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ABSTRACT In this paper, a quaternion-based adaptive dynamic surface control method is proposed for
attitude tracking control for small-scale unmanned helicopters with external disturbance and uncertain
dynamics. The quaternion formalism is introduced and a quaternion-based multi-input-multi-output nonlin-
ear model is derived from the attitude dynamics of a small-scale helicopter. The low-complexity controllers
are designed by the dynamic surface control method as it eliminates the problem of the explosion of items.
The singularity problem is avoided by substituting Euler kinematic equations in the nonlinear model with
quaternion expressions and integrating the quaternion expressions into the design process of the dynamic
surface control. For improving the robustness of the control system, the radial basis function networks
are applied to approximate the uncertain dynamics. The external disturbance is also compensated in the
controllers’ design. This paper proves that the proposed method can guarantee the uniformly ultimate
boundness of this attitude system. Simulation results are presented finally and show the effectiveness of
this control approach.

INDEX TERMS Unmanned helicopter, quaternion-based nonlinear attitude model, dynamic surface control,
neural network.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are developing very fast
these years as they can carry out dangerous flight missions
or scientific research without human intervention. Among
various kinds of UAVs, unmanned helicopters have been
gained more attention due to their unique flight capabili-
ties. However, guaranteeing the stability and robustness of
an unmanned helicopter is always a challenging problem in
the academic field. Unmanned helicopter systems are intrin-
sically unstable without close loop control, and helicopter
dynamics are highly nonlinear and strongly coupled and
hence hard to analyze. Besides, helicopter systems are under-
actuated, which means the numbers of actuators are lower
than the degrees of freedom in such systems. This unusual
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mechanical characteristic makes it complicated to utilize con-
ventional ways to design control laws [1].

For unmanned helicopters, linear control methods have
achieved much success in the application, such as Propor-
tional Integral Derivative (PID) control [2]–[4], H∞ con-
trol [5]–[8], and Linear Quadratic Regulator (LQR) control
[9]–[11]. However, these methods only perform validly
in moderate maneuvers. To design an unmanned heli-
copter system with high-performance and large flight
envelope, researchers have paid more attention to non-
linear controllers. Some nonlinear control methods have
been proposed in the literature, such as sliding mode
control [12]–[16], backstepping control [17]–[20], neu-
ral network (NN) control [21]–[23], fuzzy control
[24]–[26]. Though these methods contribute much to the
theoretical design, their industrial applicability is a difficult
problem because of the increasing complexity of nonlinear
controllers. The dynamic surface control (DSC) method was

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 10153

https://orcid.org/0000-0003-0727-5333
https://orcid.org/0000-0001-8285-4445
https://orcid.org/0000-0002-6405-1187
https://orcid.org/0000-0002-3455-1682
https://orcid.org/0000-0002-2478-4722
https://orcid.org/0000-0003-3278-9395


X. Duan et al.: Attitude Tracking Control of Small-Scale Unmanned Helicopters

proposed by D. Swaroop et al. in [27], where the explosion of
complexity is settled by introducing low-pass filters, enabling
this method to implement in practice. Furthermore, this
method has been integrated with radial basis function (RBF)
networks in [28] and the neural-based adaptive controller can
track the reference signal with model uncertainties. In [29],
the DSC method has been extended to a nonlinear MIMO
system with model uncertainties, external disturbance, and
input saturation and deadzone. The singularity problem is
also avoided by utilizing the spectral radius in the controller’s
design.

In practical, quaternion representations are normally
applied to deal with the singularity problem as it enables
aerial vehicles to be capable of full-attitude flight. In [30],
a quaternion-based robust control has been proposed for
quadrotors with uncertain parameters and nonlinear dynam-
ics. In [31], the controller has been designed by the back-
stepping approach with quaternion expressions and applied
in the small-scale helicopter Lepton-Ex. In [11], the bounded
attitude control of a quadrotor mini-helicopter has been
accomplished by the DSC approach in a quaternion expres-
sion. More about quaternion-based control may be found in
[32]–[37]. Notably, the quaternion-based control has been
widely applied to the quadrotors. They have a simpler
mechanical structure, which makes it possible to neglect
the aerodynamic forces and moments. Thus, the mathematic
model derived from the quadrotors is simple and the con-
trollers’ design efforts are relaxed. On the contrary, heli-
copters have complex mechanical characteristics and the
strong coupling effects and model uncertainties must be
considered when designing controllers. In [38], adaptive DSC
using a neural network is applied to an unmanned small-scale
helicopter. The external disturbance is approximated by the
RBF networks. However, the singularity problem is not
solved in the paper. Besides, the helicopter MIMO nonlinear
model is built by a mathematic method to make it conform
to the strict feedback form, which may harm the model
accuracy.

