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ABSTRACT A swarm of unmanned aerial vehicles (UAVs) requires the transmission of mission-related data
across the network. The resource constraints and dynamic nature of the swarm bring critical challenges to
the design of UAV routing protocols. Most of the conventional ad hoc routing schemes are not intelligent
and cannot adapt to the dynamic nature of UAV swarming networks. On the other hand, some artificial
intelligence (AI)-based routing schemes may consume significant computational resources in the UAVs.
In this article, a low-cost, adaptive routing protocol, namely skeleton-based swarm routing (SSR), is pro-
posed, which exploits an intelligent online learning algorithm and the topology features of the mission-driven
UAV swarm to distribute the traffic over optimal routes. Here, the skeleton represents the most stable parts of
the swarm formation. SSR architecture consists of three modules: 1) A geometric addressing module, which
assigns geometric coordinates to each node based on the swarm skeleton structure; 2) A leaf-like routing
pipe which allows the selection of multiple candidate routes around the shortest path; 3) An intelligent
low-complexity learning model which determines how to distribute the packets inside the routing pipe
to achieve load-balanced, high-throughput transmissions. The proposed skeleton-based scheme can also
facilitate the UAV formation construction and morphing. The simulation results show that the proposed SSR
protocol can noticeably improve the network performance (up to 100% throughput improvement) compared
to the single path routing schemes, such as the ad-hoc on-demand distance vector (AODV) and link-quality
and traffic-load aware optimized link state routing (LTA-OLSR) protocols.

INDEX TERMS Geometric routing, quality of service, reinforcement learning, stochastic dynamic program-
ming, swarm networks, UAV communication.

I. INTRODUCTION
The airborne networks composed of unmanned aerial vehi-
cles (UAVs), as illustrated in Fig. 1, have been deployed
in different civilian, commercial and military applications,
such as disaster management, border surveillance, search and
rescue opertions, goods delivery, etc. [1], [2]. In such net-
works, it is often needed to transmit data (e.g., high-resolution
surveillance videos) among UAVs or to the control station.
Hence, establishing reliable end-to-end paths among UAVs
is critical for many applications, which demand high quality-
of-service (QoS).
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FIGURE 1. UAV swarm network in civilian applications.

For effective coordination and collaboration, the UAVs
usually communicate in an ad hoc fashion and form flying
ad hoc network (FANET). A subset of UAVs may link up
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with the control station. Based on the degree of coordina-
tion among UAVs, FANETs can have different application
architecture. For instance, the swarm cooperation architecture
(Fig. 2(a)) requires a lower coordination among UAVs to
accomplish tasks such as the target search. On the other hand,
physically-linked architecture (e.g., lifting and transportation
of objects) andmission-driven (formation-based) architecture
(Fig. 2(b)) require a higher degree of coordination and collab-
oration [2], [3]. This article focuses onmission-driven swarm
networks where certain network structure is desired. Based
on the mission requirements, UAVs are often deployed in
a certain spatial formation and the whole network topology
may change from one formation to another (called swarm
morphing hereafter). The formation control can be done
through different methods such as leader-follower [4]. Since
the UAVs have limited resources in terms of power, mem-
ory, computations, etc. Hence, the low complexity protocols
should be designed for swarm networks.

FIGURE 2. Different swarm architectures: (a) swarm cooperation,
(b) mission-driven formation.

In this article, an intelligent, high-throughput routing
scheme is designed that adapts to the dynamics of swarm for-
mation. In general, the proposed scheme is distributed and can
be used to improve different QoSmetrics (such as throughput,
delay, load-balancing, etc.) as well as network life time.
It exploits the swarm structure (formation) to reduce the
complexity of smart routing. Many existing routing schemes
typically search the shortest path and cannot adapt to the
network dynamics. On the other hand, the centralized solu-
tions and routing schemes, which rely on the frequent update
of link-state information to construct the topology database,
introduce a high complexity and overhead, which is not suit-
able for resource-limited swarm networks.

To add intelligence and adaptivity to network applications,
the artificial intelligence (AI) techniques, such as deep learn-
ing (DL) [5] and deep reinforcement learning (DRL) [6], are
becoming increasingly popular. Despite the effectiveness of
these techniques, many AI schemes may not be practically
applicable to the resource-limited UAV swarm networks in
which powerful computing platforms are not accessible and
energy consumption is a critical issue.

The routing scheme proposed in this article uses a special
geometric addressing system to identify the roles and location
of different nodes based on the swarm structure, in order to
reduce the routing overhead and latency. In fact, the mission-
driven swarm networks, which follow a specific formation,

can be represented by a framework, called skeleton in this
article. Here, the skeleton refers to the main structure of
the swarm which consists of several relatively stable nodes,
called bones. The nodes located in the outer area of the
swarm typically have higher mobility than the core/inner area
nodes. In terms of the node addressing model, here the term
‘‘geometric’’ is preferred to ‘‘geographic’’, since the geo-
graphic coordinates of the nodes may not be accessible. Note
that the geometric address represents the area where the node
is located in.

The proposed routing protocol is hybrid: 1) Geometric
forwarding: Packets are forwarded to the area that the node
is expected to reach based on a greedy forwarding scheme.
2) Reactive search: A local search is conducted to find
the destination’s location. Here it is assumed that the UAV
formation’s shape changes smoothly based on the mission
requirements. We call such a process as swarm morphing,
similar to the concept of image/polygon morphing in the field
of computer vision.

Particularly, a distributed dynamic-programming-based
online routing scheme, called skeleton-based swarm rout-
ing (SSR), is proposed which uses a leaf-like routing pipe
to transmit the packets through the nodes that experience
less traffic load (thus have a lower probability of getting
congested) and hence, improves QoS. The proposed rout-
ing scheme is flexible and can be used to improve other
networking metrics, such as network lifetime, when QoS
requirements are not tight. To the best of our knowledge, it is
the first work that benefits from the geometric addressing
derived from the UAV swarm structure in order to improve
the routing procedure. The main contributions of the paper
are as follows:
• Swarm skeleton-based geometric addressing: A novel
geometric addressing model is designed based on the
swarm skeleton structure, which represents the UAV’s
approximate location. A formation morphing strategy is
implemented to guide the node into the position with
the minimum impact on its geometric address, when the
entire network changes the formation.

• Adaptive pipe routing: A leaf-like routing pipe is con-
structed according to the addressing model. The pipe
serves as the main framework of the routing scheme
and can adapt to the changes of the network skeleton
structure.

• Dynamical-programming-based route optimization:
A novel distributed, low-cost, intelligent routing pro-
tocol is proposed to achieve the high-throughput and
load-balanced data forwarding inside the pipe.

The rest of the paper is organized as follows: Section II
presents an overview of the related work. Section III pro-
vides the system assumptions and briefly explains different
components of the proposed routing scheme. The proce-
dure for developing a novel geometric addressing model and
constructing the leaf-like pipe, is discussed in Section IV.
Section V provides the swarm morphing procedure based on
the star-like skeleton structure. In Section VI, the details of
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SSR that can intelligently route data inside the pipe are thor-
oughly discussed. To demonstrate the high QoS performance
of the SSR scheme, extensive simulation results are presented
in Section VII. Section VIII analyzes the SSR overhead,
followed by the conclusions in Section IX.

II. RELATED WORK
UAV swarm network has specific characteristics, in terms
of mobility pattern, computation power, energy consumption
and radio propagation, which make it different from other
types of ad hoc networks. Due to the increasing popularity,
many studies have been conducted on the suitable protocols
and the corresponding challenges of such networks.

