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ABSTRACT This paper considers supervisory control of discrete event systems with observation delays and
control delays, which is termed deterministic networked supervisory control. Delay observability, together
with delay controllability, is required for obtaining a networked supervisor so that the language generated
by the supervised system is deterministic and is equal to a given specification language. In this article,
we simplify this existence condition and prove such a networked supervisor also exists if controllability
and delay observability are satisfied. A new language property called relative delay observability, which
accommodates observation delays in relative observability, is further defined. Relatively delay observability
implies delay observability and enjoys an important property that is closed under union.We then show how to
check the relative delay observability in polynomial time complexity. A general algorithm used to calculate
the supremal sublanguage satisfying controllability and another user-defined language property in a solution
space of interest, is presented. As a special case, we calculate the supremal controllable and relatively delay
observable sublanguage. Finally, a practical example is given to illustrate the application of relative delay
observability.

INDEX TERMS Deterministic networked supervisory control, discrete event systems, delay observability,
relative delay observability.

I. INTRODUCTION
A. MOTIVATION
In the framework of supervisory control proposed by [2],
supervisors are used to control the system to ensure the
language generated by the controlled system satisfies a
given specification language. The previous work shows that
such a supervisor exists if and only if the specification
language is controllable [2] and observable [3]. However,
there does not exist the supremal controllable and observ-
able sublanguage of a given specification language in gen-
eral since observability is not closed under (set) union. To
deal with this undesirable situation, language properties that
are stronger than observability are identified, which include,
for example, normality [3], [4], weak normality [5], strong
observability [6], and relative observability [7], [8]. All

The associate editor coordinating the review of this manuscript and

approving it for publication was Azwirman Gusrialdi .

the above works assume that the communications between
the plant and supervisor are instantaneous, i.e., if an event
occurs, then it can be immediately sensed by the super-
visor, and the control commands issued by the supervisor
can be executed by the actuator of the plant without any
delays.

However, the assumption is not true in networked discrete
event systems (NDES) [1], [9]–[12], where the communi-
cations from a plant to a supervisor for observation or a
supervisor to a plant for control are sent over a shared
communication network. Due to the network characteris-
tics, the communication network may deliver the sensor sig-
nals or the control commands at their destination with a
random delay. Moreover, the sensor signals or the control
commands may be lost during the transformation. As the net-
work has been widely used in the industry, it is very necessary
to study the impact of communication delays on supervisory
control.
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B. RELATED WORKS
The purpose of supervisory control for NDES (networked
supervisory control) is to calculate a networked supervisor
to disable the event occurrences that lead to some undesired
event sequences under communication delays and losses.
This problem was systematically investigated by Lin in [9].
Based on this fundamental work, the networked supervisory
control problem has been extensively studied in the past few
years. It is shown in [12] that such a networked supervisor
exists if both controllability and network observability [9]
are satisfied. The networked supervisory control problem is
further investigated in [10], where more than one networked
supervisors are used to control the networked system. Refer-
ence [11] discusses how to calculate a maximally-permissive
networked supervisor such that the language generated by the
supervised system contains a minimum required language but
never exceeds a maximal admissible (legal) language. The
authors in [13] show how to synthesize a safe networked
control policy on-the-fly with control delays. The networked
supervisory control problem for timed NDES is considered
in [14], [15]. All the above works assume the communica-
tions are carried out over a single channel. Assuming the
plant communicates the event occurrences to a centralized
supervisor via several communication channels, reference
[16] solves the problem of state estimation under observation
delays. Under the same assumption as in [16], the authors
in [17] further investigate how to determine all the possible
initial states that the system may start from based on the
current observations, which is called the problem of initial
state estimation. Reference [18] discusses how to implement
supervisory control of NDESwith a timing structure that con-
siders both observation delays and losses. The authors in [18]
also assume the observable event occurrences are communi-
cated to the networked supervisor via several communication
channels. Moreover, references [19], [20] investigate how to
use a group of agents to diagnosis a system with observation
delays.

Due to the arbitrary delays in both observation and control,
the supervised system can generate many languages nonde-
terministically. As in [1], [10], [11], the upper bound and
lower bound on all possible languages that may be generated
by the supervised system is denoted as the large language and
the small language, respectively. The deterministic networked
control problem for discrete event systems with nondetermin-
istic communication delays is formulated in [1] as calculating
a networked supervisor such that the language generated by a
supervised system is deterministic, i.e., the large language is
equal to the small language and is equal to the specification
language. The necessary and sufficient conditions for the
existence of a deterministic networked supervisor are termed
delay controllability and delay observability [1]. Delay con-
trollability requires that if the occurrence of an event needs
to be disabled, that event must be controllable and all the
possible controls must disable it. Delay observability requires
that if the disablements/enablements after two sequences of

events are different, all the possible observations of the two
sequences of events must be different.

When the given specification language cannot be exactly
obtained via networked control under possible communi-
cation delays, computing the supremal delay controllable
and delay observable sublanguage is desired. However, it is
shown in [1] that this is too difficult with the notions of
delay controllability and delay observability since both delay
controllability and delay observability are not closed under
union.

C. MAIN GOAL
We inherit two key assumptions from [1] in this paper. First,
we assume that the delays do not change the order of the
observations, i.e., the observation events arrive in the same
order as they were generated, commonly known as first-in-
first-out (FIFO). Second, we assume that there are no commu-
nication losses, i.e., all the occurrences of observable events
can be sensed by the supervisor. The main contributions of
this paper are threefold.

First, we simplify the existence condition for the deter-
ministic networked supervisor introduced in [1]. Specifically,
we prove that the deterministic networked control problem
is solvable if and only if a given specification language is
controllable and delay observable. The main advantage of
the simplification is that controllability is algebraically well-
behaved than delay controllability: controllability is closed
under union while delay controllability is not.

Second, to overcome the difficulty that delay observability
is not preserved under union, we introduce, in this paper,
a new language property called relative delay observability,
which is an extension of relative observability in the case
of observation delays. If there are no observation delays,
relative delay observability is reduced to relative observabil-
ity. We show that relative delay observability implies delay
observability and is closed under union. To the best of our
knowledge, there does not exist another language property
that is stronger than delay observability, weaker than relative
delay observability, and closed under union.

Finally, it is often the case that a given specification lan-
guage does not satisfy controllability and some user-defined
language property (for example, normality). We present a
general algorithm in this paper to calculate the supremal
sublanguage that satisfies controllability and another user-
defined language property in a finite solution space of inter-
est. We show such a supremal sublanguage always exists if
the user-defined language property is closed under union,
and there exists at least one element in the solution space
satisfying controllability and the user-defined property. As
a special case, we calculate the supremal controllable and
relatively delay observable sublanguage. Since relative delay
observability implies delay observability, a deterministic net-
worked supervisor that synthesizes the supremal control-
lable and relatively delay observable sublanguage always
exists.
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The rest of this paper is organized as follows. In Section 2,
the deterministic networked control theory for discrete event
systems is reviewed. In Section 3, we introduce the defini-
tion of relative delay observability and discuss some of its
properties. In Section 4, we show how to check relative delay
observability, and an algorithm is developed to calculate the
supremal controllable and relatively delay observable sublan-
guage. Section 5 presents a practical example to illustrate the
application of theories introduced in this paper. Section 6 con-
cludes this paper.

II. DETERMINISTIC NETWORKED CONTROL
A. PRELIMINARIES
A discrete event system (DES) is modeled by a deterministic
finite-state automaton G = (Q, 6, δ, 0, q0,Qm), where Q is
the set of states; 6 is the set of events; δ : Q×6→ Q is the
transition function; 0 : Q → 26 is the set of active events;
Qm is the set of marked states. The language generated by G
is denoted by L(G). The marked language generated by G is
given as Lm(G).
6∗ is the Kleene closure of6. In other words,6∗ contains

all the sequences over events in6. δ is extended toQ×6∗ in
the usual way. N is the natural number set. Given n ∈ N, let
6≤N be the set of all sequences in6∗ with a length no larger
than N .