In this paper, we propose a quaternion-based adaptive DSC
(QBADSC) method for the attitude control of unmanned
small-scale helicopters with model uncertainties and external
disturbance. To build a MIMO nonlinear attitude model in
the strict feedback form, we introduce dynamics of both the
main rotor and the tail rotor into our model. They will be
approximated by RBF networks because of the model uncer-
tainties caused by the coupling effects. The singularity prob-
lem in the Euler kinematic equation is solved by introducing
quaternion expressions. Finally, this paper proves that the
control law can guarantee the uniform ultimate boundedness
of the closed-loop system, and the simulation is presented to
demonstrate this conclusion.

The main contributions of this paper list below.
1) We build a multi-input-multi-output (MIMO) helicopter

attitude model in the strict-feedback form, which enables us
to apply the DSC method to synthesize controllers in low
complexity.

2) The singularity problem is solved by constructing an
attitude model with quaternion representation and combining
the DSC method with quaternions in the process of synthe-
sizing controllers.

3) RBF networks are used to approximate the uncertain
dynamics, which improves the robustness and performance
of the control system.

The rest of this paper is organized as follows. Section II
presents an ideal unmanned helicopter attitude model in
the strict-feedback form and gives a problem statement.
In Section III, the controller is designed by the DSC using
RBF networks. Section IV proves that the control law pre-
sented in the Section III can guarantee the convergence of the
whole closed-loop system. Section V shows the simulation
results and Section VI concludes the paper.
Notation: In this paper, ‖ · ‖ stands for the Euclidean norm

or the Frobenius norm. Let ξ = (ξ1, ξ2, . . . , ξi)T and the
Euclidean norm of ξ is given by ‖ξ‖2 =

∑
i ξi

2. Also, let
a matrix B ∈ Rm×n and the matrix Frobenius norm of B is
given by ‖B‖2 = tr(BTB). Besides, the smallest eigenvalue
of a square matrix A is given by λmin(A).

II. QUATERNION-BASED ATTITUDE MODEL AND
PROBLEM STATEMENT
A. QUATERNION FORMALISM
Quaternion representations are widely used to describe the
rotation of a rigid body due to the advantages of no singularity
and a simple computational process. A quaternion q ∈ H can
be defined by a hypercomplex number as

q =
[
q0 q1 q2 q3

]T
=

[
q0
q1:3

]
(1)

where q0 is the scalar part and q1:3 is the vector part. The
conjugate, norm, and inverse of q are

q̄ =
[

q0
−q1:3

]
(2)

‖q‖ =
√
q20 + q

2
1 + q

2
2 + q

2
3 (3)

q−1 =
q̄
‖q‖

. (4)

In this paper, we apply unit quaternions to describe the rota-
tion of an unmanned helicopter. Considering (4), we obtain

q−1 = q̄. (5)

The multiplication between two quaternions, such as q and p,
can be defined as

q · p =
[

q0p0 − qT1:3p1:3
q0p1:3 + p0q1:3 − q1:3 × p1:3

]
=

[
q0 −qT1:3
q1:3 q0I3 − C(q1:3)

] [
p0
p1:3

]
(6)

where the function C : R3→ R3×3 is defined as follows:

C (x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (7)
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FIGURE 1. Coordinate systems.

To get a compact expression, we define a function D : H →
R4×4 as

D (q) =
[
q0 −qT1:3
q1:3 q0I3 − h(q1:3)

]

=


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

 (8)

and (6) can be written as

q · p = D (q) · p. (9)

Using a quaternion qb that expresses the attitude of an
unmanned helicopter, according to [39], the derivative of qb
can be described as

q̇b =
1
2
D (qb)

[
0
ωb

]
(10)

where ωb = [ωbx , ωby, ωbz]T represents the angular velocity
in a body coordinate system.

In this paper, we replace the Euler kinematic equationswith
(10) for eliminating the singularity problem.

B. QUATERNION-BASED ATTITUDE MODEL
We first introduce the rigid-body attitude dynamics of a
small-scale helicopter as

ω̇b = −J−1 (ωb × Jωb)+ J−16 +1 (11)

where J = diag(Jx , Jy, Jz) is the moment of the inertial
matrix and1 is the external disturbance. The helicopter body
coordinate system and the local north-east-down coordinate
system are given in Fig. 1.