In general, the routing schemes can be classified into
five categories: 1) Reactive routing: These schemes, such
as Ad-hoc On-demand Distance Vector (AODV) [7], are
on-demand and mainly designed for mobile ad-hoc networks.
For route discovery, they rely on flooding the control mes-
sages throughout the network which results in extra overhead
and latency. 2) Proactive routing: These protocols are based
on routing tables that are regularly updated (even when there
is no data to transmit) and, hence are faster. However, frequent
update of the link-state information throughout the network
causes high overhead [2]. 3) Geographic/geometric routing:
These schemes are sometimes considered as proactive routing
as they do not perform the initial route discovery phase. How-
ever, they do not need the periodic update of the routing tables
and the information about the entire network link states.
Instead, they depend on the geographic location of the nodes
for greedy (distance-based) forwarding. As the geographic
locations of nodes may not be always known, the recent
routing designs on this topic focus on virtual coordinates and
naming approaches [8]–[10]. 4) Store-carry-forward: This
category is more applicable to sparse and mobile networks
where nodes can move in order to deliver data packets. This
solution is mainly suitable for centralized and delay tolerant
applications [2]. 5) Hybrid: Hybrid routing protocols com-
bine the attributes of the other categories to better adjust to
the network features [11].

The integration of software defined networking (SDN)
with UAV swarm network is investigated in [12] where the
communication and routing policies are managed by the SDN
controller. A QoS-based disjoint multi-path routing scheme
based on distributed SDN architecture is studied in [13],
which can exclude the energy-exhausted UAVs and re-select
new RF links, if some links are broken. In [14], a cen-
tralized traffic-differentiated routing protocol is proposed
for SDN-based hierarchical FANET architecture aiming to
meet specific QoS requirements, where each UAV cluster
is controlled by an upper stationary airship. A centralized
SDN-based topology and routing management scheme is
introduced in [15], where the controller positions the relay
nodes to optimize the link availability and constructs the
routing table for each node based on the length of the links.
The deployment of SDN requires the collection of network
information and the use of specific network infrastructure.

An autonomous flocking control scheme is proposed
in [16] to maintain the hierarchical network structure. Due to
the high cost of deploying GPS and the possibility of losing
GPS signals, it uses the received signal strength (RSS) to
estimate the distance. The work in [17] solves the problem
of communication and control of a triangular swarm of three
cellular-connected UAVs andmathematically derives the reli-
ability of the wireless system in terms of meeting the delay
requirements. [18] investigates the effect of UAVs sharing the
same spectrum with the uplink of cellular users. The result
shows that the presence of UAV links may slightly degrade
the cellular users’ uplink performance. The quality of UAV
links as well as the user links degrades as UAVs fly higher,
due to the possibility of larger line-of-sight interference.

Some recent studies on swarm networks have focused on
new routing schemes since the existing ones for ad hoc or sen-
sor networks may not be sufficiently mobility-adaptive, com-
munication and computation efficient, or supportive of UAV-
to-ground-station communications. It is mentioned in [19]
that nodes can estimate the time and energy consumption for
data transmission in each path by accessing the position infor-
mation. They construct a weighted directed graph for UAV
cluster architecture. Based on the graph analysis, the optimal
relay path can be found through Bellman-Ford algorithm.
An adaptive scheme is proposed in [20] which dynamically
adjusts the HELLO packet interval and the timeout timer
based on the swarm mission information and the network
condition, in order to minimize the energy consumption in
FANET routing schemes.

An enhanced version of AODV, called robust and adaptive
reliable predictive (RARP) scheme [21], is proposed for UAV
networks which combines the omnidirectional and direc-
tional transmissions, and uses a modified RREQ format that
includes sender’s trajectory information (in 3D), minimum
expected connection time of the path and maximum of nodes’
failure probability. The destination waits for a specific time to
receive several RREQs and selects the path based on a utility
function which is a weighted sum of the metrics in RREQ and
the hop count to the destination. The authors in [22] propose
the PSO-GLFR protocol, which improves greedy forwarding
routing (GFR) using particle swarm optimization (PSO) and
limited flooding. Besides the distance factor, the PSO-GLFR
protocol considers the number of neighbors and deflection
angle to find the next forwarding relay.

Some studies have extended OLSR [23] in order to adapt
it for FANET. To address the high-mobility of UAVs, [24]
weights the expected transmission count (ETX) metric based
on the relative speed between the nodes using the GPS
information. In [25], a mobility and load aware OLSR
(ML-OLSR) is proposed which assigns a stability degree
to the links based on the statistical information of the dis-
tance. Moreover, a load factor is calculated using the buffer
load of the node and its neighbors, which avoids selecting
the congested paths in the path selection phase. In a sim-
ilar approach, a link-quality and traffic-load aware OLSR
(LTA-OLSR) protocol is proposed in [26], in which the
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statistical information of received signal strength is used
to find the link quality. The traffic load of each UAV is
obtained using the node’s buffer load and the channel uti-
lization (which is an indication of neighbors’ traffic load).
Despite the effectiveness of such proactive schemes, the need
for frequently updating the topology state introduces high
overhead, and the computational complexity of path selection
algorithmmay be a hindrance, especially in large networks of
battery powered UAVs [2].

In swarm networks with sparse density, the store-carry-
forward technique is a popular solution that benefits from
the node mobility to forward packets to suitable nodes. The
authors in [27] propose the location-aided delay tolerant
routing (LADTR) protocol, which combines geographic for-
warding with store-carry-forward strategy to improve the
availability of paths between searching UAVs in post-disaster
operations. The GPS information is used to estimate the
future locations of UAVs. To create a reliable end-to-end
communication in fast and random flying UAV networks,
[28] uses the queue backlog information along with the geo-
graphic information of the nodes to select the next forwarding
relay in the store-carry-forward method. Moreover, the Rap-
torQ code technique is used to further reduce the packet loss
rate. Although these routing schemes improve the delivery
ratio, they are more suitable for delay-tolerant applications
due to the latency caused by store and carry procedure.

A relatively lightweight stochastic packet forwarding
scheme is proposed in [29], where the forwarding probability
to each neighbor is found using the link throughput and
expiration time. These two metrics are estimated based on
geographic coordination and moving information propagated
via HELLO packets. The stochastic forwarding can distribute
the packets among several forwarders based on their weights
and hence, reduces the interference among nodes compared
to single path routing. Distributing packets over a routing
‘‘pipe’’ (instead of a routing path) is another approach to
mitigate the inter-node interference, which is investigated
in [30] using multi-beam directional antenna (MBDA). How-
ever, the use of MBDA may be costly in large-scale UAVs
networks.

With popularity of online learning andAI algorithms, some
researchers have used such techniques in swarm networks.
For example, in [31] an online reinforcement learning (RL)
scheme is used for transferring time-insensitive packets in
sparse networks, where UAVs help to transfer data. Inspired
by geographical routing, it defines a reward function and
learns whether to relay data among UAVs or move UAVs to a
new location. Although several studies have been conducted
to improve the convergence speed of RL algorithms [32],
they still face the convergence problem in large state space.
The use of DRL has shown more promising results for large
state and action sets. The deep Q-learning technique is used
in [33] in an airborne network composed of powerful air-
planes at the higher layer and high-density UAV swarm at
the lower layer. The scheme adjusts the locations of some
UAVs to make up for the broken RF links. However, due to its

high computation complexity, DRL may not be applicable in
resource-constrained UAV networks. Table 1 compares some
of the major routing protocols, in terms of routing category,
the metrics being used, load balancing, communication over-
head and computation complexity.

