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ABSTRACT We propose a new flexible class called the Marshall-Olkin odd Burr III family for generating
continuous distributions and derive some of its statistical properties. We provide three special models which
accommodate symmetrical, right-skewed and left-skewed shaped densities as well as bathtub, decreasing,
increasing, reversed-J shaped and upside-down bathtub failure rate functions. The parameters are estimated
by maximum likelihood, least squares and a percentile method. Some simulations investigate the accuracy
of the three methods. We illustrate the utility of a special model through three applications to engineering
field.

INDEX TERMS Burr III distribution, engineering data, exponential distribution, parameter estimation,
maximum likelihood, stochastic ordering.

I. INTRODUCTION
There has be an increasing motivation for constructing new
generated families of continuous distributions by adding
shape parameters to a baseline distribution due to desirable
properties of the generated models. Some well-known gener-
ated families were introduced recently such as the Marshall-
Olkin-G (Marshall and Olkin, 1997), exponentiated-G
(Gupta et al., 1998), Kumaraswamy-G (Cordeiro and
de Castro, 2011), Lomax-G (Cordeiro et al., 2014),
Kumaraswamy Marshall-Olkin-G (Alizadeh et al., 2015),
odd Burr generalized-G (Alizadeh et al., 2016), general-
ized odd log-logistic-G (Cordeiro et al., 2017), generalized
tan family (Al-Mofleh, 2018), generalized odd Lindley-G
(Afify et al., 2019), odd Lomax-G (Cordeiro et al., 2019) and
odd Dagum-G (Afify and Alizadeh, 2020) among others.

Jamal et al. (2017) proposed the odd Burr-III-G (OBIII-G
for short) class, based on the Burr III distribution, by intro-
ducing two extra parameters to a baseline G distribution
to obtain a more flexible class. Let G(x; δ) be the parent
cumulative distribution function (cdf) with parameter vector
δ, and Ḡ(x; δ) = 1 − G(x; δ). The OBIII-G family cdf
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follows by integrating the Burr III density with positive shape
parameters b and c, namely

WOBIII(x; δ) = b c
∫ G(x;δ)

Ḡ(x;δ)

0
w−c−1 (1+ w−c)−b−1dw

=

{
1+

[
G(x; δ)

1− G(x; δ)

]−c}−b
, x > 0. (1)

By differentiating (1), we obtain its probability density
function (pdf)

wOBIII(x; δ)

=
c b g(x; δ) ¯G; δ

c+1
(x; δ)

Gc−1(x; δ)

{
1+

[
G(x; δ)

1− G(x; δ)

]−c}−b−1
.

(2)

Marshall and Olkin (1997) proposed a general method
to construct new models by adding a shape parameter to a
specified distribution. LetW (x; δ) and w(x; δ) be the cdf and
pdf of a specified distribution G. The cdf and pdf of the
Marshall-Olkin-G (MO-G) class have the forms

FMO(x;α, δ) =
W (x; δ)

φ + (1− φ)W (x; δ)
, φ > 0, (3)
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and

fMO(x) =
φ w(x; δ)

[φ + (1− φ)W (x; δ)]2
, (4)

respectively. Clearly, FMO(x;φ, δ) reduces to W (x; δ) when
φ = 1. For different values of φ, FMO(x) can have more
flexibility thanW (x; δ).

We propose and study a new generator called theMarshall-
Olkin odd Burr III-G (MOOB-G) family by taking (1) as the
baseline cdf in Equation (3). Thus, the cdf of the MOOB-G
family has the form

FMOOB(x;φ, c, b, δ)

=

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b
1−(1−φ)

(
1−

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b) , x > 0, (5)

where φ > 0, b > 0 and c > 0 are the shape parameters and
δ is the baseline parameter vector.