In general, not all the events in 6 are controllable and
observable. We often use 6c ⊆ 6 to denote the set of
controllable events and 6uc = 6 \ 6c to denote the set of
uncontrollable events. Meanwhile, we also use 6o ⊆ 6 to
denote the set of observable events and 6uo = 6 \ 6o to
denote the set of unobservable events. The natural projection
P : L(G)→ 6∗o is defined, for all s, sσ ∈ L(G), as:

P(ε) = ε, P(sσ ) =

{
P(s)σ if σ ∈ 6o

P(s) if σ ∈ 6uo

Given G1 and G2, we say G1 is a sub-automaton of G2,
denoted by G1 v G2, if G1 can be obtained from G2 by
deleting some states in G2 and all the transitions connected
to these states. Ac(G) denotes the accessiable part of G [21].

Given a sequence s, s = {s′ : (∃s′′)s = s′s′′} is the set
of all prefixes of s. The prefix-closure of a language L ⊆
6∗ is denoted as L. We say L is Lm(G)-closed if L = L ∩
Lm(G). L is said to be prefix-closed if L = L. For brevity,
only prefix-closed languages are considered in this paper and
all the results derived in this paper still hold for non-closed
languages. |s| is the length of s. Let s−i be the prefix of s
satisfying |s−i| = max{0, |s| − i}.
The cardinality of an array or a set A is denoted as |A|,

Given a set of setsM , the union of all sets inM is denoted by⋃
M .

B. DETERMINISTIC NETWORKED CONTROL
As shown in Fig. 1, in NDES, communications between the
supervisor and the plant are carried out over some shared
networks so that the communication delays in both the obser-

FIGURE 1. Networked supervisory control.

vation channel (from the plant to the supervisor) and the
control channel (from the supervisor to the plant) are unavoid-
able. Communication delays in both observation channel
(called observation delays) and control channel (called con-
trol delays) are random. The assumptions made in this paper
are inherited from [1] as follows:

1) The observation delays are upper bounded by No event
occurrences and the control delays are upper bounded
by Nc event occurrences;

2) The delays do not change the order of observations,
i.e., FIFO is satisfied in the observation;

3) There are no observation and control losses;
4) The actuator of the plant always uses the most recently

received command;
5) The initial control command can be executed without

any delays.

By assumption 1), the observation delays are upper
bounded by No event occurrences. That is to say, an observ-
able event occurrence can always be delivered to the net-
worked supervisor before no more than No additional event
occurrences. By assumption 2), the control delays are upper
bounded by Nc event occurrences. That is to say, an issued
control command can be executed by the actuator of the
plant before no more than Nc additional event occurrences.
Moreover, since the control command initially issued can be
executed beforehand, as in assumption 5), we assume the
initial control command can be executed without any delays.

Suppose a sequence s occurs in G, what the networked
supervisor may see is nondeterministic because of observa-
tion delays. Formally, the set of all the possible observations
after the occurrence of s is denoted by

2
No
D (s) = {P(t) : (∃m ≤ No)t = s−m}.

We use θ (s) to denote some element in 2No
D (s), i.e., θ (s) ∈

2
No
D (s).
Let K ⊆ L(G) be the specification language for a given

control objective. We assume, without loss of generality
(w.l.o.g.), K can be generated by a sub-automaton H =

(QH , 6, δH , 0H , q0) v G of G. The control objective is
achieved using a networked supervisor π : 6∗ × 6∗o → 26 ,
where π (s, θ(s)) is the set of events to be enabled when a
sequence s occurs and the networked supervisor sees θ (s) ∈
2
No
D (s).
Any two sequences that appear identical must be followed

by the same control command. Correspondingly, π is said
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to be observation feasible if (∀(s, θ(s)), (s′, θ(s′)) ∈ 6∗ ×

6∗o )[θ (s) = θ (s′) ⇒ π (s, θ(s)) = π (s′, θ(s′))]. Moreover,
since only the controllable events can be dynamically dis-
abled, π is said to be control feasible if (∀(s, θ(s)) ∈ 6∗ ×
6∗o )6uc ⊆ π (s, θ(s)). To guarantee a networked control pol-
icy to be practically feasible, π must be observation feasible
and control feasible.

As in [1], the lower bound (or small language) and upper
bound (or large language) of languages generated by the
supervised system under communication delays are defined
as follows.

Given system G with observation delays bounded by No
as well as control delays bounded by Nc, the small language
Lr (π/G) generated by the supervised system is defined iter-
atively as

ε ∈ Lr (π/G), sσ ∈ Lr (π/G)⇔ s ∈ Lr (π/G)
∧sσ ∈ L(G) ∧ [(∀m ≤ Nc)(∀θ (s−m) ∈ 2

No
D (s−m))

σ ∈ π(s−m, θ(s−m))],

and the large language La(π/G) generated by the supervised
system is defined iteratively as

ε ∈ La(π/G), sσ ∈ La(π/G)⇔ s ∈ La(π/G)
∧sσ ∈ L(G) ∧ [(∃m ≤ Nc)(∃θ(s−m) ∈ 2

No
D (s−m))

σ ∈ π (s−m, θ(s−m))].

Recall that K is controllable [2] with respect to (w.r.t.)6uc
and G if

(∀s ∈ 6∗)(∀σ ∈ 6)s ∈ K ∧ sσ ∈ L(G) ∧ sσ /∈ K
⇒ σ ∈ 6c.

Recall that K is network observable [9] w.r.t.2N
D andL(G)

with N = Nc + No if

(∀σ ∈ 6)(∀s ∈ K )sσ ∈ K ⇒ [(∃t ∈ 2N
D (s))

(∀s′ ∈ (2N
D )
−1(t))s′ ∈ K ∧ s′σ ∈ L(G)⇒ s′σ ∈ K ],

where (2N
D )
−1 is the inverse mapping: (2N

D )
−1(t) = {s′ ∈

L(G) : t ∈ 2N
D (s
′)}.

The necessary and sufficient conditions for the existence of
a networked supervisor π such that La(π/G) = K is charac-
terized by controllability and network observability, as shown
in [12]. To overcome the difficulty that network observability
is not closed under union, the notion of relative nework
observability [22] that is stronger than network observability
but closed under union was introduced as follows.
Given specification languageK , ambinent languageC , and

L(G), K is relatively network observable [22] w.r.t. C , 2N
D

and L(G) with N = Nc + No if

(∀σ ∈ 6)(∀s ∈ K )sσ ∈ K ⇒ [(∃t ∈ 2N
D (s))

(∀s′ ∈ (2N
D )
−1(t))s′ ∈ C ∧ s′σ ∈ L(G)⇒ s′σ ∈ K ].

As stated in [1], controllability and network observability
only ensure the upper bound of languages generated by the
supervised system can never exceed the specification lan-
guage K . The supervised system can generate many lan-
guages (nondeterministically) between the small language
and the large language. To eliminate the nondeterminism and

ensure the language generated by the supervised system is
deterministic and is equal to K , i.e., Lr (π/G) = La(π/G) =
K , delay controllability and delay observability are intro-
duced in [1] as follows.
Recall that K is delay controllable [1] w.r.t. Nc, 6uc, and

L(G) if
(∀σ ∈ 6)(∀s ∈ K )s ∈ K ∧ sσ ∈ L(G) ∧ sσ /∈ K
⇒ (∀s′ ∈ 6≤Nc )(∀k ≤ Nc)s−ks′σ /∈ K ∧ σ ∈ 6c.