TABLE 1. Routing protocols comparison for UAV network.

The scheme proposed in this article is distributed and
avoids the overhead and complexity of the centralized solu-
tions such as SDN and AI-based approaches, while adapting
to the network conditions. It uses the geometric forward-
ing and hence, does not rely on the geographic coordinates
(which may be sometimes unavailable). To the best of our
knowledge, it is the first work that benefits from the geo-
metric addressing derived from the UAV swarm structure.
Compared to [29], SSR forwards data to only a subset of
neighbors in the direction of the destination (according to the
geometric addressing) instead of all the neighbors, so that the
data is not diverted from the desired trend in large networks.
SSR does not perform route discovery and thus, avoids

the latency and overhead of flooding RREQs. Moreover,
it dispatches data through a routing pipe which signifi-
cantly improves the throughput. Similar to [25], [26], it is
a load-balanced routing scheme, but does not require fre-
quent update of the link state information required by proac-
tive approaches. However, it requires the distribution of the
updated geometric address table, which is not very frequent in
the formation-based UAV network, considered in this article.

III. SYSTEM MODEL
In this section, a swarm network model is described and the
system assumptions for the morphing and routing schemes
are provided. The UAVs are interchangeably referred to as
the network ‘‘nodes’’ in the paper.
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A. NETWORK ASSUMPTIONS
1) NODE RESOURCES
As the GPS data may not be available at some nodes,
the proposed scheme does not rely on the exact geographic
location information. To stay in a proper relative position,
the nodes estimate the angle and distance of their neigh-
bors by using inexpensive equipment, such as compass and
sensors. The inter-node distance can also be estimated via
RSS-based methods. Nodes have limited power and compu-
tational resources and are thus not able to execute complex
algorithms. Simple omnidirectional antennas are used here
and nodes’ time clocks are synchronized.

2) SWARM TOPOLOGY
Swarm nodes fly in a 2D environment. One of the nodes is
assumed to be the swarm leader, which is pre-selected and
fixed in this article. The leader can access larger resources.
However, in order to make the scheme applicable to networks
with limited resources, it is assumed that only the leader
has access to the mission commands. The leader may decide
about the swarm topology itself or receive the command from
another entity, e.g., the control station.

The information about the new structure can be represented
as the basic information about the skeleton, such as the length
and angle of the bones and is transmitted by the leader to the
nearby bone nodes. The swarm acts in a distributed manner
and each node guides its child node to the proper position
(parent-child formation control strategy). Hence, the need for
the geographic information (e.g. GPS data) and the trajectory
of all the swarm nodes is eliminated. This reduces the com-
plexity of the formation control algorithm, specially in large
swarms, and improves the scalability and the flexibility of the
network.

3) NODE MOBILITY
The UAVs are assumed to move at a speed of 10∼50m/s.
In mission-driven swarm networks, the UAVs cooperate
with each other to fulfill a mission. However, the mission-
driven formation doesn’t mean that all the nodes have a
pre-determined trajectory and all the locations are pre-known
and exact. Nodes can still move freely in their proximity, but
they need to maintain the overall topology and, therefore,
an approximate swarm ‘‘framework’’ should be kept (called
skeleton in this article). When a new swarm mission com-
mand is received, nodes may move together towards a target
area or locally to properly fill a region. They may also move
to help with the route establishment. Hence, the network
dynamics can be described by a topology prediction model.

4) TABLES MAINTAINED IN NODES
In addition to the general neighbor table that records
the 1-hop neighbors’ information (such as their IDs, dis-
tances, etc.), each node also maintains a geo-address
table that contains all nodes’ ID and their geo-addresses,
as well as the time-stamp when the geo-address is updated.

The geo-address table is distributed throughout the network
(by the leader) when the swarm formation is constructed, and
may be updated if there are major changes in the swarm (e.g.,
after each shape morphing). Meanwhile, each node may also
update the geo-address extracted from a packet’s header, if the
corresponding time-stamp is newer than the one saved in the
table. Nodes also maintain a routing table for one or more
destinations, which includes the next-hop relay nodes (called
potential forwarders or PF) and the cost of the path to the
destination, initiated by each PF (denoted as Qj).

B. SSR COMPONENTS
Fig. 3 illustrates the multi-tier architecture of the proposed
SSR scheme. At the very bottom layer, geometric addressing
system provides the approximate location of each node. The
formation information, such as the length and the angle of the
bones, is distributed through the skeleton by the leader via
mission command messages, helping to construct and morph
the formation. The geo-address table, containing the nodes’
geometric addresses, is constructed based on the skeleton
structure and a parent-child relation model among the nodes.
Using this table and some basic information on the structure
(can also be extracted from the table), the nodes construct
their routing tables which include the set of next-hop for-
warders PF and their qualification valuesQj. Forwarding to a
set of next-hop nodes leads to a leaf-like routing pipe between
a source-destination pair.

FIGURE 3. SSR modules.

SSR is a distributed scheme. To make its forwarding deci-
sions, a node needs information only from the nodes in the
PF set, i.e. their Q values, instead of all the pipe nodes or
the whole network. This is why the SSR protocol has a lower
complexity compared to the conventional RL-based schemes
or proactive link-state routing schemes. The Qj values can be
derived based on a weighted combination of some metrics,
such as queue status (including service delay, queue length,
etc.), channel condition, the node’s remaining power, link
stability or expiration time, etc. When the data packets are
dispatched through the pipe, nodes gradually update their
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value and the forwarding probability to the PF set, leading
to the selection of high-quality paths.

IV. LEAF-LIKE PIPE FRAMEWORK
In order to speed up the data forwarding process and reduce
the route discovery overhead, the SSR protocol uses the
greedy forwarding concept by exploiting the swarm structure.
Based on the approximate geometric position of the destina-
tion, a relay node transmits the packets to a set of its neighbors
called potential forwarders that are in the direction to the
destination based on their geo-addresses.

A. SWARM SKELETON STRUCTURE
The skeleton is used as a reference to facilitate the geomet-
ric addressing and shape morphing. A similar concept has
been previously used for static sensor network [8], where
the extracted skeleton was the medial axle of the network
shape. In our case, due to themission-guidedUAVmovement,
the skeleton is a pre-known structure that can guide the swarm
to form a new shape.

Inspired by the study in [34], a star-shaped skeleton with
the swarm leader as its root is used, as shown in Fig. 4.
The reasons behind choosing star skeleton are threefold:
1) it facilitates the propagation of leader’s commands uni-
formly and quickly throughout the network, 2) it helps to
guide the nodes to build a new formation in a distributed
manner during the swarm morphing process, 3) it provides
a 2D coordinate system suitable for the geo-addressing
framework.

FIGURE 4. Examples of swarm formations with skeleton consisting of 8
bones.

The skeleton consists of branches (Fig. 4), which form
the skeleton bone and are not necessary arranged in a line.
The use of ‘‘elbow’’ nodes enables the skeleton to represent
more complex shapes and divide them into approximately
equal-area pieces. In general, the nodes are classified into
fourmain categories: 1) leader or root l; 2) skeleton node set S
that consists of bone nodes Bi ⊆ S, i = 1, . . . , k , where k is
the number of skeleton bones; 3) edge nodes located in the
border of the swarm, and 4) regular nodes. Each bone can
have up to e elbows.