The cdf (5) can be explained by combining the Burr III
distribution to generate W (x) with the distribution of an
unknown geometric number N of independent risk factors
or components generated by the baseline odds ratio. Let T
be a random variable (rv) having cdf G(t; δ) describing a
stochastic system and Z be a rv representing the odds ratio.
The risk that a system having the lifetime T will be not
working at time z is G(z; δ)/Ḡ(z; δ). If the randomness of the
odds ratio Z is modeled by the Burr III distribution given by
Equation (1), the cdf of Z can be written as Pr(Z ≤ z) =
H (z; b, c, δ). Further, consider a sequence of independent and
identically distributed (iid) odds ratio rvs Z1,Z2, · · · with
associated risks H (z; b, c, δ). We define the minimum odds
ratio X = min{Z1, . . . ,ZN }, where N is an unknown number
described by a discrete geometric random variable (with sup-
port in {1, 2, . . .} and probability parameter φ) independent of
the Zi’s. The probability generating function (pgf) of N takes
the form E(sN ) = τ (s;φ) = φ s [1− (1− φ)s]−1. Under this
set-up and 0 < φ < 1, the cdf of X is given by (5). For the
case φ > 1, the cdf of X is equal to (5) if N has a geometric
rv with probability 1/φ.

Furthermore, the sub-models of the MOOB-G family
can provide symmetrical, left-skewed, symmetrical, right-
skewed, and reversed-J densities, and upside-down bathtub,
increasing, decreasing, bathtub, and reversed-J shaped hazard
rates. These sub-models are also capable of modeling differ-
ent shapes of aging and failure criteria. Hence, the MOOB-G
family can be a useful alternative to many classes for model-
ing skewed data in real-life applications.

The pdf corresponding to (5) has the form

fMOOB(x;φ, c, b, δ)

=

φ c b g(x; δ) Ḡc−1(x; δ)
{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b−1
Gc+1(x; δ)

[
1−(1−φ)

(
1−

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b)]2 .
(6)

For c = b = 1, we obtain as a special case the MO-G
family (Marshall and Olkin, 1997). The MOOB-G family is
identical to the OBIII-G class (Jamal et al., 2017) when φ = 1
and it reduces to the baseline G distribution when φ = c =
b = 1. The MOOB-G family can be quite effective for real
data analysis.

Henceforth, let X ∼MOOB-G(φ, b, c, δ) be a rv with
density (6). The hazard rate function (hrf) of X is (7), as
shown at the bottom of the next page.

The quantile function (qf) of X (for 0 < u < 1) follows by
inverting (5) as

QMOOB(u)=F
−1
MOOB(u)=G

−1


[(

uφ
1−φ̄ u

)− 1
b
−1
]− 1

c

1+
[(

uφ
1−φ̄ u

)− 1
b
−1
]− 1

c

 .
(8)

We organize the article as follows. In Section 2, we define
three special models in the new family. In Section 3, we obtain
a useful linear representation for the family density. Some
of its mathematical properties are reported in Section 4.
In Section 5, we discuss the estimation of the unknown
parameters using three methods (maximum likelihood, least
squares and percentile estimation). In Section 6, some simu-
lation results validate the proposed methods. The usefulness
of the new family is illustrated in Section 7 using three appli-
cations. Finally, some conclusions are addressed in Section 8.

II. THREE SPECIAL DISTRIBUTIONS
In this section, we present three special distributions of the
MOOB-G family by choosing some baseline distributions
commonly used in lifetime data analysis along with their
density and hazard rate plots.

A. MOOB-EXPONENTIAL (MOOB-EX)
Consider the exponential (Ex) distribution with parameter
a > 0 and cdf G(x) = 1 − exp (−a x), x > 0. Then,
the MOOB-Ex density follows from (6) as f(x), shown at the
bottom of the next page.

The MOOB-Ex distribution includes the OBIII-Ex distri-
bution (Jamal et al., 2017) when φ = 1. For φ = b =
c = 1, we obtain the Ex distribution. The MO-Ex distribution
(Marshall and Olkin, 1997) follows when b = c = 1. Some
plots of the density and hrf of the MOOB-Ex distribution are
shown in Figure 1. They show that the MOOB-Ex density
can be reversed J-shape, right-skewed, left-skewed and con-
cave down, whereas the hrf can be decreasing, increasing or
bathtub.