When there are no control delays, i.e., Nc = 0, delay control-
lability reduces to controllability.
Recall K is delay observable [1] w.r.t. 2No

D and L(G) if

(∀σ ∈ 6)(∀s, s′ ∈ K )sσ ∈ L(G) ∧ s′σ ∈ L(G)
∧sσ ∈ K ∧ s′σ /∈ K ⇒ 2

No
D (s) ∩2No

D (s′) = ∅.
(1)

When there are no observation delays, i.e., No = 0, delay
observability reduces to observability [3], i.e.,

(∀σ ∈ 6)(∀s, s′ ∈ K )sσ ∈ K ∧ s′σ ∈ L(G)
∧P(s) = P(s′)⇒ s′σ ∈ K .

Next, let us recall some notations in [1]. Given automata
G and H v G with L(H ) = K , the set of all states in H
reachable from q in Nc steps is denoted by RCH(q,Nc) =
{q′ ∈ QH : (∃s ∈ 6≤Nc )q′ = δH (q, s)}, where ‘‘RCH’’
means ‘‘reachable’’. The set of events which must be enabled
at some states in RCH(q,Nc) is denoted as EN(q,Nc) =
∪q′∈RCH(q,Nc)0H (q

′), where ‘‘EN’’ means ‘‘enable’’. The
set of events which must be disabled at some states in
RCH(q,Nc) is defined as DIS(q,Nc) = ∪q′∈RCH(q,Nc)0(q

′) \
0H (q′), where ‘‘DIS’’ means ‘‘disable’’. The set of indistin-
guishable state pairs inH when there exist observation delays
is given by SPIN (K ,No) = {(q, q′) ∈ QH × QH : (∃s, s′ ∈
K )q = δH (q0, s) ∧ q′ = δH (q0, s′) ∧2

No
D (s) ∩2No

D (s′) 6= ∅},
where ‘‘SP’’ means ‘‘state pairs’’ and ‘‘IN ’’ means ‘‘indistin-
guishable’’.

To make EN(q,Nc) and DIS(q,Nc) independent of
RCH(q,Nc), reference [1] extends G to an argumented
automaton GaugNc = (Q ∪ {qdis}, 6, δaug, 0aug, q0) such that
for all q ∈ Q, δaug(q, σ ) = δ(q, σ ) if σ ∈ 0(q) and for all
q ∈ QH , δaug(q, σ ) = qdis if σ ∈ (∪q′∈RCH(q,Nc)0(q

′)) \0(q).
Similarly,H is extended to an argumented automatonHaug

Nc =

(QH ∪ {qdis}, 6, δ
aug
H , 0

aug
H , q0) such that for all q ∈ QH ,

δ
aug
H (q, σ ) = δH (q, σ ) if σ ∈ 0H (q) and for all q ∈ QH ,
δ
aug
H (q, σ ) = qdis if σ ∈ EN(q,Nc) \ 0H (q). The language
generated by Haug

Nc is denoted by K aug
Nc , i.e., L(Haug

Nc ) = K aug
Nc .

Theorem 1: Given system G with observation delays
bounded by No and control delays bounded by Nc, there exists
a networked supervisor π such that Lr (π/G) = La(π/G) =
K if and only if K is delay controllable w.r.t. Nc, 6uc, and
L(G), and K aug

Nc is delay observable w.r.t. 2No
D and L(GaugNc ).

Theorem 1 was proven in [1]. Both delay controllability and
delay observability are not closed under union.

C. SIMPLICATION OF THE EXISTENCE CONDITION
In this section, we prove that the existence condition of a net-
worked supervisor π such that Lr (π/S) = La(π/S) = K as
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shown in Theorem 1 can be simplified into K is controllable
w.r.t.6uc and L(G), and delay observable w.r.t.2N

D and L(G)
with N = Nc + No.
Due to control delays, the control action issued when the

system is in a state q ∈ QH can take effects when the system
in any state in RCH(q,Nc). Correspondingly, to guarantee any
legal transitions to be enabled, the supervisor can only disable
an event σ ∈ 0aug(q) \ 0augH (q). But, to guarantee the system
remaining in K , the supervisor needs to disable all events in
DIS(q,Nc) when the system is in q. All the above leads to
Theorem 2 and Proposition 4 of [1], which are reproduced as
Lemmas 1 and 2 as follows.
Lemma 1: K = L(H ) is delay controllable w.r.t. Nc, 6uc,

andL(G) iff (1) K is controllable w.r.t.6uc andL(G), and (2)
(∀q ∈ QH )EN(q,Nc) ∩ DIS(q,Nc) = ∅.
Lemma 2: If K = L(H ) is delay controllable w.r.t.

Nc, 6uc, and L(G), then K aug
Nc is delay observable w.r.t.

2
No
D and L(GaugNc ) iff (∀(q, q

′) ∈ SPIN (K ,No))EN(q,Nc) ∩
DIS(q′,Nc) = ∅.
Combining these two lemmas gives us Proposition 1.
Proposition 1: K = L(H ) is delay controllable w.r.t. Nc,

6uc and L(G), and K aug
Nc is delay observable w.r.t. 2No

D and
L(GaugNc ) iff K is controllable w.r.t. 6uc and L(G), and delay
observable w.r.t. 2N

D and L(G) with N = Nc + No.
Proof:

Let us define the following relations:
1) C1:=K is delay controllable w.r.t. Nc, 6uc and L(G);
2) C2:=K

aug
Nc is delay observable w.r.t. 2No

D and L(GaugNc );
3) C3:=K is controllable w.r.t. 6uc and L(G);
4) C4:=K is delay observable w.r.t. 2N

D and L(G) with
N = Nc + No.

(⇐) We prove C3 ∧ C4 ⇒ C1 ∧ C2 by proving ¬C1 ∨

¬C2 ⇒ ¬C3 ∨ ¬C4.
We first prove ¬C1 ⇒ ¬C3 ∨ ¬C4. Since K is not delay

controllable w.r.t. Nc, 6uc and L(G), by Lemma 1, K is not
controllable w.r.t. 6uc and L(G) or (∀q ∈ QH )EN(q,Nc) ∩
DIS(q,Nc) 6= ∅.
If K is not controllable w.r.t. 6uc and L(G), we have ¬C3

is ture, which implies ¬C3 ∨ ¬C4 is true. Hence, ¬C1 ⇒

¬C3 ∨ ¬C4. On the other hand, if (∀q ∈ QH )EN(q,Nc) ∩
DIS(q,Nc) 6= ∅, Since H is accessible, there exists s ∈ K
and σ ∈ 6 such that q = δH (q0, s) and σ ∈ DIS(q,Nc) ∩
EN(q,Nc). By the definitions of DIS(·) and EN(·), there exist
s′, s′′ ∈ 6≤Nc such that (ss′, ss′′, ss′′σ ∈ K )∧ (ss′σ ∈ L(G) \
K ). Then, since s′, s′′ ∈ 6≤Nc and N = No + Nc, we have
P(s) ∈ 2N

D (ss
′) ∩2N

D (ss
′′). Overall,

(∃σ ∈ 6)(∃ss′, ss′′, ss′′σ ∈ K )ss′σ ∈ L(G) \ K
∧2N

D (ss
′) ∩2N

D (ss
′′) 6= ∅,

which implies K is not delay observable w.r.t. 2N
D and L(G),

i.e., ¬C4 is ture. Hence, we also have ¬C1 ⇒ ¬C3 ∨ ¬C4.
Next, we prove ¬C2 ⇒ ¬C3 ∨ ¬C4. Since K aug

Nc is
not delay observable w.r.t. 2No

D and L(GaugNc ). By Lemma 2,
there exists (q, q′) ∈ SPIN (K ,No) such that EN(q,Nc) ∩
DIS(q′,Nc) 6= ∅. Since H is accessible, there exists s, s′ ∈ K

and σ ∈ 6 such that q = δH (q0, s), q′ = δH (q0, s′),2
No
D (s)∩

2
No
D (s′) 6= ∅, and σ ∈ EN(q,Nc) ∩ DIS(q′,Nc). Hence,

there exists s′′, s′′′ ∈ 6≤Nc such that ss′′, ss′′σ, s′s′′′ ∈ K and
s′s′′′σ ∈ L(G) \ K . Since 2No

D (s) ∩ 2No
D (s′) 6= ∅, s′′, s′′′ ∈

6≤Nc , and N = Nc+No, we have2N
D (ss

′′)∩2N
D (s
′s′′′) 6= ∅.