The skeleton nodes can guide other nodes to form a desired
swarm shape. To manage the formation in a distributed man-
ner, nodes follow a hierarchical parent-children structure as

shown in Fig. 5(a). The leader l transmits the abstract infor-
mation on the desired swarm structure to the nearby bone
nodes and guides them to reach the desired positions. Then
this information is passed through the bones and each bone
node guides the next bone node (its child) until the complete
framework is constructed (parent-child formation control
strategy). Transmitting this geometric structure information
only to the skeleton nodes instead of the entire network,
reduces the communication overhead.

FIGURE 5. (a) Parent-children relation between different node types.
Here an arrow points from a parent to its children. (b) Priorities of
different swarm messages.

The network can first make a rough representation of the
desired shape by constructing the skeleton and some main
edges. Then other (regular) nodes can be placed, starting from
the inner layers. Some UAVs, called free nodes, may move
towards inner parts to fill any vacant area there. A node can
leave its parent node, if it receives a positioning command
with a higher priority.

B. SWARM MESSAGES
Swarm messages have different priorities as illustrated
in Fig. 5(b). Here ‘‘A-B’’ command means that a node with
role ‘‘A’’ commands another node to accept the role ‘‘B’’.
For instance, if a node has already been accepted as a skele-
ton node (by receiving a leader or skeleton-skeleton mes-
sage), it will discard any skeleton-regular or regular-regular
messages. Among all command messages, the leader and
skeleton-skeleton messages have different formats as they
contain the information on the skeleton’s shape, such as the
angles and the lengths of the bones. The swarm messages are
briefly described below.

1) SKELETON MESSAGE
Every bone node that receives a skeleton command message
records all the information about the skeleton, and updates its
position based on its assigned bone index. Then it passes the
message to the next bone node. Fig. 6 illustrates the command
message format. Suppose the number of bones is 8, then the
skeleton information can be fit into a 72-Byte (72B) packet,
containing 8B information for each bone and an additional
8B for the packet type and sender and receiver information.

In Fig. 6, the 4-bit Num field specifies the total number of
bones k(k ≤ 16) in the skeleton. The bIdx contains the bone
index that the sender is located in, where 1 ≤ bIdx ≤ k .

VOLUME 9, 2021 1291



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

FIGURE 6. Format of the command message.

SenderBoneIdx contains the bone index of the sender. Ini-
tially, the root sets it to zero, and it increases by one when
passing through each bone node. The BoneLengthi represents
the number of nodes in bone i (denoted as |Bi|). By assigning
10 bits to it, |Bi| can reach 1024, which represents a large
swarm network. The 11-bit BoneAnglei field specifies the
initial angle of the bone i, in terms of a pre-defined reference
line such as the East or North direction. The ElbowIndexi and
ElbowAnglei represent the bone index and the angle of the
elbow node in ith bone, respectively. ElbowIndexi = 0 means
that ith bone does not have any elbow.
Upon receiving a command message, the node first checks

bIdx and increases it by one. Then it finds its own bone
index by increasing SenderBoneIdx field and compares it
with ElbowIndexi. If the node is located after an elbow
node, it takes the corresponding ElbowAnglei as its bone
parent; otherwise, it adjusts its position corresponding to
BoneAnglei’s value. If the node’s bone index is equal to the
value of BoneLengthi, it is located at the end of bone i. The
end bone node guides left- and right-edge nodes to reach their
desired positions, based on the fields LeftEdgeAnglei and
RightEdgeAnglei, respectively. Then every edge node that has
been adjusted in the determined location guides the next edge
node (by sending an edge-edge command message).

2) EDGE AND REGULAR COMMAND MESSAGES
These messages do not contain much information about
the skeleton. They only tell about the new position of the
receiver node. Besides common information on packet type
and sender/receiver IDs, an edge-edge command includes
the direction and distance that the receiver needs to travel,
in order to reach the desired location in the swarm edge.

C. SKELETON-BASED GEOMETRIC ADDRESSING
The geometric addressing of each node is determined based
on its distance to the adjacent bones. Here the number of hops
is used as the distance to a node since the exact geographic
location of the nodes may not be accessible. Still nodes
are distinguished by their unique IDs. If the destination has
recently moved in the region, a local search is performed
to find the new geometric position (geo-address) of the
destination.

The proposed addressing procedure is inspired by the nam-
ing method of the medial axis based naming and routing
protocol (MAP) [8]. However, the addressing procedure pro-
posed in this article overcomes three drawbacks of MAP
scheme: (1) MAPmay get too far from the shortest path when
it first moves along the latitude and then along the longitude,
as shown in Fig. 7. The proposed scheme moves along the
diameter direction to reduce the path length. (2) Unlike MAP,
the proposed scheme does not require that every node has
a complete knowledge of the skeleton. Note that frequently
updating the skeleton information and flooding it all through
the network introduce a high overhead. (3) MAP-based rout-
ing cannot achieve load balancing. For instance, two sources
with the same height hwill transmit their data along the same
h-latitude route, which may lead to a congested path. In con-
trast, the SSR-based leaf-like routing pipe (shown in Fig. 7(b))
can easily achieve load balancing by using different paths.

FIGURE 7. Comparison of data forwarding paths in SSR and MAP.

A given node g is addressed using the tuple G(g) =
(Ri, ni, ni+1, hi, hi+1). Here Ri is the index of the region
surrounded by two bones bi and bi+1. The number of skeleton
bones, k , stays constant during the swarming process. These
bones are indexed in order, but their sizes and shapes may
change. ni and ni+1 are the indices (hop counts) of the nodes
located in bones bi and bi+1, respectively. These are the roots
of the shortest-path trees from the bones to g. hi and hi+1 are
the hop-count distances of g from ni and ni+1, respectively.
They also reflect the depth of the entire tree. If g is a bone
node, then the geo-address can be simplified as G(g) =
(Ri, ni, 0, 0, 0), where ni is the index of the bone node. The
leader’s geo-address is a tuple of zeros.

By using such an addressing system, a 2D virtual coor-
dination system is generated, where the skeleton bones are
located in the coordination axis. Fig. 8 illustrates an example
of geometric addressing for a given node g. Considering i = 2
(i.e., the node is located in the region Ri = 2, which is
surrounded by b2 and b3), the address of node g is G(g) =
(2, 4, 2, 2, 3) in this example.

D. LEAF ESTABLISHMENT AND POTENTIAL FORWARDERS
Similar to AODV scheme, every node maintains a routing
table for one or more destinations (denoted as qi). However,
there are some differences between SSR and AODV routing
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FIGURE 8. An example of assigning geo-addresses.

FIGURE 9. An example of SSR routing table.

tables. Fig. 9 illustrates the structure of a typical routing
table in SSR. Since there is no route discovery phase and
consequently no RREQ and RREP packets, the ‘‘destination
sequence number’’ and ‘‘hop count’’ fields are not used.
Another major difference is that the ‘‘next hop’’ field is
now a multi-input field that can record up to J (=4 in this
example) potential forwarders (i.e., the next-hop relay nodes,
denoted as uj ⊆ PF(qi)) to reach the destination. This
routing table has another field that records the cost of the path
(denoted asQj) initiated by each potential forwarder, which is
described in Section VI. It is used to calculate the forwarding
probability for different next-hop nodes.

After knowing the geo-address of the destination q,
the source node p starts data transmission. In order to not
divert the packets much from the shortest path between
nodes p and q, the routing scheme dispatches the pack-
ets inside a leaf-like pipe around the shortest path, shown
by the shaded area in Fig. 7(b). Upon receiving the data,
the relay node g keeps an entry in its routing table for des-
tination q, similar to the case shown in Fig. 9. The node
finds the PF set, and distributes the received packets among
them, based on the forwarding probability (to be explained
in Section VI).