B. MOOB-LOMAX (MOOB-LX)
The cdf of the Lomax (Lx) distribution is G(x) = 1 −
(1+ x/d)−a, where a > 0 and d > 0. Then, the
MOOB-Lx density can be expressed from (6) as shown at the
bottom of the next page.

Three special cases of the MOOB-Lx distribution
are: the MO-Lx distribution (Ghitany et al., 2007)
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FIGURE 1. Density and hrf plots of the MOOB-Ex distribution.

when b = c = 1; the OBIII-Lx distribution
(Jamal et al., 2017) when φ = 1; the Lx distribution when
φ = b = c = 1. Some plots of the density and hrf of this
distribution are given in Figure 2. They show that the pdf can
be unimodal, reversed J-shape and right-skewed, and the hrf
can be increasing, decreasing, bathtub or unimodal.

FIGURE 2. Density and hrf plots of the MOOB-Lx distribution.

C. MOOB-LINDLEY (MOOB-LI)
Consider the cdfG(x) = 1− 1+a+a x

1+a exp(−a x), a > 0, of the
Lindley (Li) distribution. Then, the pdf of the MOOB-Li
density follows from (6) as f(x), shown at the bottom of the
next page.

Three special cases of the MOOB-Li distribution are: the
MO-Li distribution (Ghitany et al., 2012) when b = c = 1;
the OBIII-Li distribution (Jamal et al., 2017) when φ = 1;
the Li distribution when φ = b = c = 1. Some plots of

FIGURE 3. Density and hrf plots of the MOOB-Li distribution.

the density and hrf of this distribution are given in Figure 3
for some scenarios. They show that the density can be uni-
modal, bimodal and reversed J-shape, and that the hrf can be
decreasing, increasing, or bathtub.

III. LINEAR REPRESENTATION
Following Cordeiro et al. (2014), we obtain a linear represen-
tation for the MO-G density

fMO(x) =



∞∑
j=0

pj hj+1 (x) if φ ∈ (0, 1) ,

∞∑
j=0

qj hj+1 (x) if φ > 1,

where (for j = 0, 1, 2, . . .)
pj =

φ (−1)j

j+ 1

∞∑
l=j

(
l
j

)
(l + 1) φ

l
if φ ∈ (0, 1) ,

qj = φ−1
(
1− φ−1

)j
if φ > 1,

and

hj+1 (x)

= (j+1) c b
g(x; δ)G1−c(x; δ)

[1−G(x; δ)]−c−1

{
1+

[
G(x; δ)

1−G(x; δ)

]−c}−(j+1)b−1
.

(9)

hMOOB(x;φ, c, b, δ) =
φcbg(x; δ)Ḡc−1(x; δ)G−c−1(x; δ)

{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b−1
(
1−

{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b)[
1− (1− φ)

(
1−

{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b)] . (7)

f (x) =
φcb a exp (−ac x)

[
1− exp (−a x)

]−c−1 {1+ [ 1−exp(−a x)exp(−a x)

]−c}−b−1
[
1− (1− φ)

(
1−

{
1+

[
1−exp(−a x)
exp(−a x)

]−c}−b)]2 .

f (x) =
φ c b a

d

(
1+ x

d

)−a−1 [(1+ x
d

)−a]c−1 {1+ [(1+ x
b

)a
− 1

]−c}−b−1
[
1−

(
1+ x

d

)−a]c+1 [1− (1− φ)
(
1−

{
1+

[(
1+ x

b

)a
− 1

]−c}−b)]2 .
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Consider the power series (which converges everywhere)

(1+ z)−d =
∞∑
i=0

(
−d
i

)
zi. (10)

Applying (10) to (9) leads to

hj+1 (x)

= (j+ 1) c b g(x; δ)

×

∞∑
i=0

(
− (j+1) b−1

i

)
G1−(i+1)c(x; δ) [1−G(x; δ)](i+1)c+1.