For a small-scale helicopter, the forces and moments gen-
erated by the fuselage, horizontal fin and vertical fin are
generally small. Thus, we lump these effects together and

combine them with external disturbance. The aerodynamic
moment vectors 6 are given by

6 =

 Lmr + Ltr
Mmr

Nmr + Ntr

 (12)

where Lmr , Mmr , and Nmr stand for the moments generated
by the main rotor along x−, y−, and z−axis respectively, and
Ltr and Ntr represent the moments generated by the tail rotor.
Based on the work in [40], Lmr and Mmr can be written as

follows: {
Lmr = Kβb+ TmrHmrb− TtrHtr
Mmr = Kβa+ TmrHmra

(13)

whereKβ is themain rotor spring constant, Tmr and Ttr are the
thrust of the main and tail rotor, Hmr is the distance between
the main rotor hub and the central of gravity(CG) in the
vertical direction, Htr is the tail rotor hub location over the
CG, and a and b represent flapping angles in longitudinal and
lateral directions.

According to [41], Ttr can be computed approximately as

Ttr = Kcolθcol (14)

where Kcol is the effective gain.
Ltr and Ntr are given by{

Ltr = −TtrHtr
Ntr = TtrDtr

(15)

where Dtr is the horizontal distance between the CG of the
helicopter and the tail rotor hub. Using Qmr to represent the
anti-torque associated with the main rotor, we can get Nmr
by the simple equation Nmr = −Qmr . However, getting an
accurate value of Qmr needs to solve complicated equations,
increasing the complexity of our attitude model. To simplify
the attitude model, we apply a concise expression described
in [42] that approximates Qmr as follows:

Qmr = CQ
mrT

1.5
mr + D

Q
mr . (16)

Invoking (13)–(16), 6 can be written as

6 =

 Kβb+ TmrHmrb− KcolθcolHtr
Kβa+ TmrHmra

−CQ
mrT 1.5

mr − D
Q
mr + KcolθcolDtr

 . (17)

According to [41], The main rotor flapping dynamics of a
small-scale helicopter have been analyzed in [40], where both
the stabilizer bar and the bare main rotor dynamics are taken
into consideration for getting an accurate model. In terms
of this model, we introduce a different expression including
unknown dynamics as follows:

ζ̇ = F̄m (x)+ Ḡm (x)um (18)

where ζ̇ = [ȧ, ḃ]T , x = [x1, x2, . . . , xn]T , F̄m : Rn → R2×1

and Ḡm : Rn→ R2×2 are unknown parts, um = [βlon, βlat ]T ,
and βlon and βlat are the longitudinal and lateral control
input, respectively. Using βped to represent the rudder input,
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we introduce a first-order differential equation with unknown
parts as

θ̇col = f̄ (y)+ ḡ (y) βped (19)

where y = [y1, y2, . . . , ym]T . In this paper, F̄m (x), Ḡm (x),
f̄ (y), and ḡ (y) are approximated by RBF networks, which
will be detailed in Section III.
Remark 1: The thrust generated by the main rotor is seen

as a constant in this paper. According to the research in [43],
the control system of a small-scale unmanned helicopter is
reasonably divided into two loops: an inner loop that controls
the attitude and an outer loop that regulates the position. The
collective angle servo input is determined by the outer loop
and transmitted into the inner loop. In this paper, we focus on
the inner loop, ie, the attitude control. It is natural to treat the
collective angle servo input as a constant. Assuming that the
relation between the thrust of themain rotor and the collective
angle servo input is linear, the thrust is constant as well.

C. PROBLEM STATEMENT
To build a MIMO nonlinear attitude model, we first define
the state variables and control variables as follows:

x1 = [x10, x11, x12, x13]T ∈ H

x2 =
[
ωx , ωy, ωz

]T
x3 = [a, b, θcol]T

u =
[
βlon, βlat , βped

]T . (20)

The attitude dynamics can be described by multivariate dif-
ferential equations in a compact form as follows:

ẋ1 = G1 (x1)
[
0
x2

]
ẋ2 = F2(x̃2)+ G2(x̃2)x3 +1(x̃2)

ẋ3 = F̄3(x̃3)+ Ḡ3(x̃3)u

y = x1 (21)

where

x̃2
= [x1T , x2T ]

T

x̃3
= [x1T , x2T , x3T ]

T

u

= [βlon, βlat , βped ]T

G1(x1)

=


x10 −x11 −x12 −x13
x11 x10 x13 −x12
x12 −x13 −x10 −x11
x13 −x12 −x11 −x10


F2(x̃2)

=



wywz(Jy − Jz)
Jx

wxwz(Jz − Jx)
Jy

wxwy(Jx − Jy)− C
Q
mrT 1.5

mr − D
Q
mr

Jz


G2(x̃2)

=


0

Kβ + TmrHmr
Jx

−HtrKcolθcol
Jx

Kβ + TmrHmr
Jy

0 0

0 0
DtrKcolθcol

Jz

 .