Overall,

(∃σ ∈ 6)(∃ss′′, ss′′σ, ss′′′ ∈ K )s′s′′′σ ∈ L(G) \ K
∧2N

D (ss
′′) ∩2N

D (s
′s′′′) 6= ∅,

which says K is not delay observable w.r.t. 2N
D and L(G),

i.e.,¬C4 is ture. Hence,¬C2 ⇒ ¬C3∨¬C4. Overall, we have
¬C1 ∨ ¬C2 ⇒ ¬C3 ∨ ¬C4.
(⇒) We prove C1 ∧ C2 ⇒ C3 ∧ C4 by proving ¬C3 ∨

¬C4 ⇒ ¬C1 ∨ ¬C2.
By Lemma 1, ifK is not controllable w.r.t.6uc andL(G),K

is not delay controllable w.r.t. Nc, 6uc and L(G), i.e.,¬C3 ⇒

¬C1 which implies ¬C3 ⇒ ¬C1 ∨ ¬C2.
Assume ¬C4 holds. By the definition of C4, K is not delay

observable w.r.t. 2N
D and L(G), i.e.,

(∃σ ∈ 6)(∃s, sσ, s′ ∈ K )s′σ ∈ L(G) \ K
∧2N

D (s) ∩2
N
D (s
′) 6= ∅.

Since2N
D (s)∩2

N
D (s
′) 6= ∅ andN = No+Nc, we have there

exists m, n ≤ Nc such that 2No
D (s−m) ∩2

No
D (s′−n) 6= ∅. Since

s−m, s′−n ∈ K , we have q, q′ ∈ QH such that q = δH (q0, s−m)
and q′ = δH (q0, s′−n).Moreover, since q = δH (q0, s−m), q′ =
δH (q0, s′−n) and2

No
D (s−m)∩2

No
D (s′−n) 6= ∅, we have (q, q

′) ∈
SPIN (K ,No). Overall, there exists (q, q′) ∈ SPIN (K ,No) such
that EN(q,Nc) ∩ DIS(q′,Nc) 6= ∅. By Lemma 2, K aug

Nc is not
delay observable w.r.t.2No

D and L(GaugNc ), which implies ¬C2
is true. Hence, ¬C4 ⇒ ¬C1 ∨¬C2. Overall, we have ¬C3 ∨

¬C4 ⇒ ¬C1 ∨ ¬C2.
�

Corollary 1: Given system G with observation delays
bounded by No event occurrences and control delays bounded
by Nc event occurrences, there exists a networked supervisor
π such that Lr (π/G) = La(π/G) = K iff K is controllable
w.r.t.6uc andL(G), and delay observable w.r.t.2N

D andL(G)
with N = Nc + No.

Proof: Corollary 1 directly follows from Theorem 1 and
Proposition 1. �
Since controllability is a special case of delay controlla-

bility and it is closed under union, the existence condition
presented in Corollary 1 is much more simple and easier to
handle than the existence condition presented in Theorem 1.

III. RELATIVE DELAY OBSERVABILITY
When a given specification language is not delay controllable
and delay observable, one would like to calculate its supremal
delay controllable and delay observable sublanguage that can
be achieved deterministically under communication delays.
However, this is too difficult since both delay controllabil-
ity and delay observability are not closed under union [1].
Corollary 1 simplifies this problem because controllability
is closed under union. To overcome the difficulty that delay
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FIGURE 2. Automata G, A, and H .

observability is not closed under union, we accommodate
observation delays in relative observability [7] and define
new language property called relative delay observability.
The definition of relative observability in [7] is as follows.
Definition 1: Given the desired language K, ambient lan-

guage C, and system language L(G) such that K ⊆ C ⊆
L(G), K is relatively observable w.r.t. C, P, and L(G), if

(∀σ ∈ 6)(∀sσ ∈ K )
[((∀s′σ ∈ L(G))s′ ∈ C)P(s) = P(s′)⇒ s′σ ∈ K ].

As in [7], given a fixed C , relative observability is stronger
than observability and closed under union.We refer the reader
to [22] for the engineering application of relative observ-
ability. Relative observability is extended to relative delay
observability as follows.
Definition 2: Given nonempty prefix-closed languages K,

C, and L(G) such that K ⊆ C ⊆ L(G), we say K is relatively
delay observable w.r.t. C,2N

D , andL(G), where N = No+Nc,
if

(∀σ ∈ 6)(∀s ∈ L(G))sσ ∈ K ⇒ [(∀s′ ∈ C)
s′σ ∈ L(G) ∧2N

D (s) ∩2
N
D (s
′) 6= ∅ ⇒ s′σ ∈ K ].

(2)

Note that when there are no observation and control delays,
i.e., Nc = No = 0, delay relative observability is reduced to
relative observability.
The following proposition investigates the relationship

between relative delay observability and delay observability,
relative network observability.
Proposition 2: Let K ⊆ C ⊆ L(G).
(1) If K is relatively delay observable w.r.t. C, 2N

D , and
L(G), then K is delay observable w.r.t. 2N

D and L(G).
(2) If K is relatively delay observable w.r.t. C, 2N

D , and
L(G), then K is relatively network observable w.r.t. C, 2N

D ,
and L(G).
(3) However, the converse statements of (1) and (2) are not

true in general.
Proof: We prove the first part of Proposition 2 by

contradiction. SupposeK is relatively delay observsable w.r.t.
C , 2N

D , and L(G) but is not delay observable w.r.t. 2N
D and

L(G), i.e.,

(∃σ ∈ 6)(∃s, s′ ∈ K )sσ ∈ K ∧ s′σ ∈ L(G)
∧s′σ /∈ K ∧2N

D (s) ∩2
N
D (s
′) 6= ∅.

Since K ⊆ C , s′ ∈ K ∧ s′σ ∈ L(G) ⇒ s′ ∈ C ∧ s′σ ∈
L(G). Hence,

(∃σ ∈ 6)(∃s ∈ K )(∃s′ ∈ C)sσ ∈ K ∧ s′σ ∈ L(G)
∧s′σ /∈ K ∧2N

D (s) ∩2
N
D (s
′) 6= ∅,

which violates the definition of relative delay observability.

We prove the second part of Proposition 2 also by contra-
diction. Suppose K is relatively delay observsable w.r.t. C ,
2N
D , and L(G) but is not relatively network observsable w.r.t.

C , 2N
D and L(G), i.e.,

(∃σ ∈ 6)(∃s, sσ ∈ K )(∀t ∈ 2N
D (s))

(∃s′ ∈ (2N
D )
−1(t))s′ ∈ C ∧ s′σ ∈ L(G) \ K . (3)

Since s′ ∈ (2N
D )
−1(t), by the definition of (2N

D )
−1, t ∈

2N
D (s
′). Moreover, since t ∈ 2N

D (s), we have t ∈ 2N
D (s) ∩

2N
D (s
′), which implies 2N

D (s) ∩2
N
D (s
′) 6= ∅. Hence,

(∃σ ∈ 6)(∃s, sσ ∈ K )(∃s′ ∈ C)
s′σ ∈ L(G) \ K ∧2N

D (s) ∩2
N
D (s
′) 6= ∅,

which violates the definition of relative delay observability.
To show the third part of of Proposition 2 is true, consider

automata H , A and G that are depicted in Fig. 2 that generate
K , C and L(G), respectively. We can see 6 = {α, β, γ, µ}.
Assume 6o = {α, γ }, 6c = 6, and the upper bounds on
observation delays and control delays are 1, i.e., No = Nc =
1.