Each node that receives a packet addressed to the desti-
nation q estimates the direction of q, called trend, and then
selects the set of next relay nodes with equal or shorter
distance to q. It is worth mentioning again that by distance we
mean hop-count distance based on the geo-address. By com-
paring the first element of their geo-addresses, the node will
know that it is in the same or different region as q. If the node
g and destination node q (with G(g) = (Ri, ni, ni+1, hi, hi+1)
and G(q) = (Rj, nj, nj+1, hj, hj+1)) are in the same region R,

the hop-count distance corresponding to the bone bi can be
found as follows:

d(g, q) =
√
(ni − nj)2 + (hi − hj)2 (1)

Note that (1) can be rewritten with respect to bone bi+1
as well. Estimating the distance of nodes located in different
regions may need a more complex calculation. However,
a good estimation can be obtained using trigonometry (illus-
trated in Fig. 10). The distance d(g, q) can be found through
the following equations:

α =

j−1∑
k=i+1

αk + tan−1
hj
nj
+ tan−1

hi+1
ni+1

(2)

d(g, q)

=

√
n2i+1+h

2
i+1+n

2
j +h

2
j −2

√
n2i+1+h

2
i+1

√
n2j +h

2
j cosα

(3)

FIGURE 10. Finding hop-count distance based on geo-address
information and skeleton structure.

where αk is the angle between the skeleton bones located in
the areas between the Ri and Rj regions. If the node does
not know the precise values of αk , it can use an approximate
value; αk = 360/k . The above equations are derived by
assuming that the node estimates a trend in a clockwise
direction around the root by comparing Ri and Rj. If the
trend is anti-clockwise, the equations should be updated
by substituting (hj, nj) with (hj+1, nj+1), and (hi+1, ni+1)
with (hi, ni), respectively. To make the search of PF easier,
the node g can first find the closest bone node in the trend
(mi+1 in Fig. 10), and then use (1) to locally compare the
distance of the neighbors to mi+1. Here mi+1 can be found
by using the equations below:

γ = sin−1

√
n2j +h

2
j sinα

d(g, q)
, β=180−(γ+tan−1

hi+1
ni+1

)

(4)

mi+1 =

 sin γ
√
n2i+1 + h

2
i+1

sinβ

 (5)

VOLUME 9, 2021 1293



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

V. SWARM MORPHING
In the initial phase of the skeleton construction, the leader
propagates the positioning commands to the first layer of
bone nodes, which can be a set of the neighbors close to
the specified position in the desired skeleton structure. Every
bone node is responsible to find the next bone node. A parent-
children relation is established across the bone. The last bone
node in bone bi adjusts the locations of the first edge nodes
in its left and right sides, based on the edge angle information
in the command message. The edge construction proceeds
across the edge until it is completed. A rough layout of the
formation can be detected after the construction of the swarm
bones and edges. Then the (regular) nodes can be arranged to
fill out the entire swarm.

The morphing phase initializes by propagated a new com-
mand message through the bones. Bone child position is
adjusted based on the information held in the command mes-
sage. Upon moving, a node sends a FOLLOW message to
its children containing its movement information. If a child
receives such messages from both parents (one parent is in
the tree rooted in bone bi and the other is in the tree rooted
in bone bi+1, see Fig. 8), it chooses one of them and the
parent-children relation with the other parent may break.

Fig. 11 illustrates how a bone shrinks or expands. If the
length of the new bone is shorter than the previous bone, extra
bone nodes will be added to the edges, as shown in Fig. 11(a).
If it is longer, then the closer edge nodes will join the bone to
expand it (see Fig. 11(b)). The reason for exchanging only the
bone and edge nodes during expansion or shrinking, is to keep
the boundaries closed and reduce the changes in the nodes’
geometric addresses.

FIGURE 11. An example of a) bone shrinking, and b) bone expansion.

After adjusting its child in the bone, every bone node
adjusts the position of the left or right (regular) children.
This procedure continues through the regular nodes. Nodes
select new child only from its own region (which is known
through the first element of the geometric address). This helps
to keep a UAV in the same region during the morphing. This
also helps to reduce the overhead of searching a displaced
node and simplify the routing process. When a node cannot
be found in the expected place, a local search limited to the
region Ri is carried out to find the new location, as explained
in Section VI. Here, a region refers to the area surrounded by
two bones.

If a node updates its geo-address, its children need to
update theirs accordingly. Upon changes in its geo-address,
every node g broadcasts the new geo-address (via HELLO

packets) to its neighbors. The leader gathers all the nodes’
geometric addresses after each shape morphing, as the
address of several nodes might have changed. The leader
constructs an updated geo-address table and propagates it
throughout the network.

It is worth mentioning again that UAVs in mission-driven
formation move in an organized and controlled manner to
maintain the overall structure. When the structure is chang-
ing, nodes move in a way that has the minimum impact on
swarm instability (it is called distortion hereafter). Nodes
located in the inner parts of the swarm, experience the lowest
displacement while those in the outer parts may have to move
further. Considering that SSR establishes a data forwarding
‘‘pipe’’ instead of a single or several separate paths, multiple
active paths are available to the destination, even if several
links are broken. The routing pipe is discussed further in the
following section.

VI. SKELETON-BASED ROUTING
The SSR scheme aims to achieve an intelligent swarm-
adaptive, load-balanced, and high-throughput routing.
It builds a leaf-like routing pipe (from the source to the
destination) composed of inter-connected paths, as illustrated
in Fig. 12. Based on the feedback received from the potential
forwarders, nodes gradually adjust the frequency of data
transmission through these paths.

FIGURE 12. A leaf-like pipe composed of inter-connected paths. Each link
is associated with a forwarding probability.

When a source node p decides to send packets to a des-
tination q, it first looks for a matching entry in its routing
table and extracts G(q) from the geo-address table. If there is
a corresponding forwarder set PF that is up-to-date (SSR can
find this by comparing G(q) and its time-stamp with those in
the routing table), it starts to dispatch packets among PF(q)
based on the corresponding Q-values. Otherwise, it first
updatesPF(q) and their correspondingQ-values, as described
in Sections III and IV.

Besides the source and destination IDs, the data packet’s
header also includes G(p) and G(q) (as well as the time-
stamp) when the source has updated G(q). When a relay
node receives a packet, it updates G(p) in its geo-address
table. If the node has a newer G(q) compared to the one
in the packet, it inserts the updated one in the packet
header and notifies the source about the changes in G(q).
In general, every node that hears a new geo-address will
update its table. Upon significant changes in the geo-address
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of the node or destination q, the set of next-hop nodes,
PF(q), is updated and the Q-values of newly added nodes is
initialized.

A. BUILDING SKELETON ROUTING VIA A DISTRIBUTED
STOCHASTIC DYNAMIC PROGRAMMING APPROACH
The mesh architecture shown in Fig. 12 inspires us to for-
mulate the problem of skeleton-based routing as a stochastic
shortest-path problem [35], which can be solved using a
dynamic programming approach [36]. A cost (or reward)
is assigned to each link inside the leaf-like pipe, and the
cumulative cost is calculated in a backward recursion fashion.
However, the cost values are not known in advance, and
are subject to the changes due to the dynamic nature of the
swarm network. Hence, an online dynamic-programming-
based approach is used which can adapt quickly to the
changes of the network conditions. It has two main advan-
tages:

1) It is solved in a distributed manner. Instead of having
a central point which gathers all the state information
frequently and solves the whole problem, every node
calculates its own value.