In addition, F̄3(x̃3) and Ḡ3(x̃3) are unknown dynamics of the
helicopter and they can be written as

F̄3(x̃3) = [ F̄m(x̃3) f̄ (x̃3) ]T

Ḡ3(x̃3) =
[
Ḡm (x̃3) 0

0 ḡ(x̃3)

]
. (22)

The control objective is to make the output y track the desired
attitude xd responsively with external disturbance and model
uncertainties.
Assumption 1: For the external disturbance 1(x̃2), there

exists a known bounded function ρ(x̃2) that satisfies
‖1(x̃2)‖ ≤ ‖ρ(x̃2)‖.
Assumption 2: xd , ẋd , and ẍd are bounded, satisfying that
‖xd‖2 + ‖ẋd‖2 + ‖ẍd‖2≤K0, where K0 > 0.
Assumption 3: The control coefficient matrix Ḡ3(x̃3) is

bounded. Given any x̃3 ∈ �9⊂R9, where �9 is a compact
set, it has ‖Ḡ3‖ ≤ gM , where gM > 0.
Remark 2: Notably, nonlinear systems (21) are different

from those systems that have been analyzed in [10], [29],
[44], [45], because the dimension of x1 is different from that
of x2 and x3.

III. CONTROLLER DESIGN
Wewill apply theDSCmethod to the control law design of the
MIMO system described by (21) with external disturbance
and model uncertainties. The control input vector u can be
obtained in 3 steps.
Step 1: Defining xe as the error between x1 and xd , xe, x1,

and xd satisfy the equation as follows:

x1 = xd · xe. (23)

We know that x1, xd , and xe are all unit quaternions. Consid-
ering (5), we have

xe = x̄d · x1 (24)

where xe → e1 = [1, 0, 0, 0]T as x1 → xd . Thus, the first
dynamic surface error s1 is defined as

s1 = e1 − xe. (25)

Differentiating s1 respect to time yields

ṡ1 =
[
−1 01×3

I3×1 I3×3

]
ẋe. (26)
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Considering (9), (10), and (24), we have

ẋe =
1
2
D(x̄d )D(x1)

[
01×3

I3×3

]
ωb. (27)

Define

RT =
1
2
D(x̄d )D(x1)

[
01×3

I3×3

]
. (28)

Invoking (27) and (28), (26) can be rewritten as

ṡ1 = RTx2. (29)

Define a virtual control x̄2 to be

x̄2 = −k1Rs1. (30)

To avoid the problem of explosion of complexity in the back-
stepping approach due to the calculation of ˙̄x2, we introduce
a low pass filter as follows:

τ2 ˙x2d + x2d = x̄2 (31)

where τ2 is the time constant.
Step 2: Define a second dynamic surface error s2 as

s2 = x2 − x2d . (32)

Considering (21), the time derivative of s2 is

ṡ2 = F2(x̃2)+ G2(x̃2)x3 +1− ẋ2d . (33)

Apparently, G2(x̃2) is nonsingular. Therefore we choose a
virtual control x̄3 as

x̄3 = (G2(x̃2))−1(−F2(x̃2)+ ˙x2d − k2s2 −
s2‖ρ(x̃2)‖2

2ε
).

(34)

Design x3d as

τ3ẋ3d + x3d = x̄3 (35)

where τ3 is the time constant.
Step 3: We first approximate the uncertain nonlinear func-

tions in this step. Considering (22), we write

F̄3(x̃3) = [f̄31(x̃3), f̄32(x̃3), f̄33(x̃3)]T (36)

where f̄3i(x̃), i = 1, 2, 3, are approximated by RBF networks.
Employing Li nodes for each term and Gaussian function as
the basis function, we obtain

f̄3i(x̃3) = θ∗i
Thi(x̃3)+ δi(x̃3) (37)

where θ∗i = [θ∗i1, θ
∗

i2, . . . , θ
∗
iLi ]

T is the ideal weight vector,
which is defined as

θ∗i = arg min
θ∈RLi

[ sup
x̃⊂R9

∣∣∣θThi(x̃3)− f̄3i(x̃3)∣∣∣], (38)

hi(x̃3) = [hi1(x̃3),hi2(x̃3), . . . ,hiLi (x̃3)]
T and each value in

this vector is computed by Gaussian basis function as

hij(x̃3) = exp[−

∥∥x̃3 − uij∥∥2
b2ij

], j = (1, 2, . . . ,Li) (39)

where uij = [uij1, uij2, . . . , uij9] and bij are the central vector
of x̃ and width of Gaussian functions, respectively. Let