Note that, for H and G depicted in Fig.2, only an occur-
rence of γ can cause the system leaves K , and all sequences
in K do not contain γ . Consequently, for all sσ ∈ K with
some σ ∈ 6, there does not exist s′ ∈ K with s′σ ∈ L(G)\K .
By (1), K is delay observable regardless of 2N

D .
K is not relatively delay observable w.r.t.C ,2N

D , andL(G).
To see this, take s = α and s′ = µγ . By the definition of
2N
D , 2

N
D (s) = {ε, α} and 2

N
D (s
′) = {ε, γ }. Then, 2N

D (s) ∩
2N
D (s
′) 6= ∅, s ∈ K , sβ ∈ K , s′ ∈ C , s′β ∈ L(G),

and s′β /∈ K , which violates the definition of relative delay
observability.
K is relatively network observable w.r.t. C ,2N

D , and L(G).
By Fig.2(c), K = {ε, µ, α, αβ}. To show K is relatively
network observable, we need to show (3) is not true for sσ =
µ, sσ = α, and sσ = αβ. Since for all s′ ∈ C and σ ∈ 6
with s′σ ∈ L(G) \ K , by Fig.2, we have σ = β or σ = γ .
Hence, (3) is not true for sσ = µ and sσ = α regardless of
2N
D . Next, we consider sσ = αβ with s = α and σ = β. By

the definition of 2N
D , t = α ∈ 2

N
D (s). By Fig.2, it is not hard

to find that all sequences containing α are in K . That is to
say, for all s′ ∈ (2N

D )
−1(t) and s′σ ∈ L(G), we have s′σ ∈ K .

Therefore, (3) is not true for sσ = αβ.
By K is delay observable and not relatively delay observ-

able, we have the converse statement of (1) is not true. By
K is relatively network observable and not relatively delay
observable, we have the converse statement of (2) is not true.

�
By Proposition 2, relative delay observability implies

delay observability and relative network observability.
Proposition 3 states that relative delay observability is closed
under union.
Proposition 3: Let M be a set of languages K with K ⊆

C ⊆ L(G) that are relatively delay observable w.r.t. C, 2N
D ,

and L(G), then so is
⋃
M.

Proof: If M = ∅, the proposition is trivially true for⋃
M .
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The case of M 6= ∅ is proven as follows. Given arbitrary
σ ∈ 6 and arbitrary sσ ∈

⋃
M , there exists K ∈ M such that

sσ ∈ K . Since K is relatively delay observable w.r.t. C , 2N
D ,

and L(G), for all s′ ∈ C

s′σ ∈ L(G) ∧2N
D (s) ∩2

N
D (s
′) 6= ∅ ⇒ s′σ ∈ K .

SinceK ⊆
⋃
M , we have s′σ ∈

⋃
M . Since σ ∈ 6 and sσ ∈⋃

M are arbitrary given,
⋃
M is relatively delay observable

w.r.t. C , 2N
D , and L(G). �

Note that Proposition 3 does not require K to be closed.
As stated in [23], for a non-closed language K ⊆ Lm(G),
there always exists a nonblocking networked supervisor π
such that Lr (G, π) = La(G, π) = K iff (1) K is delay con-
trollable w.r.t.6uc,Nc, andL(G); (2)K aug

Nc is delay observable
w.r.t.2No

D andL(GaugNc ); (3)K isLm(G)-closed. Consequently,
when blocking is considered, by Proposition 1, 2, and 3,
there always exists a supremal controllable, relatively delay
observable, and Lm(G)-closed sublanguage of K that can be
achieved deterministically by nonblocking networked super-
visory control.

IV. SUPREMAL CONTROLLABLE AND RELATIVELY DELAY
OBSERVABLE SUBLANGUAGE
In this section, we first show how to check relative delay
observability. We then show how to synthesize the supremal
controllable and relatively delay observable sublanguage.

A. CHECKING RELATIVE DELAY OBSERVABILITY
Let

Tconf (P) = {(x, y) ∈ Q× Q : (∃s, t ∈ L(G))x = δ(q0, s)
∧y = δ(q0, t) ∧ P(s) = P(t)}, (4)

be the set of confusable pairs in G under the partial observa-
tionP. An algorithm for calculating Tconf (P) with polynomial
time complexity w.r.t. the sizes of state space and the event set
in G was proposed in [24].
Denote the set of all possible confusable state pairs in G

under the delayed observation mapping 2N
D as:

Tconf (2N
D ) = {(x, y) ∈ Q× Q : (∃s, t ∈ L(G))x = δ(q0, s)
∧y = δ(q0, t) ∧2N

D (s) ∩2
N
D (t) 6= ∅}. (5)

For all q ∈ Q, let Reach(q,N ) = {q′ ∈ Q : (∃s ∈
6≤N )q′ = δ(q, s)} be the set of states in G that can be
reached from state q via a sequence s with |s| ≤ N . By the
defintions of Tconf (P) and Tconf (2N

D ), we have the following
proposition.
Proposition 4: Tconf (2N

D ) can be calculated from Tconf (P)
as:

Tconf (2N
D ) = {(x, y) ∈ Q× Q : (∃(q, q

′) ∈ Tconf (P))
x = Reach(q,N ) ∧ y = Reach(q′,N )}.

Proof:
Let T = {(x, y) ∈ Q × Q : (∃(q, q′) ∈ Tconf (P))x =

Reach(q,N ) ∧ y = Reach(q′,N )}.

FIGURE 3. Automata G, A, and H .

We first prove T ⊆ Tconf (2N
D ). For an arbitrary state

pair (x, y) ∈ T , by definition, there exist (q, q′) ∈ Tconf (P)
and t, t ′ ∈ 6≤N with x = δ(q, t) and y = δ(q′, t ′).
Since (q, q′) ∈ Tconf (P), by (4), there exists s, s′ ∈ L (G)
such that q = δ(q0, s) ∧ q′ = δ(q0, s′) ∧ P(s) = P(s′).
Since q = δ(q0, s), q′ = δ(q0, s′), x = δ(q, t), and
y = δ(q′, t ′), we have x = δ(q0, st) and y = δ(q0, s′t ′).
Moreover, since t, t ′ ∈ 6≤N and P(s) = P(s′), by the
definition of2N

D (·),P(s) ∈ 2
N
D (st)∩2

N
D (s
′t ′) 6= ∅. Therefore,

there exists st, s′t ′ ∈ L (G) such that x = δ(q0, st) ∧
y = δ(q0, s′t ′) ∧ 2N

D (st) ∩ 2
N
D (s
′t ′) 6= ∅, which implies

(x, y) ∈ Tconf (2N
D ). Since (x, y) ∈ T is arbitrarily given,

T ⊆ Tconf (2N
D ).

Next, we prove Tconf (2N
D ) ⊆ T . For an arbitrary state pair

(x, y) ∈ Tconf (2N
D ), by (5), there exists s, s′ ∈ L (G) such

that x = δ(q0, s)∧y = δ(q0, s′)∧2N
D (s)∩2

N
D (s
′) 6= ∅. Since

2N
D (s) ∩2

N
D (s
′) 6= ∅, by the definition of 2N

D (·), there exists
v, v′ ≤ 6≤N such that s = uv ∧ s′ = u′v′ ∧ P(u) = P(u′).
Suppose δ(q0, u) = q and δ(q0, u′) = q′. Since δ(q0, s) = x,
δ(q0, s′) = y, s = uv, and s′ = u′v′, we have δ(q, v) = x
and δ(q′, v′) = y. Since P(u) = P(u′), δ(q0, u) = q, and
δ(q0, u′) = q′, by (4), (q, q′) ∈ Tconf (P). Therefore, there
exists (q, q′) ∈ Tconf (P) such that δ(q, v) = x and δ(q′, v′) =
y with v, v′ ≤ 6≤N . By the definition of T , (x, y) ∈ T . Since
(x, y) ∈ Tconf (2N

D ) is arbitrarily given, Tconf (2N
D ) ⊆ T . �

Example 1: Let us consider the automaton G depicted
in Fig.3(a). Assume 6o = {α, γ, µ} and the upper bounds
on observation delays and control delays are 1, i.e., No =
Nc = 1. By (4),

Tconf (P) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4),
5, 5), (6, 6), (3, 4), (5, 6)}.