2) Nodes gradually update their forwarding probabilities
based on the values of their forwarding nodes and
hence, the scheme will learn how to dispatch the data
packets inside the pipe in order to get the best perfor-
mance with a low computation complexity.

To dispatch the cumulative cost (or reward) through the
path in the backward manner, one can take advantage of
the ACK messages that are popularly used in routing pro-
tocols. A mini-pipe is initiated from each relay node g to
the destination q, as shown in Fig. 12. The ‘‘expected’’ cost
(or reward) of the sending packets from the node g through
the mini-pipe, is denoted as V (g), which can be piggybacked
onto g’s ACKmessages. Upon receiving it, the sender updates
the Q-value that corresponds to the forwarder node g in the
routing table.

The problem can be modeled as a Markov decision pro-
cess (MDP) in which every node is a state, s ∈ S = N
(N is the set of the nodes in the pipe), with the action space
A , PF(s) and the next state s′ = a(s). Here the transition
probability function is the probability of choosing a possible
forwarder, i.e., P(s′|s, a(s)) = P(a(s)|s). Then the expected
cost (value) at each node v can be found by using the Bellman
equation [36]:

V (v) =
∑

u∈PF(v)

[cvu + V (u)]P(u|v) (6)

where cvu is the immediate cost of transferring packets
from v to u, and V (u) is the cost value of node u. P(u|v)
is the probability of forwarding packets to node u, where∑

u∈PF(v) P(u|v) = 1. Initially, when a new forwarder is
added to the pipe, its associated cost is set to the initial
value V0 which gets updated as the packets pass through
the node. Considering αQ as the learning rate, the Q-value

in the routing table can be updated by using the following
equation:

Q(u) = (1− αQ)Q(u)+ αQV (u) (7)

B. PACKET FORWARDING PROBABILITY
A node u ∈ PF(v) may become the next forwarder based
on a probability distribution function. There are differ-
ent action-selection strategies in the reinforcement learning
(RL)-based schemes, such as random action-selection and ε-
greedy approaches. Here, the Boltzmann approach is adopted
which selects the actions based on a probability distribution
function, such that the more rewarding actions are selected
with higher probabilities (more frequently).

The major advantage of the Boltzmann approach over the
ε-greedy approach is that the non-optimal actions are not
selected with equal probability. Instead, they are taken with
a frequency corresponding to their estimated rewards. Hence,
more rewards can be gathered in the exploration phase. In this
approach, the probability function is represented by the Soft-
max function (or normalized exponential function) with the
temperature parameter τ . Here, the proper choice of τ is
important. The higher values lead to almost equiprobable
actions as in random approach, while the lower values can
make a big difference in action selection probability [37].

Other exploration approaches such as Bayesian neural net-
works or deep RL (DRL) might work better but introduce
a high computation complexity (thus not suitable to UAVs
networks). Thus, the Boltzmann action-selection approach is
adopted where the probability of choosing node u as the next
forwarder (i.e., forwarding probability) can be found through
the following equation [38]:

P(u|v) =
eQ(u)/τ∑

y∈PF(v) e
Q(y)/τ (8)

Note that in (8), the Q values represent the reward asso-
ciated with the actions. Thus, if the problem is formulated as
minimizing a cost, the cost valuesQc can be first converted to
reward values Qr before calculating the forwarding probabil-
ity. For instance,Qc can be normalized and thenQr = 1−Qc.

C. COST FUNCTION
The definition of cvu is application-specific and depends on
QoS requirements. It can be a weighted combination of sev-
eral metrics. For instance, video streaming demands a high
data rate and very low latency. Control packets hold sen-
sitive information and hence require timely delivery. Some
IPv4 applications and offline transfer of texts or documents
can be classified as the best-effort services.

For the best-effort traffic, the data packets can be routed
through the paths with a higher remaining energy in the inter-
mediate nodes, although they may not provide low-latency
communications. For instance, the work in [39] has proposed
an energy-aware reward function which, with respect to our
problem, can be represented as follows:

rEAvu = sigm(4E(u)× βe) (9)
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where 4E(u) is the difference between the energy of the
node v and the next forwarder node u, and βe is an energy
difference scaling factor. The Sigmoid function rescales the
energy difference with [−1, 1].

To make SSR support high-throughput and low-latency
communication for high-priority traffic, the per-hop service
delay is defined as the cost, i.e., the time duration from the
moment the packet enters the queue to the moment it is suc-
cessfully delivered, denoted by cSDvu . It represents the queue
length and the channel utilization (i.e., the medium access
delay in contention based protocols) and hence, leads to a
load-balanced solution [25], [26]. It also indirectly tells about
other situations such as RF interference, channel collisions
and link handoff. If a node is experiencing high interference
or poor SINR (due to the long distance), the packet drop
rate increases, which leads to increase in packet delivery
delay. A node can find the expected service delay through
the statistics of the past experiences.

D. LOCAL SEARCH
If the destination q moves away from the expected location
specified in the packet header, a node that expects q to be in
its neighborhood (by comparing their geometric addresses)
may not be able to find it. In this case, the node initiates a
local search to find the current address of q by broadcasting
an address request (AREQ) packet. AREQ contains the initia-
tor’s ID and address, q’s ID and its previous address, and the
time-stamp. Any node with a newer address should reply and
every node hearing a newer address updates its geo-address
table.

In fact, a newer address represents q’s trajectory towards
the new position. The initiator is responsible for gathering the
addresses and sending an update on the latest address to the
source. AREQ flooding only occurs in a small region (Ri) in
the skeleton-based routing protocol.

E. TWO-STEP DISCARDING POLICY (TSDP)
For service delay as the cost function, V (v) in (6) repre-
sents the expected latency before reaching the destination.
It can also be used for active queue management that aims
at relieving the network congestion or reducing the end-to-
end latency by discarding some packets in the queue before
it gets full. Tail drop and random early detection (RED)
are examples of widely used discarding approaches (RFC
2309 and 7567). However, for delay-sensitive applications
with large queue sizes, it is preferable to use a discarding
policy that drops packets based on the priority levels and the
probability of on-time delivery to the destination. Inspired
by weighted random early detection (WRED) approach [40],
here a two-step discarding policy (TSDP) is proposed that
operates based on the service delay.

TSDP consists of two steps:
1) Finding Pubd , the upper bound of the packet discard

probability. As illustrated in Fig. 13(a), this value is low (close
to 0) for low-latency queues, but increases linearly as the
service delay rises until reaching Pmaxd . One can determine

how to discard the packets with different traffic types through
different configurations of Pmaxd , SDmin and SDmax . The cal-
culated Pubd will be used in the second step.

2) In this step, the discarding probability of packets (in the
same traffic type) is differentiated by estimating the possibil-
ity of timely delivery. Assume that tl is the packet lifetime,
tvq is the expected latency from node v to destination q, and
tpkt is the packet age. Then the survival ratio of packet pkt
entering node v’s queue can be defined as follows:

SR(pkt, v) =
max(tl − tpkt − tvq, 0)

tl
(10)

When the packet is new and a low-latency route is esti-
mated, the survival ratio increases, which leads to a decrease
in Pd , as shown in Fig. 13(b). However, a low SR(pkt) indi-
cates that the packet has a small chance of arriving at the
destination in time and hence, this packet is dropped with a
higher probability.