By expanding the binomial term in power series, we can
write

hj+1 (x) = g(x; δ)
∞∑

i,r=0

A(j+1)i,r Gr+1−(i+1)c(x; δ), (11)

where (for i, r ≥ 0)

A(j+1)i,r = (j+ 1) c b (−1)r
(
− (j+1) b−1

i

)(
(i+ 1)c+ 1

r

)
.

For any real a, the following power series (converges
everywhere) holds

G(x; δ)a =
∞∑
m=0

sm(a)G(x; δ)m, (12)

where

sm(a) =
∞∑
n=m

(−1)n+m
(
a
n

)(
n
m

)
.

Applying (12) to equation (11) and changing the order of
the sums, we can write

hj+1 (x) =
∞∑
m=0

B(j+1)m πm+1 (x) ,

where πm+1 (x) = (m + 1) g(x; δ)G(x; δ)m is the
exponentiated-G (exp-G) density with power parameterm+1
(for m ≥ 0) and

B(j+1)m = (m+ 1)−1
∞∑

i,r=0

A(j+1)i,r sm(r + 1− (i+ 1)c).

Hence, the density of X is rewritten as

fMOOB(x) =



∞∑
m=0

vm πm+1 (x) if φ ∈ (0, 1) ,

∞∑
m=0

wm πm+1 (x) if φ > 1,

(13)

where

vm =
∞∑
m=0

pj B(j+1)m

and

wm =
∞∑
m=0

qj B(j+1)m .

Equation (13) proves that the density of X is a linear
combination of exp-G densities and then some MOOB-G
properties (see Section 4.2) can follow from those of the
exp-G distribution. We can adopt at most ten terms for each
sum in (13) to provide accurate results in most analytical
platforms.

IV. THE MOOB-G PROPERTIES
A. SHAPES AND ASYMPTOTICS
We can determine, numerically, the critical points of the
density and hazard rate functions of X . For the density, they
are the roots of the equation:

g′(x; δ)
g(x; δ)

− (c− 1)
g(x; δ)

1− G(x; δ)
− (c+ 1)

g(x; δ)
G(x; δ)

− (b+ 1)
c g(x; δ) Ḡc−1(x; δ)

Gc+1(x)
{
1+

[
G(x;δ)

1−G(x;δ)

]−c}

+

2 c b φ̄ g(x; δ) Ḡc−1(x; δ)
{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b−1
[
1− (1− φ)

(
1−

{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b)] +

For the hazard rate, they follow from the equation

g′(x; δ)
g(x; δ)

− (c− 1)
g(x; δ)

1− G(x; δ)
− (c+ 1)

g(x; δ)
G(x; δ)

− (b+ 1)
c g(x; δ) Ḡc−1(x; δ)

Gc+1(x; δ)
{
1+

[
G(x;δ)

1−G(x;δ)

]−c}

×

bc2 g(x; δ) Ḡc−1(x; δ)
{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b−1
Gc+1(x; δ)

(
1−

{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b)

f (x) =

φcb a2
a+1 (1+ x) exp (−a x)

[
1+a+a x
1+a exp (−a x)

]c−1 {
1+

[
1− 1+a+a x

1+a exp(−a x)
1+a+a x
1+a exp(−a x)

]−c}−b−1
[
1− 1+a+a x

1+a exp (−a x)
]c+11− (1− φ)

1−

{
1+

[
1− 1+a+a x

1+a exp(−a x)
1+a+a x
1+a exp(−a x)

]−c}−b2 .
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+

φ bc2 g(x; δ) Ḡc−1(x; δ)
{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b−1
Gc+1(x; δ)

[
1−(1−φ)

(
1−

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b)] .
We can examine the critical points of the pdf and hrf

of X from the last two equations by using many easy-to-use
programming environments including Matlab, Mathematica,
Maple and Ox.

The tail behaviors of the cdf, pdf and hrf of X are
(whenG(x; δ)→ 0)

F(x) ∼
(
1
φ

)
G(x; δ)bc,

f (x) ∼
(
1
φ

)
b c g(x; δ)[G(x; δ)]b c−1,

h(x) ∼
(
1
φ

)
b c g(x; δ)[G(x; δ)]b c−1.