2∗
= blockdiag(θ∗1 , θ

∗
2 , θ

∗
3 )

h(x̃3) = [h1(x̃3), h2(x̃3), h3(x̃3)]T

δ(x̃3) = [δ1(x̃3), δ2(x̃3), δ3(x̃3)]T (40)

where |δi(x̃3)| < |δ̄i|. Considering (36) and (37), we have

F̄3(x̃3) = 2∗Th(x̃3)+ δ(x̃3). (41)

Define a third dynamic surface error

s3 = x3 − x3d = [s31, s32, s33]T . (42)

Invoke (21) and (41)

ṡ3 = 2∗Th(x̃3)+ δ(x̃3)+ Ḡ3(x̃3)u− ẋ3d . (43)

Defining that 1(u) = (Ḡ3 − I)u, we have

ṡ3 = 2∗Th(x̃3)+ δ(x̃3)+1(u)+ u− ẋ3d . (44)

Choose the final control u as

u = −2̂
T
h(x̃3)+ ẋ3d − k3s3 (45)

where 2̂ = blockdiag(θ̂1, θ̂2, θ̂3) is the estimation of 2∗.
θ̂ i is designed as

˙̂
θ i = 0i(hi(x̃3)s3i − σiθ̂ i), i = 1, 2, 3. (46)

where 0Ti = 0i > 0 and σi > 0.

IV. STABILITY ANALYSIS
We have designed the overall control laws and the update
laws. In this section, the whole closed-loop system is proved
to be uniformly ultimately bounded. Considering the first
order filters that have been applied in (31) and (35), we first
define that

yi = xid − x̄i, i = 2, 3. (47)

Considering (31) and (35), we obtain

ẋid =
x̄i − xid
τi

which gives

ẏi =
−yi
τi
− ˙̄x i. (48)

Note that

|ẏ2 +
y2
τ2
| ≤ B2(s1, s2, y2, k1, xd , ẋd , ẍd )

|ẏ3 +
y3
τ3
| ≤ B3(s1, s2, s3, y2, y3, k1, k2, τ2, xd , ẋd , ẍd )

where B2 and B3 are continuous functions. Then we have

yTi ẏi ≤
−yTi yi
τi
+ |yTi |Bi. (49)

Define

V1 =
1
2

3∑
i=2

yTi yi. (50)
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Differentiating V1 with respect to time, we obtain

V̇1 =
3∑
i=2

yTi ẏi.

Invoke (49)

V̇1 ≤
−yT2y2
τ2
+
−yT3y3
τ3
+ |yT2 |B2 + |yT2 |B3

≤ (1−
1
τ2
)yT2y2 + (1−

1
τ3
)yT3y3 +

1
4
‖B2‖

2

+
1
4
‖B3‖

2. (51)

Considering (32) and (47), we obtain

x2 = s2 + y2 + x̄2. (52)

Substitute (52) into (29)

ṡ1 = RT (s2 + y2 + x̄2).

Invoke (30)

ṡ1 = RT s2 + RTy2 − k1RTRs1. (53)

Considering (42) and (47), we also obtain that

x3 = s3 + y3 + x̄3. (54)

Substituting (54) into (33), we have

ṡ2 = F2(x̃2)+ G2(x̃2)(s3 + y3 + x̄3)+1− ẋ2d . (55)

Invoke (34)

ṡ2=G2(x̃2)s3 + G2(x̃2)y3 − k2s2+1(x̃2)−
s2‖ρ(x̃2)‖2

2ε
.

(56)

We define the estimation error 2̃ as follows:

2̃ = 2̂−2∗. (57)

Then, substituting (45) into (44), we obtain

ṡ3 = −2̃
T
h(x̃3)+ δ(x̃3)+1(u)− k3s3. (58)

Define

V2 =
1
2

3∑
i=1

sTi si. (59)

Differentiating V2 with respect to time, we obtain

V̇2 =
3∑
i=1

sTi ṡi.

Invoke (53), (56), and (58)

V̇2 = sT1R
T s2 + sT1R

Ty2 − k1sT1R
TRs1

+ sT2G2(x̃2)s3 + sT2G2(x̃2)y3 − k2s
T
2s2

+ sT21(x̃2)−
s2T s2‖ρ(x̃2)‖2

2ε
− sT32̃

T
h(x̃3)

+ sT3δ(x̃3)+ s
T
31(u)− k3sT3s3.