Let N = No + Nc = 2. By the definition of Reach(·),
we have Reach(0,N ) = {0, 1, 2, 3, 4, 5}, Reach(1,N ) =
{1, 2, 3}, Reach(2,N ) = {2, 3, 4, 5, 6}, Reach(3,N ) =
{2, 3, 4, 5}, Reach(4,N ) = {2, 3, 4}, Reach(5,N ) = {5, 6},
and Reach(6,N ) = {6}. By (5),

Tconf (2N
D ) = Tconf (P) ∪ {(0, 1), (0, 2), (0, 3),
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(0, 4), (0, 5), (1, 2), (1, 3), (2, 3),

(2, 4), (2, 5), (2, 6), (3, 5), (5, 4)}.

Note that, we only list (q, q′) in Tconf (P) and Tconf (2N
D ), and

omit (q′, q) for brevity.
Given system G, A, and H with H v A v G, let

Tspec(H ,A,G) = {(q, q′) ∈ QH × QA : (∃σ ∈ 6)σ ∈ 0(q)

∧σ ∈ 0(q′) ∧ σ ∈ 0H (q) ∧ [q′ ∈ QH ⇒

σ /∈ 0H (q′)]}, (6)

be the set of state pairs (q, q′) ∈ QH × QA that there exists a
σ ∈ 6 defined at q and q′ in G, but only defined at q and not
defined at q′ in H if q′ ∈ QH .
Proposition 5: Given G, A, and H with H v A v G

that generate L(G), C, and K, respectively, K is relatively
delay observable w.r.t. C, 2N

D , and L(G) if and only if
Tspec(H ,A,G) ∩Tconf (2N

D ) = ∅.
Proof: (⇐) Suppose that K is not relatively delay

observable w.r.t. C , 2N
D , and L (G), i.e.,

(∃σ ∈ 6)(∃s ∈ K )(∃s′ ∈ C)sσ ∈ K∧
s′σ ∈ L(G) \ K ∧2N

D (s) ∩2
N
D (s
′) 6= ∅.

Suppose δ(q0, s) = x and δ(q0, s′) = y. Since 2N
D (s) ∩

2N
D (s
′) 6= ∅, by (5), (x, y) ∈ Tconf (2N

D ). Since sσ ∈
K ∧ s′σ ∈ L (G), we have σ ∈ 0H (x) ∧ σ ∈ 0(x) ∧
σ ∈ 0(y). If y ∈ QH , i.e., s′ ∈ K , by s′σ /∈ K ,
we have σ /∈ 0H (x). By (6), (x, y) ∈ Tspec(H ,A,G). If
y /∈ QH , since σ ∈ 0(x) ∧ σ ∈ 0H (x) ∧ σ ∈ 0(y) and
y /∈ QH , by (6), (x, y) ∈ Tspec(H ,A,G). Therefore, there
exists (x, y) ∈ Tspec(H ,A,G) ∩ Tconf (2N

D ), which violates
Tspec(H ,A,G) ∩Tconf (2N

D ) = ∅.
(⇒) Suppose Tspec(H ,A,G) ∩ Tconf (2N

D ) 6= ∅, by def-
initions, there exist s ∈ K and s′ ∈ C such that 2N

D (s) ∩
2N
D (s
′) 6= ∅ and (δ(q0, s), δ(q0, s′)) ∈ Tspec(H ,A,G). Write

δ(q0, s) = x and δ(q0, s′) = y, then, x ∈ QH ∧ y ∈ QA. Since
H v A and y ∈ QA, y must satisfy one of the following two
cases:

(1) y ∈ QH . In this case, by (6), there exists σ ∈ 6 with
σ ∈ 0(x), σ ∈ 0(y), σ ∈ 0H (x), and σ /∈ 0H (y), i.e., sσ ∈
K ⊆ L(G), s′σ ∈ L(G), and s′σ /∈ K .

(2) y ∈ QA\QH . In this case, also by (6), there exists σ ∈ 6
with σ ∈ 0(x), σ ∈ 0(y), and σ ∈ 0H (x), i.e., sσ ∈ K ⊆
L(G) and s′σ ∈ L(G). Moreover, since y ∈ QA \ QH and
δ(q0, s′) = y, s′ ∈ C \ K , which implies s′σ /∈ K .
Therefore, we have

(∃σ ∈ 6)(∃s ∈ K )(∃s′ ∈ C)sσ ∈ K
s′σ ∈ L(G) \ K ∧2N

D (s) ∩2
N
D (s
′) 6= ∅,

which violates K is relatively delay observable w.r.t. C , 2N
D ,

and L (G). �
Theorem 2: Given G, A, and H with H v A v G,

the worst-case time complexity of checking relative delay
observability is O(|Q|2 × |6|).

Proof: By Proposition 4, the complexity of calculating
Tconf (2N

D ) is determined by the complexity of calculating

Tconf (P), which is of the order |Q|2 × |6| in the worst case
[24]. To calculate Tspec(H ,A,G), for all (q, q′) ∈ QH × QA
and σ ∈ 6c, we need check if σ ∈ 0(q) ∧ σ ∈ 0(q′) ∧ σ ∈
0H (q) ∧ [q′ ∈ QH ⇒ σ /∈ 0H (q′)] is true. Correspondingly,
the worst-case complexity for calculating Tspec(H ,A,G) is of
the order |Q|2×|6|. Therefore, the worst-case time complex-
ity of checking relative delay observability is O(|Q|2 × |6|).

�
Let us use the following example to further illustrate all the

above results.
Example 2: Continue with Example 1. Consider the

automata G, A, and H depicted in Fig.3 that generate L(G),
C, and K, respectively. Clearly, automaton G has the event
set 6 = {α, β, γ, µ}. Since β ∈ 0(5) ∧ 5 /∈ QH ∧ β ∈
0(4) ∧ β ∈ 0H (4), by (6), (5, 4) ∈ Tspec(H ,A,G). On the
other hand, as described in Example 1, (5, 4) ∈ Tconf (2N

D ),
which implies (5, 4) ∈ Tspec(H ,A,G) ∩ Tconf (2N

D ) 6= ∅. By
Proposition 5, L(H ) is not relatively delay observable w.r.t.
C, 2N

D , and L(G).

B. SUPREMAL CONTROLLABLE AND RELATIVELY DELAY
OBSERVABLE SUBLANGUAGE
When the specification language does not satisfy some
language properties, in many applications, it may be use-
ful or preferable to calculate a supremal element that satisfies
all these properties in a solution space of interest, which
can be finite and countable. In this subsection, we introduce
a general method to calculate a supremal sublanguage that
satisfies both controllability and another user-defined lan-
guage property in a finite solution space. As a special case,
we calculate the supremal sublanguage that is controllable
and relatively delay observable.

We consider in this paper the finite solution space 4 for
calculating the supremal sublanguage of K satifies: 1) 4 is
closed under union, i.e., for all K1,K2 ∈ 4, K1 ∪ K2 ∈ 4;
2) ∪4 = K ; 3) 4 only contains regular languages. Note that
these assumptions are actually not a restriction because we
can always make 4 closed by adding elements that are the
union of elements in 4.

Let 9 be the set of automata whose elements individually
represent languages in 4. We assume the automata that rep-
resent languages in 4 satisfies 1) H ′ ∈ 9 with H ′ v A v G,
and 2) for all H ′,H ′′ ∈ 9, L(H ′) ⊆ L(H ′′) ⇒ H ′ v H ′′.
Since4 is finite and only contains regular languages, we can
always change automaton presentations of languages in 4 to
satisfy these requirements.