If x →∞,

F(x) ∼ 1− φ b [1− G(x; δ)]c ,

f (x) ∼ φ b c g(x; δ) [1− G(x; δ)]c−1 ,

h(x) ∼
c g(x; δ)

1− G(x; δ)
.

B. MOMENTS
Let Ym+1 be the exp-G rv with power parameter m + 1. The
r th moment of X follows from (13) as

µ′r = E
(
X r
)


∞∑
m=0

vm E
(
Y rm+1

)
if φ ∈ (0, 1) ,

∞∑
m=0

wm E
(
Y rm+1

)
if φ > 1.

Similarly, the r th incomplete moment of X can be expressed
as

ϕr (t) =



∞∑
m=0

vm

∫ t

−∞

xr πm+1 (x) if φ ∈ (0, 1) ,

∞∑
m=0

wm

∫ t

−∞

xr πm+1 (x) if φ > 1.

The integral in the last two equations represents the
r th incomplete moment of Ym+1.

The moment generating function (mgf) of X comes
from (13) as

MX (t) =



∞∑
m=0

vm Mm+1 (t) if φ ∈ (0, 1) ,

∞∑
m=0

wm Mm+1 (t) if φ > 1,

where Mm+1(t) is the mgf of Ym+1 (for m ≥ 0). Then,MX (t)
can be obtained from the exp-G generating function.

We provide some numerical values of the first four
moments denoted by µ′r (r = 1, 2, 3, 4), variance σ 2, skew-
ness (Sk), and kurtosis (Kur) of the MOOB-Ex distribution
for different parameter values. Table 1 lists these numerical
values.

TABLE 1. The Numerical Values of the First Four Moments, σ2, Sk , and
Kur of the MOOB-Ex Distribution for Some Parametric Values.

C. STOCHASTIC ORDERING
The stress strength model has been widely used in
applications of engineering and physics. Consider two inde-
pendent rvs X1 ∼MOOB-G(φ1, c, b, δ) and X2 ∼MOOB-
G(φ2, c, b, δ). The stress strength model can be expressed as

f (x)=
φ1 c b g(x; δ) Ḡc−1(x; δ)

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b−1
Gc+1(x; δ)

[
1−(1−φ1)

(
1−

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b)]2

and

g(x)=
φ2 c b g(x; δ) Ḡc−1(x; δ)

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b−1
Gc+1(x; δ)

[
1−(1−φ2)

(
1−

{
1+

[
G(x;δ)
1−G(x;δ)

]−c}−b)]2.

Then, the ratio f (x)
g(x) takes the form

f (x)
g(x)
=
φ1

φ2

(
1− φ̄1 z

1− φ̄2 z

)2

,

where z = 1−
{
1+

[
G(x;δ)

1−G(x;δ)

]−c}−b
.

By differentiating the last equation in relation to x, we have

d
d x

f (x)
g(x)
=
φ1

φ2
2
(
1− φ̄1 z

1− φ̄2 z

)
(φ̄1 − φ̄2) z′

(1− φ̄2 z)2
.

After some algebra, we obtain

d
d x

f (x)
g(x)
= 2

φ1

φ2
(φ̄1 − φ̄2) z

[
1− φ̄1 z′(
1− φ̄2 z

)3
]
,

where d z
d x = z′. Finally, if φ2 < φ1 then d

d x
f (x)
g(x) < 0 and the

likelihood ratio exists X <lr Y .
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V. ESTIMATION METHODS
Let x1, . . . , xn be the observations from the MOOB-G family
with vector of parameters θ = (φ, c, b, δT )T . This section
is devoted to address the maximum likelihood, least squares
method and a percentile method to estimate θ from com-
plete samples only. The performances of the three meth-
ods are investigated through Monte Carlo simulations using
Mathematica software.