Noting that

‖s2‖2‖ρ(x̃2)‖2

2ε
+
ε

2
≥ ‖s2‖‖ρ(x̃2)‖ ≥ ‖s2‖‖1(x̃2)‖

≥ |sT21(x̃2)| ≥ sT21(x̃2)

gives

sT21(x̃2)−
‖s2‖2‖ρ(x̃2)‖2

2ε
≤
ε

2
.

Then, we have

V̇2 ≤ sT1 (−k1R
TR+ 2I4×4)s1

+ sT2 (
1
4
RRT + (2− k2)I3×3)s2 +

ε

2

+ sT3 (
1
4
GT
2 (x̃2)G2(x̃2)+ (2− k3)I3×3)s3

+ yT2 (
1
4
RRT )y2 + yT3 (

1
4
GT
2 (x̃2)G2(x̃2))y3

+
1
4
‖δ(x̃3)‖2 +

1
4

∥∥1(u)
∥∥2 − sT32̃T

h(x̃3). (60)

Considering (57), we define

V3 =
1
2
tr(2̃

T
0−12̃) (61)

where 0−1
= blockdiag(0−1

1 ,0
−1
2 ,0

−1
3 ). Differentiate

V3 with respect to time, we have

V̇3 = tr(2̃
T
0−1
˙̂
2) (62)

where ˙̂2 = blockdiag( ˙̂θ1,
˙̂
θ2,
˙̂
θ3). Invoke the update laws

that have been designed in (46)

V̇3 = sT3
˜2Th(x̃3)+

3∑
i=1

−σi
˜θi
T θ̂ i. (63)

Noting that [29]

−θ̃
T
i θ̂ i ≤

1
2
(θ∗i

T
θ∗i − θ̃i

T
θ̃ i) (64)

gives

3∑
i=1

−σiθ̃
T
i θ̂ i ≤

3∑
i=1

σi

2
(θ∗i

T
θ∗i − θ̃

T
i θ̃ i)

≤ tr(2∗Tσ2∗)− tr(2̃
T
σ2̃) (65)

where σ = 1
2blockdiag(σ1IL1×L1 , σ2IL2×L2,σ3IL3×L3 ). Then

we have

V̇3 ≤ sT32̃
T
h(x̃3)+ tr(2∗Tσ2∗)− tr(2̃

T
σ2̃). (66)

Theorem 1: Consider the small-scale helicopter nonlinear
model (21) that satisfies Assumption 1, 2, and 3 with external
disturbance and model uncertainties. Under the control laws
(45) and the updated laws (46), the whole closed-loop system
is ultimately uniformly bounded.

Proof: Consider the Lyapunov function candidate

V = V1 + V2 + V3. (67)
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Given any k0 > 0 and p > 0,we first define two sets as
follows:

A := {(xTd , ẋ
T
d , ẍ

T
d ) : ‖xd‖

2
+ ‖ẋd‖2 + ‖ẍd‖2≤k0}

F := {(sT1 , s
T
2 , s

T
3 , y

T
2 , y

T
3 , θ

∗
1
T
, θ∗2

T
, θ∗3

T ) : V < p}.

Clearly, A and F are compact in R12 and R24, respectively.
A×F is compact in R36 as well. Thus, we give that

‖B2‖ ≤ M2 ‖B3‖ ≤ M3 tr(2∗Tσ2∗) ≤ 2∗M

where M2 > 0, M3 > 0, and 2∗M > 0. According to (45),
we know that u is bounded. Besides, we have assumed that
Ḡ3 is bounded in Assumption 3, therefore we can conclude
that ‖1(u)‖≤uM , where uM > 0. Considering (51), (60),
(66), and (67), we have

V̇ ≤ sT1 (−k1R
TR+ 2I4×4)s1

+ sT2 (
1
4
RRT + (2− k2)I3×3)s2

+ sT3 (
1
4
GT
2 (x̃2)G2(x̃2)+ (2− k3)I3×3)s3

+ yT2 (
1
4
RRT + (1−

1
τ2
)I3×3)y2

+ yT3 (
1
4
GT
2 (x̃2)G2(x̃2)+ (1−

1
τ3
)I3×3)y3

− tr(2̃
T
σ2̃)+2∗M +

1
4
δ̄2 +

1
4
u2M +

1
4
M2

2

+
1
4
M2

3 +
ε

2
≤ −κV + C (68)

where

δ̄2 = ¯δ21 +
¯δ22 +
¯δ23

κ : = min

 λmin(Q1), λmin(Q2), λmin(Q3)
λmin(Q4), λmin(Q5)

mini=1,2,3(
min(σi)

max(λmax (0i−1))
)