FIGURE 13. (a) Upper bound on the drop probability in the first step
of TSDP, (b) Finding the drop probability of a packet in the second step
based on its probability of on-time delivery to the destination.

Plbd is a fraction of Pubd , i.e. Plbd = αPubd . If a node does
not have enough information to estimate tvq, α can be set to 1
(i.e., the survival ratio is not counted). In general, tvq can be
estimated through the recursive equation (6), i.e, it is equal
to V (v) if cvu is the per-hop service delay. Each node v in the
pipe can evaluate the service delay to the next forwarder u,
calculate tvq and send it to its upstream node.

F. RESILIENCE TO INTENTIONAL INTERFERENCE
SSR can be combined with the detection schemes for inten-
tional interference to detour the data around the interfered
areas. If UAVs are capable of detecting the intentional
interference and scoring themselves based on the probabil-
ity of being interfered (similar to [30]), this score can be
reflected in the Q value of nodes. Hence, in (8), the prob-
ability of forwarding to a potential forwarder u ∈ PF(v)
increases, if the mini-pipe initiated from u has a lower
chance of being involved in intentional interference activ-
ities (see Fig. 12). In this case, SSR can route the pack-
ets through the ‘‘safe’’ areas in the pipe. Please note that
boundary nodes, i.e. the nodes close to the interfered area,
are more vulnerable to intentional interference in the near
future due to mobility. Thus, they should be assigned a lower
score.
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FIGURE 14. a) Initial positions of UAVs randomly distributed in a 10km × 10km rectangular area; b) Square formation based on the skeleton concept; c)
Triangular formation.

VII. PERFORMANCE EVALUATION
In this section, the performance of the proposed UAV swarm
morphing and SSR routing scheme is evaluated. A wire-
less swarm networking platform is developed in Matlab,
where the nodes can morph from one shape into another
and exchange packets through IEEE 802.11 channel access
model. The simulation parameters are summarized in Table 2.

TABLE 2. Simulation parameters.

A. SWARM CONSTRUCTION
The swarm formation of two example shapes (square and
triangular) is examined using the procedures explained in
Sections IV and V. To construct the swarm formation from
randomly distributed UAVs within a 10km × 10km rect-
angular area, as depicted in Fig. 14(a), the leader in the
center propagates command messages to the nearby nodes
and guides them to move towards the desired locations to
form the first layer. Then, the skeleton nodes construct the
core of swarm based on the information in the command
message (Fig. 6).

The final shapes of the square and triangle formations
are illustrated in Fig. 14(b) and (c), respectively. The results
validate the ability of the simulator in terms of using the
skeleton nodes to facilitate the swarm formation.

B. ESTABLISHMENT OF LEAF-LIKE ROUTING PIPE
In this part, several scenarioswith different source-destination
pairs are considered, and the ability of the proposed model
to construct leaf-like routing pipes based on the skele-
ton infrastructure and geometric addressing is evaluated.
Fig. 15(a) illustrates the pipe constructed between two rel-
atively far-away nodes (in two opposite regions in a square
formation). The pipe starts from the source at the top, passes
through several regions and gets merged again near the
destination. Fig. 15(b) illustrates a smaller pipe from the
leader to destination.

As seen in Fig. 15(a) with (b), if the distance between
the source and destination is longer, the formed leaf could
become wider and allows the establishment of more backup
paths in the pipe. A wider pipe also leads to a higher
throughput and better traffic balancing performance since
more non-interfering paths can be built. Fig. 15(c) depicts
another example of the pipe within a triangle formation.
The pipe may not be like a leaf when the inter bones’
angles are different or the bone elbows are presented. How-
ever, this is not the main concern as long as a group of
nodes can be found to build the optimal routes among
them.

C. SSR PERFORMANCE IN LIGHT EXTERNAL TRAFFIC
In this section, performance of the SSR scheme is examined
when the external (or background) network traffic is light
and has a lower priority than the flow under investigation
and is generated by other applications. Only one source and
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FIGURE 15. Establishing a leaf-like routing pipe based on the proposed geometric addressing: a) a large leaf in square formation; b) a small leaf in
square formation; c) a small leaf in triangular formation.

destination pair is active in the routing pipe. Fig. 16 compares
the (normalized) throughput of SSR protocol with that of
AODV scheme, for the formation and the routing pipe illus-
trated in Fig. 15(a). Moreover, the impact of different values
of τ (the thermal factor in Boltzman model) on the routing
performance is investigated. Here, τ is a hyper-parameter and
determines the sensitivity of action selection in Markov deci-
sionmodel (smaller τ means higher sensitivity). In this figure,
SSR-random represents the case when the data forwarders
(PF) are chosen randomly.

As shown in Fig. 16, all schemes work well for a low
data generation rate. When the source rate increases, SSR
with τ = 0.05 still shows a satisfactory performance while
others have degrading throughput. The reason is that SSR
with τ = 0.05 distributes packets to the paths that have a
lower RF interference with each other. However, when source
data generation rate exceeds 2.5Mbps, SSR with τ = 0.05
also exhibits throughput degradation. The main reason for
throughput drop in high data rates is that the source node
cannot timely flush out all the generated packets due to the
congested channel.

Uniformly distributing packets among the forwarders in
SSR-random scheme may not be a good solution since the
inner nodes will suffer a stronger interference from nearby
nodes. The result shows that SSR-random and SSR with
τ = 1 exhibit a similar performance. The throughput of
AODV, on the other hand, falls more rapidly since it uses only
a single path at the center of the pipe.

Fig. 17 compares the delay of packets received at the desti-
nation for the above-mentioned scenarios. The result reveals
that a higher τ causes longer delay since the service time
grows in queues. The AODV’s expected delay is lower than
the other schemes at higher data generation rates as it passes
the packets through the shortest path in the middle of the pipe.

FIGURE 16. Throughput comparison for different forwarding action
selection schemes when network traffic is light.

FIGURE 17. Received packet delay comparison for different forwarding
action selection schemes when traffic is light.

However, a large portion of the packets are dropped on their
way to the destination.

To account for the dropped packets in delay performance
analysis, Fig. 18 illustrates the total delay as the expected
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FIGURE 18. Total delay comparison for different forwarding action
selection schemes when traffic is light.

delay of all packets, where the delay associated with a
dropped packet is considered to be the packet lifetime.
Based on the figure, AODVdelay is similar to that of SSRwith
τ = 1 and SSR-random, while SSRwith τ = 0.05 has the best
performance in terms of routing the data through faster paths.
The total delay is used in delay analysis hereafter.

D. SSR PERFORMANCE WHEN NETWORK IS CONGESTED
Next, the performance of SSR in terms of its load-balancing
capability is investigated under network congestion, for the
network topology shown in Fig. 15(a). The external traf-
fic could cause certain congestion around the leader node,
as depicted in Fig. 21(a).
The throughput and delay for several configurations are

evaluated in Figs. 19 and 20, respectively. Again, SSR shows
a better performance when using smaller values of τ , as the
probability of choosing the optimal actions in Markov model
increases. Though τ = 1 performs poorly, it is still slightly
better than the random selection of the forwarders. Higher
value of τ leads to almost equal probability of actions in
Markov model, and hence, the result is closer to that of SSR-
Random.