A. MAXIMUM LIKELIHOOD
By maximizing the total log-likelihood function

`(θ ) = n log(φ c b)+
n∑
i=1

log g(xi; δ)

+ (c− 1)
n∑
i=1

log Ḡ(xi; δ)

− (c+ 1)
n∑
i=1

logG(xi; δ)

− (b+ 1)
n∑
i=1

log (zi)

− 2
n∑
i=1

log
[
1− (1− φ)(1− z−bi )

]
, (14)

where zi = 1 +
[
G(xi;δ)
Ḡ(xi;δ)

]−c
, we can find the maximum

likelihood estimates (MLEs) of the parameters in θ .
Equation (14) can be maximized either directly under

statistical computing environment such as Ox (sub-routine
MaxBFGS), SAS (PROC NLMIXED), R, Maple or Mathe-
matica or by solving the nonlinear likelihood equations by
differentiating (14). The distributions in the MOOB-G family
can also be fitted to real data using the AdequacyModel pack-
age (see https://www.r-project.org/). We can
compute the MLEs, their standard errors and goodness-of-fit
statistics from this package by defining only the pdf and cdf
of the distribution under study.

The score functions for the model parameters are

Uφ =
n
φ
− 2

n∑
i=1

 1− z−bi

1− (1− φ)
(
1− z−bi

)
 ,

Uc =
n
c
+

n∑
i=1

log Ḡ(xi; δ)−
n∑
i=1

logG(xi; δ)

+ (b+ 1)
n∑
i=1

log
[
G(xi;δ)
Ḡ(xi;δ)

]
zi
[
G(xi;δ)
Ḡ(xi;δ)

]c
+ 2b(1− φ)

n∑
i=1

[
G(xi;δ)
Ḡ(xi;δ)

]−c
log

[
G(xi;δ)
Ḡ(xi;δ)

]
zb+1i

[
1− (1− φ)

(
1− z−bi

)] ,
Ub=

n
b
−

n∑
i=1

log (zi)+2(1−φ)
n∑
i=1

z−bi log (zi)

1−(1−φ)
(
1−z−bi

)

and Uδ , as shown at the bottom of the next page, where the
vectors

g′(xi; δ) =
∂g(xi; δ)
∂δ

, G′(xi; δ) =
∂G(xi; δ)
∂δ

,

Ḡ′(xi; δ) =
∂Ḡ(xi; δ)
∂δ

have the same dimension of δ. These equations can be solved
numerically from the statistical software above.

B. LEAST SQUARES
Suppose that x1:n, . . . , xn:n are the ordered observations from
F(x;φ, c , b, δ) given by (5). Note that E[F(Xi:n] = i

n+1 .
Hence, The least square estimates (LSEs) can be deter-

mined by minimizing the function

S(θ ) =
n∑
i=1

[
F(xi:n;φ, c , b, δ)−

i
n+ 1

]2
,

with respect to the model parameters. The LSEs of φ, c , b
and δ can be found by solving the nonlinear equations

∂S(θ )
∂ φ

= 2
n∑
i=1

[
F(xi:n;φ, c , b, δ)−

i
n+ 1

]
F ′(xi:n;φ, c , b, δ)φ = 0,

∂S(θ )
∂ c
= 2

n∑
i=1

[
F(xi:n;φ, c , b, δ)−

i
n+ 1

]
F ′(xi:n;φ, c , b, δ)c = 0,

∂S(θ )
∂ b

= 2
n∑
i=1

[
F(xi:n;φ, c , b, δ)−

i
n+ 1

]
F ′(xi:n;φ, c , b, δ)b = 0,

∂S(θ )
∂ δ

= 2
n∑
i=1

[
F(xi:n;φ, c , b, δ)−

i
n+ 1

]
F ′(xi:n;φ, c , b, δ)δ = 0,

where F ′(xi:n; θ )η =
∂F(xi:n;θ )

∂η
for any component η of θ =

(φ, c , b, δT )T . We can solve these equations numerically to
obtain the estimates φ̂LSE , ĉLSE , bLSE and δ̂LSE .