C := = 2∗M +

1
4
δ̄2 +

1
4
u2M +

1
4
M2

2 +
1
4
M2

3 +
ε

2
where

Q1 = k1RTR− 2I4×4

Q2 = (k2 − 2)I3×3 −
1
4
RRT

Q3 = (k3 − 2)I3×3 −
1
4
GT
2 (x̃2)G2(x̃2)

Q4 = (
1
τ2
− 1)I3×3 −

1
4
RRT

Q5 = (
1
τ3
− 1)I3×3 −

1
4
GT
2 (x̃2)G2(x̃2).

k1, k2, k3, τ2, and τ3 satisfy the restrict conditions as follows:

min
i=1,2,3,4,5

(λmin(Qi)) > 0 (69)

Let κ > C
p , then V̇ ≤ 0 onV = p. Therefore,V is an invariant

set. It means that if V (0) ≤ p, we have V (t) ≤ p, ∀t ≥ 0.

Multiplying (68) by eκt yields

d
dt
(V (t)eκt )≤eκtC .

Integrating this equation over [0, t], we have

0≤V (t) ≤
C
κ
+ (V (0)−

C
κ
)e−κt .

It is apparent that V →
C
λ

as t → ∞, therefore all
signals in (67) are ultimately uniformly bounded. Moreover,
by increasing the value of ki and λmin(0i) or decreasing the
value of τi, the tracking error can be made arbitrarily small,
which concludes the proof.
Remark 3: We know that tr( ˜2Tσ2̃) = 1

2

∑3
i=1 σiθi

T θi ≥
η1
2

∑3
i=1 θi

T θi, where η1 = mini=1,2,3(σi). Also, we have
V3 =

∑3
i=1

1
2 (θ

T
i 0

−1
i θi) ≤

η2
2

∑3
i=1 θi

T θi, where
η2 = maxi=1,2,3(λmax(0

−1
i )). After elimination, we have

−tr( ˜2Tσ2̃) ≤ − η1
η2
V3. Following this, we obtain that

min( η1
η2
) = mini=1,2,3(

min(σi)
max(λmax (0

−1
i ))

).

V. SIMULATION RESULTS
We first define the main rotor flapping dynamics as

ȧ = −
a
τf
− q+11 + (

Klon
τf
+12)βlon

ḃ = −
b
τf
− p+13 + (

Klat
τf
+14)βlat

11 = 4sign(sin(2π t))(a2 + q2)
1
2

12 = 4sign(sin(2π t))Klon

13 = 4sign(sin(2π t))(b2 + p2)
1
2

14 = 4sign(sin(2π t))Klat

where τf is the time constant,Klon is the effective longitudinal
gain, Klat is the effective lateral gain and11,12,13, and14
are unexpected dynamics caused by the complex mechanical
characteristics and external disturbance such as gusts.

The tail rotor operates in a non-uniform flowfield because
of the effects of the disturbed air generated by the main rotor
and the vertical stabilizer and therefore we define θ̇col as

θ̇col = −
θcol

τt
+15 + (Kcol +16)βped

15 = 4sign(sin(2π t))θcol

16 = 4sign(sin(2π t))Kcol

where τt is the time constant, Kcol is the effective gain factor,
and 15 and 16 are unexpected dynamics.

To prove the effectiveness of our control law, we will
make a comparison between the QBADSC and the traditional
DSC. The controllers of the latter are synthesized based on
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FIGURE 2. Steady signal.

FIGURE 3. Steady signal.

FIGURE 4. Steady signal.

the Euler angles, so we give the Euler kinematic equations
as follows

ẋ1 = G1(x1)x2

where

x1 = [φ, θ, ψ]T

G1(x1) =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(θ ) −sin(θ )
0 sin(φ)/cos(θ ) cos(φ)/cos(θ )



FIGURE 5. Steady signal.

FIGURE 6. Steady signal.

FIGURE 7. Steady signal.

Let

F3(x̃3) =
[
−
a
τf
− q −

b
τf
− p −

θcol

τt

]T
G3(x̃3) = diag(

Klon
τf
,
Klat
τf
,Kcol)

xd = [φd , θd , ψd ]T .
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FIGURE 8. Sinusoidal signal.