Let $ , L, and M = {G1,G2, . . . ,Gk} be a language
property, a regular language, and a finite list of automata,
respectively. Note that all the elements in a list are ordered.
We say L is $ -preserved w.r.t. M , denoted by L |HM $ ,
if language L satisfies the property$ w.r.t.M . For example,
let $ be the property of relative delay observability and
M = {A,G}, then K |HM $ means K is relatively delay
observable w.r.t. L(A), 2N

D , and L(G).
Given systemG, language property$ , list of automataM ,

and 9, we want to calculate H↑ ∈ 9 such that L(H↑) is
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controllable w.r.t. G and L(H↑) |HM $ and there does not
exist H ′ ∈ 9 with L(H ′) is controllable w.r.t. G, L(H ′) |HM
$ , and H ′ @ H↑. Formally, we call L(H↑) the supremal
controllable and$ -preserved sublanguage of K w.r.t.M and
4. The following proposition says if the property of $ is
closed under union, a unique H↑ exists.
Proposition 6: Given a language property$ that is closed

under union, there exists a H ′ ∈ 9 such that L(H ′) is
controllable w.r.t. G and L(H ′) |HM $ iff there exists a
unique H↑ ∈ 9 mentioned above.

Proof: (⇒) SinceL(H↑) is controllable,L(H↑) |HM $

and H↑ ∈ 9, the sufficiency holds.
(⇐) Suppose there exists H ′ ∈ 9 such that L(H ′) is

controllable and L(H ′) |HM $ . Let L(H↑) = {∪L(H ′) :
H ′ ∈ 9 ∧ L(H ′) |HM $ ∧ L(H ′) is controllable w.r.t. G}
Then, L(H↑) is unique and H ′′ v H↑ for all H ′′ ∈ 9 with
L(H ′′) is controllable w.r.t. G and L(H ′′) |HM $ . Moreover,
since both controllability and property of$ are closed under
union, L(H↑) is controllable w.r.t. G and L(H↑) |HM $ .
Since 4 is closed under union and L(H ′) ∈ 4, L(H↑) ∈ 4
and H↑ ∈ 9.
Overall, there exists a unique H↑ ∈ 9 such that L(H↑) is

controllable w.r.t.G andL(H↑) |HM $ , andH ′′ @ H↑ for all
H ′′ ∈ 9 with L(H ′′) is controllable w.r.t. G and L(H ′′) |HM
$ . Therefore, the necessity holds. �
Given H , A, and G with H v A v G that generate K ,

C , and L(G), respectively, a closed language property $ ,
and a set 9, we generalize the algorithm introduced in our
previous work [22] for calculating the supremal controllable
and relatively network obsetvable suablanguage to calculate
the supremal controllable and $ -preserved sublanguage in
Algorithm 1. $ can be but is not limited to, normality
[3], weakly normality [5], relative observability [7], strong
observability [6], relative network observability [22], and
relative delay observability. Clearly, the problem solved in
our previous work [22] is one of the problems solved by the
algorithm introduced in this paper. In other words, the algo-
rithm introduced in this paper is more general.
Given G and H with H v G, if H is not controllable w.r.t.

G, an algorithm is introduced in [25] to calculateH↑C v H v
G that generates the supremal controllable sublanguage of
L(H ). We callH↑C the supremal controllable sub-automaton
ofH in this paper. Extending this algorithm, Algorithm 1 cal-
culates H↑.
We outline the mechanism of Algorithm 1 as follows.
At first, by Step 2, A = {H↑C }. If L(H↑C ) |HM $ is true,

by Step 3, H∗ ← H . Since there exists no H ′ ∈ 9 that is
controllable andH↑C @ H ′, we haveH∗ = H↑. IfL(H ) |HM
$ is false, the solution is some element H ′ ∈ 9 with
H ′ v H↑C if exists. Hence, at the end of the first iteration of
Algorithm 1, if the solution exists, it is either 1) a supremal
controllable sub-automaton of an element in R, or 2) a sub-
automaton of one of these supremal controllable automata.
All the mentioned automata will be considered one by one
according to the decreasing numbers of transitions for future
iterations until returning the solution or declaring no solution

Algorithm 1: Supremal sublanguage
Input: System G, a list of automataM , a user-defined

language property$ , and 9;
Output: Automaton H∗ if ∃H ′ ∈ 9: L(H ′) is

controllable w.r.t. G and L(H ′) |HM $ , and
declaring no solution exits, otherwise;

Step 1: Set A to be the empty array of automata,
R← {H}, and i = 1;
Step 2: For each H ′ ∈ R, use techniques in [25] to
calculate H ′↑C with the inputs H ′ and G, and insert
H ′↑C into A according to decreasing numbers of
transitions if H ′↑C /∈ A;
Step 3: If i > |A|, declaring no solution exists, and
otherwise, pick up the i-th element in A, says H̃ , and
check if L(H̃ ) |HM $ is satisfied. If the check is true
and H̃ ∈ 9, return H∗← H̃ , and otherwise, setR←
{H ′ ∈ 9|H ′ @ H̃ ∧ [(6 ∃H ′′ ∈ 9)H ′′ @ H̃ ∧ H ′ @ H ′′]};
Step 4: Set i = i+ 1;
Step 5: Iterate Step 2, 3, and 4 until returning automaton
H∗ or declaring no solution exists.

exists. On the other hand, ifL(H ) |HM $ is not true and there
exists no H ′ ∈ 9 with H ′ @ H↑C , we have R = ∅ at Step
3 in the first iteration. The algorithm will declare no solution
exists in the second iteration.

Theorem 3 says Algorithm 1 calculates H↑.
Theorem 3: Given systemG, a list of automataM, a closed

language property $ , and 9, if there exists H ′ ∈ 9 such
that L(H ′) is controllable w.r.t. G and L(H ′) |HM $ , Algo-
rithm 1 returns H↑ = H∗; it declares no solution, otherwise.

Proof: The proof is by induction.
In the first iteration, by Step 1,R = {H}. Step 2 calculates

H↑C that generates the supremal controllable sublanguage of
L(H ). We then have A = {H↑C }. Since i = 1 and |A| = 1,
by Step 3, ifL(H↑C ) |HM $ is true,H∗← H↑C . Since there
exists no H ′ ∈ 9 with H↑C @ H ′ and L(H ′) is controllable
w.r.t. G and L(H ′) |HM $ , by Proposition 6, H↑ = H∗.
On the other hand, if L(H↑C ) |HM $ is not true, since
H↑C and all the automata H ′ ∈ 9 with H↑C @ H ′ are not
the solution, the solution is some automaton H ′ in 9 with
H ′ @ H↑C if exists. Hence, at the end of the first iteration,
if the solutionH↑ exists, it is either 1) a supremal controllable
sub-automaton of an element in R, or 2) a sub-automaton
of one of these supremal controllable automata. If R = ∅,
we can conclude no solution exists. In the second iteration,
since R = ∅, by Step 2, A = {H↑C }. Since i = 2 > |A|,
the algorithm declares no solution exists.

Suppose the algorithm does not terminate by the end of
the kth iteration. Also suppose that if H↑ exists, it is one
of the following three cases: 1) a supremal controllable sub-
automaton of an element in R; 2) the lth element in A with
l ≥ k; 3) an sub-automaton of one of automata mentioned
in 1) and 2).
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We now consider the k + 1st iteration as follows. After the
kth iteration, all the supremal controllable sub-automata of
elements in R are listed after the kth element in A. w.l.o.g.,
we denoted the nth element of A by Hn. Then, if the solu-
tion exists, it is either an element listed after Hk or a sub-
automaton of such an element then. Since i = k + 1 at the
beginning of k + 1st iteration, if A only has k elements,
by Step 3, the algorithm declares no solution exists. Other-
wise, if A has more than k elements, since elements in A
are arranged according to decreasing numbers of transitions,
no elements listed after Hk+1 is a sub-automaton of Hk+1.
Then, ifL(Hk+1) |HM $ is true, we conclude thatHk+1 is the
solution, which is returned by Step 3. If L(Hk+1) |HM $ is
not true, we conclude that Hk+1 is not the solution. However,
by Step 3, we include its subautomata for future iterations.
Therefore, the induction hypothesis still holds by the end of
the k + 1st iterations.