C. PERCENTILE ESTIMATION
Let pi = i/(n + 1) be an estimate of F(xi:n;φ, c , b, δ) for
i = 1, . . . , n. Let Qpi (φ, c , b, δ) be the qf obtained from (8)
by setting u = pi = i/(n+ 1).
Then, the percentile estimates (PCEs) of the unknown

parameters φ, c , b and δ can be derived by minimizing

M (θ ) =
n∑
i=1

[
xi:n − Qpi (φ, c , b, δ)

]2
,

with respect to the model parameters or by solving the non-
linear equations

∂M (θ )
∂ φ

= 2
n∑
i=1

[
xi:n − Qpi (φ, c , b, δ)

]
Q′pi (φ, c , b, δ)φ=0,
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∂M (θ )
∂ c

= 2
n∑
i=1

[
xi:n − Qpi (φ, c , b, δ)

]
Q′pi (φ, c , b, δ)c=0,

∂M (θ )
∂ b

= 2
n∑
i=1

[
xi:n − Qpi (φ, c , b, δ)

]
Q′pi (φ, c , b, δ)b=0,

∂M (θ )
∂ δ

= 2
n∑
i=1

[
xi:n − Qpi (φ, c , b, δ)

]
Q′pi (φ, c , b, δ)δ=0,

TABLE 3. MSEs and AEs for the MOOB-Ex Distribution.

where Q′pi (θ )η =
∂Qpi (θ )
∂η

, and η denotes any component
of θ = (φ, c , b, δT )T . The software mentioned before can
produce the PCEs φ̂PCE , ĉPCE , b̂PCE and δ̂PCE .

VI. SIMULATION STUDY
We perform a detailed simulation study to compare the
precision of the estimators of the unknown parameters
for the MOOB-Ex and MOOB-Li distributions. The ade-
quacy of these estimators is based on the mean squared

Uδ =
n∑
i=1

g′(xi; δ)
g(xi; δ)

+ (c− 1)
n∑
i=1

Ḡ
′

(xi; δ)

Ḡ(xi; δ)
− (c+ 1)

n∑
i=1

G
′

(xi; δ)
G(xi; δ)

− 2bc(1− φ)
n∑
i=1

[
Ḡ(xi; δ)G

′

(xi; δ)− G(xi; δ)Ḡ
′

(xi; δ)
] [

G(xi;δ)
Ḡ(xi;δ)

]−c−1
zb+1i Ḡ2(xi; δ)

[
1− (1− φ)

(
1− z−bi

)]
+ c(b+ 1)

n∑
i=1

[
Ḡ(xi; δ)G

′

(xi; δ)− G(xi; δ)Ḡ
′

(xi; δ)
] [

G(xi;δ)
Ḡ(xi;δ)

]−c−1
z−b−1i Ḡ2(xi; δ)

,
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TABLE 4. MSEs and AEs for the MOOB-Li Distribution.

errors (MSEs). All calculations are done automatically
using Mathematica. We generate 1, 000 samples of the
MOOB-Ex and MOOB-Li distributions. We take n = 50,
100, 150 for the MOOB-Ex model and n = 100, 200, 300 for
theMOOB-Limodel. The average estimates (AEs) andMSEs
of the MLEs, LSEs and PCEs for the MOOB-Ex distribution
are given in Tables 2-3. Further, the AEs and MSEs of the
MLEs, LSEs and PCEs for the MOOB-Li distribution are
listed in Tables 4-5. We note that all the estimators reveal
the consistency property. Also, the figures in these tables
indicate that the LSEs produce the best results for estimating
the parameters of the MOOB-Ex and MOOB-Li distributions
in terms of their MSEs in most cases.

VII. DATA ANALYSIS
We prove the flexibility of the MOOB-Ex distribution
by comparing with some competitive distributions given
in Table 6 by means of three real data sets. The
Cramér-Von Mises (CVM), Anderson-Darling (AD) and the
Kolmogorov-Smirnov (KS) statistics and the KS p-values of

TABLE 5. MSEs and AEs for the MOOB-Li Distribution.

the last one are calculated for the fitted distributions using the
R software.
The first data set refers to 63 observations of the strengths

of 1.5 cm glass fibres (see, Smith and Naylor, 1987) analyzed
by Alizadeh et al. (2020). The second data set represents 74
observations of the gauge lengths of 20 mm (see, Kundu and
Raqab, 2009) analyzed by Afify and Mohamed (2020). The
third data set consists of 100 observations of breaking stress
of carbon fibres (in Gba) (see, Nichols and Padgett, 2006)
analyzed by Cordeiro et al. (2017).