The SSR performance is compared with FANET routing
protocols ML-OLSR [25] and LTA-OLSR [26], which are
load-aware proactive routing schemes. Both the ML-OLSR
and LTA-OLSR find the best route to the destination which
experiences the lowest traffic load. Averaging over buffer
load and channel occupation, LTA-OLSR performance is
comparable to SSRwith τ = 0.05 for smaller data generation
rates, as shown in Fig. 19. However, when the source rate
rises, LTA-OLSR performance degrades due to the inter-node
interference in single path routing, whereas SSR(τ = 0.05)
outperforms LTA-OLSR as it dispatches the data packets
though a routing pipe which can lead to a higher throughput.

As shown in Fig. 20, the packet delay in SSR-Random and
τ = 1 may not always have an increasing trend when the
source rate increases. In Fig. 21(b) and (c), some packets may
be dropped in the path, which helps to mitigate the congestion
and reduces the delay for the rest of the traffic. This fact is
also mentioned in [30]. Due to the use of routing pipe, SSR
with τ = 0.05 can balance the traffic load and decrease the

FIGURE 19. Throughput comparison for different action selection
schemes (with congestion).

FIGURE 20. Delay comparison for different action selection schemes
(with congestion).

delay more efficiently compared to LTA-OLSR which uses a
single-path routing.

Fig. 21 compares the load distribution of SSR traffic across
the entire leaf-like pipe, for the topology shown in Fig. 15(a).
Here the routing traffic is almost evenly distributed
in SSR-Random scheme or when using τ = 1, regardless
of the external traffic. However, the traffic load is heavier in
the start section of the pipe but it decreases when it travels
through the pipe, because some packets are dropped before
reaching the destination. In these cases, SSR ignores the
location of the congested areas and therefore cannot avoid
them. On the contrary, the traffic associated with smaller
values of τ can successfully get away from the congested
area, as depicted in Fig. 21(d) and (e).

Fig. 21(f) reveals that when there is no congestion SSR can
evenly distribute traffic in the entire pipe, and the center of the
pipe experiences slightly less traffic than the outer areas (thus
the nodes in the center experience less interference). Here the
destination receives more packets from the outer areas than
the center.

Although small τ increases the throughput by selecting
the optimal Markov actions more frequently, it also reduces
the possibility of exploring other actions. Hence the routing
scheme may not be able to quickly adapt to the changes
in network conditions. Thus, selection of a suitable value
of τ is a trade-off between performance and learning speed
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FIGURE 21. (a) External load distribution due to other applications; (b) Load distribution of SSR traffic with random action selection under congestion;
(c) Load distribution of SSR traffic for τ = 1 under congestion; (d) Load distribution of SSR traffic for τ = 0.2 under congestion; (e) Load distribution of
SSR traffic for τ = 0.05 under congestion; (f) Load distribution of SSR traffic for τ = 0.05 without congestion.

FIGURE 22. Throughput comparison with and without the use of TSDP in
congested scenario.

in dynamic swarm environment. In the experiments, using
τ = 0.05 achieves an optimal routing performance.

E. SSR PERFORMANCE WITH TSDP
Figs. 22 and 23 illustrate the effect of TSDP on the SSR
throughput and delay, for the congestion scenario shown

FIGURE 23. Delay comparison with and without TSDP in congested
scenario.

in Fig. 21(a). Table 3 summarizes the TSDP parameters for
the SSR and the low-priority external traffic. In Fig. 22,
TSDP does not noticeably affect the performance when
the throughput is high. However, when the queues get
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FIGURE 24. Swarm morphing from a square to triangular formation and the changes of the leaf-like routing pipe: a) Initial leaf-like pipe in
the square formation; b) A snapshot of swarm at the middle of morphing; c) The end pipe in the triangular formation. The morphing
process takes about 125s.

TABLE 3. TSDP simulation parameters.

congested and the throughput degrades at higher source rates,
TSDP improves the performance by filtering out part of the
low-priority traffic as well as packets having a low chance of
reaching the destination in time. Therefore, the competition
for the channel access is moderate and more high-priority
packets can reach the destination.

Fig. 23 reveals that TSDP may slightly increase the
expected delay of the received packets, because more packets
can reach the destination before expiration.

F. SWARM MORPHING
In this section, the performance of the SSR scheme is eval-
uated when the swarm morphs from one shape to another.
Here, morphing from the square formation to triangular shape
takes around 125s. The morphing results at three different
time instances are illustrated in Fig. 24.

During morphing, the geometric addresses of some nodes
may change and some other nodes may join or leave the pipe.
This may also lead to an undesired change in the PF list.
Generally, minimizing the topology distortion (in terms of RF
connectivity) during morphing is preferred. We thus define
the morphing distortion as the difference (in terms of the
hop-count distance) between the previous and new geometric
address.

Fig. 25 shows that about 58% of the nodes moved only
1-hop away in the geometric addressing system during mor-
phing, and only 6% of them moved more than 3-hops away.
This implies that due to localized movement of nodes, most

FIGURE 25. Morphing distortion measurement for the scenario shown
in Fig. 24.

paths inside the pipe still have good RF connectivity. Most
displacements occur in the outer areas of swarm, and the inner
nodes can still maintain their established links. Moreover,
the nodes do not leave their region Ri during morphing which
significantly helps the local search (Section VI).

VIII. OVERHEAD AND COMPLEXITY ANALYSIS
The communication overhead incurred by transmitting the
formation command message is O(Ns), where Ns is the num-
ber of skeleton nodes. It can be rewritten as O(k × d), where
k is the number of bones and d is the average length of a bone.
These control messages are only transmitted along the skele-
ton bones. Other nodes are guided through the parent-child
formation control strategy.

Updating the geo-address locally does not introduce a
noticeable communication overhead. A child node updates
its geo-address upon changes in the parent’s address which
is transferred via the conventional HELLO packets. It is not
necessary to flood the new address if it has changed by
only one or two hops due to using routing pipe and local
search. Updating the geo-address table of all nodes after a
major change in formation shape (which is not frequent) can

VOLUME 9, 2021 1301



N. Toorchi et al.: SSR: Intelligent Smooth Routing for Dynamic UAV Networks

have an overhead comparable to OLSR topology database
update. Alternatively, the leader can gather the addresses in
each region through the parent-child relations, combine them
all and flood it to the network which have communication
complexity of O(2N ), where N is the number of nodes.
The communication complexity of local search in case

of node displacement is O(2N/k), since the route-seeking
messages are only flooded inside a particular region. The
overhead can be further reduced if amulti-point relaying tech-
nique is used. Lastly, the SSR routing has a low computation
complexity, as it is executed in a distributed manner. Every
node in the pipe updates the forwarding probability of its PF
set when the value corresponding to a potential forwarder has
changed. The complexity of this operation is O(|PF |).

IX. CONCLUSION
In this article, a novel UAV routing and morphing scheme
based on the skeleton structure, called SSR, was proposed
for swarm network. SSR includes an addressing system that
provides nodes with geometric coordinates. Based on that,
a pipe with interconnected paths is constructed between a
source-destination pair, which provides a foundation for the
adaptive online routing algorithm. This routing scheme has
low complexity, can avoid congested areas, and achieves
traffic balancing in the pipe. SSR uses geometric forwarding
and avoids the flooding of route search messages throughout
the network. It only needs a local search in a specific region,
whenever the destination moves away.

The simulation results verified that the SSR scheme
can successfully establish a load-balanced high-throughput
leaf-like routing pipe. SSR outperformed the single path
throughput by up to two times and noticeably reduced the
latency. The proposed skeleton structure can also simplify
and facilitate the UAV swarm morphing process. The future
research will investigate the application of DRL for seeking
the optimal routing pipe parameters such as pipe width and
trend in a centralized large-scale UAV swarm network.
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