMD-Net.

IV. CONCLUSION

Few-shot learning has a growingly vital role in the lack of
available training samples. A MAEMD-Net that is combined
with the attention-reference mechanism is presented to solve
the few-shot scene classification task in remote sensing.
The features of scene objects can be extracted by carefully
selected backone. To improve the performance of represen-
tation learning of the model with few samples, the global
attention mechanism and local attention mechanism are inte-
grated into a module in the backbone, which can not only
guides the neural network to extract discriminative features
from multiple perspectives but also improves the efficiency of
the model. The attention-reference mechanism that combines
global attention and local attention makes the EMD more
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suitable for similarity measurement. The evaluation results
on three benchmark remote sensing scene datasets also sig-
nificantly illustrate the effectiveness of our proposed scheme
and surpasses state-of-the-art methods by a remarkable mar-
gin. However, our proposed scheme has some limitations.
In future work, the multiple attention module will be further
improved to promote the ability of representation learning of
the model, and the impact of deeper and wider backbones on
the performance of the model will be studied.
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