Tables 7-9 report the values of the goodness-of-fit mea-
sures, the MLEs and associated standard errors (SEs) (in
parentheses) for the MOOB-Ex model and other fitted dis-
tributions. Some of the fitted distributions in Tables 7-9 have
very large SEs compared with their MLEs, wheres all MLEs
for the fitted MOOB-Ex distribution are accurate.

Figures 4, 6 and 8 display some plots of the fitted densities
for these sets. Further, the corresponding PP plots for the
fitted distributions are given in Figures 5, 7 and 9. These plots
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TABLE 6. Some Competitive Models for the MOOB-Ex Distribution.

TABLE 7. Goodness-of-Fit Measures, MLEs and (SEs) for Data Set I.

FIGURE 4. The fitted MOOB-Ex density and other densities for data set I.

TABLE 8. Goodness-of-Fit Measures, MLEs and (SEs) for Data Set II.

also reveal that the MOOB-Ex distribution yields the best fit
to all data sets.

FIGURE 5. PP plots of the MOOB-Ex distribution and other models for
data set I.

FIGURE 6. The fitted MOOB-Ex density and other densities for data set II.

FIGURE 7. PP plots of the MOOB-Ex distribution and other models for
data set II.

The hrf plots of the MOOB-Ex model and the
TTT plots for the three data sets are, respectively, displayed in
Figures 8-10. The TTT plots are concave indicating that the
three data sets have increasing hazard rates as shown from
the hrf plots of the three data sets.
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TABLE 9. Goodness-of-Fit Measures, MLEs and (SEs) for Data Set III.

FIGURE 8. The fitted MOOB-Ex density and other densities for data set III.

FIGURE 9. The hrf plot of the MOOB-Ex model and TTT plot for data set II.

FIGURE 10. The hrf plot of the MOOB-Ex model and TTT plot for data
set III.

Further, we adopt the three estimation methods discussed
in Section 5 to estimate the MOOB-Ex parameters from
the three data sets. Table 10 provides the estimates of the
MOOB-Ex parameters for these data sets, and the maxi-
mized log-likelihoods values (−̂̀) and the CVM, AD and
KS statistics and p-values. Based on the KS and p-values in

TABLE 10. The Estimates of the MOOB-Ex Parameters for the Three Data
Sets.

FIGURE 11. The fitted MOOB-Ex density for data set I (left), for data II
(middle) and for data III (right).

Table 10, we note that the LSE provides the best estimates
of the MOOB-Ex parameters for the first and third data sets,
whereas the ML method is recommended to estimate the
MOOB-Ex parameters for the second data set. However, all
estimation methods perform very well for the three data sets.
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The histograms of the three data sets and the fittedMOOB-Ex
densities using the three estimation methods, for the three
data sets, are displayed in Figure 11.

VIII. CONCLUSION
We propose a new class of distributions with three additional
shape parameters, called Marshall-Olkin odd Burr III-G
(MOOB-G) family, from any baseline continuous distribution
G. The new MOOB-G family extends the Marshall-Olkin-
G and odd Burr III-G classes and distributions and three
of its special models, called MOOB-exponential, MOOB-
Lindley, and MOOB-Lomax distributions are discussed. The
family density can be expressed as linear combination of
exponentiated-G densities. We explore some mathematical
properties of the MOOB-G family. The parameters of the
proposed family are estimated by three approaches, called
maximum likelihood, least squares and percentile methods.
The performance of the three methods are assessed via sim-
ulation results obtained for the MOOB-exponential and
MOOB-Lindley distributions. Three real data examples show
empirically that the MOOB-exponential distribution pro-
vides better fits to these data than other known extensions of
the exponential model.
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