The design process of the traditional DSC is given as
follows

x̄2 = −k1G
−1
1 (x1)s1 + ẋd

˙x2d =
1
τ2
(x̄2 − x2d )

x̄3 = G−1
2 (x̃2)(−k2s2 − F2(x̃2)+ ˙x2d )

ẋ3d =
1
τ3
(x̄3 − x3d )

u = G−1
3 (x̃3)(−F3(x̃3)− k3s3 + ẋ3d ).

The parameters of the unmanned small-scale helicopter are
listed in Table. 1. Besides, the controller parameters are cho-
sen as k1 = k2 = k3 = 200, σ1 = σ2 = σ3 = 0.01,
τ2 = τ3 = 0.01, ε = 0.01, L1 = L2 = L3 = 10,
and 01 = 02 = 03 = 200I10×10. The initial values
are taken as x1(0) = [1, 0, 0, 0]T , x2(0) = [0, 0, 0]T and
x3(0) = [0, 0, 0]T . The external disturbance is designed as
1 = sin(x2)+ cos(x2). We will give three cases to illustrate
the advantages of the QBADSC. In addition, we convert the
quaternions to Euler angles to represent the simulation results
clearly.

A. STEADY SIGNALS
In this case, the roll and yaw angle increase from 0◦ to 100◦

during 0-1 s and maintain 100◦ in the last 2 s. The yaw angle
reaches 80◦ at 1 s and remains the same during 2-3s. The
response of the Euler angles is given in Fig. 2–4, which shows
that the QBADSCmethod performs better than the traditional
DSC method overall. In Fig. 2, it can be seen clearly that
the traditional DSC method is unable to deal with the distur-
bance and model uncertainty. From Fig. 5–7, we can observe
that the tracking errors decrease to zero by the QBADSC
whereas the traditional DSC is incapable to eliminate the
errors. Besides, in the whole process of the simulation,

FIGURE 9. Sinusoidal signal.

FIGURE 10. Sinusoidal signal.

FIGURE 11. Sinusoidal signal.

the tracking errors of the QBADSC are smaller than that of
the DSC.

B. SINUSOIDAL SIGNALS
The roll, pitch, and yaw channel are required to track sinu-
soidal signals with a period of 2s and an amplitude of 60◦.
The serious degradation of the traditional DSCmethod can be
seen in Fig. 8, in which the roll angle diverges entirely from
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FIGURE 12. Sinusoidal signal.

FIGURE 13. Sinusoidal signal.

TABLE 1. Parameters of the unmanned small-scale helicopter.

the reference signal at 1 s. From Fig. 11, we know that the
tracking error is larger than 100◦ at 1 s. From Fig. 9 and 10,
the response of the QBADSC has a smoother curve compared
with the DSC, which means that our control law is still able
to resist the disturbance and model uncertainties in an agile
flight. In Fig. 11–13, the tracking errors of the QBADSC
decrease with the increase of the Euler angle, because the
slope of the reference signal is a cosine function. In contrast,
the tracking errors of the DSC in three channels are all
irregular curves, reflecting the effects of the disturbance and
model uncertainties.

C. SQUARE SIGNALS
In this case, the attitude references are square signals with
a period of 1s and an amplitude of 30◦, which means that

FIGURE 14. Square signal.

FIGURE 15. Square signal.

FIGURE 16. Square signal.

the helicopter has to switch the attitude with a large angle
in a short time. From Fig. 14–16, the degradation of the
DSC can be found in three channels, especially the roll chan-
nel in which the maximum error is even larger than 300◦.
Thus, the traditional DSC is invalid in this case. By con-
trast, the QBADSC works normally on the condition that the
system performs aggressive maneuvers. We can observe that
when the reference attitude angle jumps from−30◦ to 30◦ or
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FIGURE 17. Square signal.

FIGURE 18. Square signal.

FIGURE 19. Square signal.

from 30◦ to −30◦, the system tracks the angle with a small
settling time and little overshoot.

VI. CONCLUSION
A quaternion-based adaptive dynamic surface control for
small-scale helicopters has been developed. This method has
eliminated the problem of explosion of terms due to the
derivation calculation and avoided the singularity problem by
introducing quaternion expressions. RBF networks have been

applied to approximate model uncertainties, which improves
the robustness of the system. The external disturbance has
been compensated when synthesizing the controllers. The
whole control system has been proved to be asymptotic sta-
bility. In the end, simulation results show that our system can
track the steady, sinusoidal, and square reference signals with
fast response and good performance.

For future work, to decrease the tracking error magni-
tude, we increase the adaption rate. But it will lead to
high-frequency oscillations in control inputs, which harms
the stability of the control system. Thus, we need to improve
the transient performance of the QBADSC.
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