The iteration number of the algorithm is upper bounded
by the numbers of all the sub-automata of H , which is upper
bounded by 2|Q|×|6|. Therefore, the algorithm will terminate
within finite steps. �

The following corollary states how to calculate the supre-
mal controllable and relatively delay observable sublanguage.
Corollary 2: Given G, A, and H with H v A v G that

generate L(G), C, and K, respectively, and 9. Let M =

{A,G} and $ be the class of properties of controllability
and relative delay observability. If there exists H ′ ∈ 9 such
that L(H ′) is controllable and relatively delay observable,
Algorithm 1 computes H↑ = H∗ that is unique; it declares
no solution, otherwise.

Proof: By Theorem 3, if H ′ ∈ 9 is controllable and
relatively delay observable, Algorithm 1 computesH↑ = H∗,
and otherwise, declaring no soulution exists. Since both con-
trollability and relative delay observability are closed under
union, by Proposition 6, H↑ is unique. �
Theorem 4: The worst-case time complexity of synthesiz-

ing the supremal controllable and relatively delay observable
sublanguage using Algorithm 1 is 2O(|Q|×|6|).

Proof: By Theorem 2, the worst-case time complexity
of checking relative delay observability is of the order |Q|2×
|6|. The complexity of calculating H↑C with H v G is of
the order |Q| × |6| in the worst case [21]. Correspondingly,
the worst-case complexity of Algorithm 1 for calculating the
supremal controllable and relatively delay observable sublan-
guage is of the order |A| × |Q| × |6| + |A| × |Q|2 × |6|.
Since every H ′ ∈ A has H ′ v H v G, |A| ≤ 2|Q|×|6|.
Therefore, the worst-case time complexity of Algorithm 1 for
calculating the supremal controllable and relatively delay
observable sublanguage is 2O(|Q|×|6|). �

V. EXAMPLE
In this section, we use a practical example to show the appli-
cation of results derived in this paper.

Let us consider a simple signalized intersection as shown
in Fig.4. When a vehicle arrives at the intersection, it needs to
communicate with the intersection to observe the color of the

FIGURE 4. A signalized intersection.

traffic light andmake decisions accordingly. The communica-
tion is over some shared network. We assume the observation
delays are upper bounded by 1, i.e., No = 1, and all the
control commands can be executed immediately when they
are issued, i.e., Nc = 0.

The transport safety model G = (Q, 6, δ, 0, q0) is shown
in Fig.5(a). The event set 6 = {c1, c2, c3, o1, o2}, where
c1 means vehicle x approaches a signalized intersection;
c2 means vehicle x stops; c3 means vehicle x passes the
intersection; o1 means the traffic light at the intersection
approached is red; o2 means the traffic light at the intersection
approached is green. Define the set of observable events as
6o = {c1, c2, o1, o2} and the set of controllable events as
6c = {c1, c2, c3}.

We interpret the construction of G as follows. If vehicle x
arrives at the intersection, upon the occurrence of c1, the sys-
tem makes a state transition from 0 to 1. Then, vehicle x
needs to observe the signal and make decisions. If the signal
in the forward direction of vehicle x is switched to red (green),
upon the occurrence of o1 (o2), the system will make a state
transition from 1 to 2 (3). If the system is uncontrolled,
vehicle x can stop or pass the intersection. Hence, event c2
and c3 are defined at both 2 and 3. If the system now is in state
2 and vehicle x passes the intersection, upon the occurrence
of c3, the system will move to 4. On the other hand, If vehicle
x stops, upon the occurrence of c2, the systemwill move from
2 to 5. Since the vehicle has decided to stop at the intersection,
when the system is in state 5, vehicle x needs to wait until
the signal is switched from red to green. And after o2 occurs
at 5, the system will make a state transition from 5 to 6.
Then, vehicle x can pass the intersection or continue to stop
at the intersection. Upon the occurrences of c3 and c2 at 6,
the system will move to 8 and 7, respectively. Meanwhile,
if c3 occurs at 3, vehicle x passes the intersection, and if
c2 occurs at 3, vehicle x stops at the intersection. Upon the
occurrences of c3 and c2 at 3, the systemwill move to 8 and 7,
respectively. When the system is in 7, vehicle x needs to wait
until the signal is switched from green to red. After o1 occurs
at 7, the system will move to 2 and make state transitions as
mentioned above.

By traffic laws, passing the intersection (enabling c3) is not
permitted if the traffic light at the intersection approached
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FIGURE 5. Automata G and H .

FIGURE 6. Automata H1 and H2.

is red. On the other hand, if the traffic light at the intersec-
tion approached is green, vehicle x can pass the intersection
(enabling c3). Hence, as shown in Fig.5(b), the desired system
H = (QH , 6, δH , 0H , q0) is obtained from G by deleting
state 4 and the transition (2, c3, 4).
Let s = c1o1 and s′ = c1o2, by the definition of 2N

D ,
2N
D (s) = {c1, c1o1} and 2

N
D (s
′) = {c1, c1o2}. That is to say,

when the networked supervisor sees c1, the system could be in
state 2 or 3 due to the observation delay of o1 or o2. A control
conflict occurs since we need to enable c3 in state 3 but
disable c3 in state 2. By the definition of delay observability,
L(H ) is not delay observable w.r.t. 2N

D , and L(G) with N =
Nc + No = 1. Next, we apply Algorithm 1 to calculate
the supremal controllable and relatively delay observable
sublanguage of L(H ).

First, given a solution space 4 = {L1,L2} with L1 =
L(H ) \ {c1o2c3} and L2 = L(H ). Then, as shown in Fig.6,
9 = {H1,H2} with H1 v H2 and Li = L(Hi), i = 1, 2. We
denote by Hi = (QHi , 6, δHi , 0Hi , q0), i = 1, 2. Let A = H ,
i.e., the ambinent language C = L(A) = L(H ).

Consider the first iteration. By Step 1,R = {H} and i = 1.
Since H is controllable, by Step 2, A = {H}. Since |A| = 1
and i = 1, by Step 3, we pick the only element H = H2
in A and let H̃ ← H2. Since c3 ∈ 0H2 (3) = 0(3) and
c3 ∈ 0(2) ∧ 2 ∈ QH2 ∧ c3 /∈ 0H2 (2), by (6), (3, 2) ∈
Tspec(H2,A,G). Moreover, since 2N

D (c1o1) ∩ 2
N
D (c1o2) 6=

∅, (3, 2) ∈ Tconf (2N
D ). Hence, we have Tspec(H2,A,G) ∩

Tconf (2N
D ) 6= ∅. By Proposition 6, L(H2) is not relatively

delay observable w.r.t. C , 2N
D , and L(G). By Step 3, R ←

{H1}. By Step 4, i = 2.
Consider the second iteration. Since R = {H1}, H1 /∈ A,

and H1 is controllable, by Step 2,A = {H2,H1}. Since i = 2
and |A| = 2, by Step 3, pick the second element ofA, i.e.,H1.
To achieve H1, we need to disable c3 at both state 2 and state
3 in H , and enable c3 at state 6, i.e., c3 /∈ 0H1 (2) ∧ c3 /∈

0H1 (3)∧c3 ∈ 0H1 (6) Since c3 ∈ 0(2)∧c3 ∈ 0(3)∧c3 ∈ 0(6)
and 2, 3, 6 ∈ QH1 , by (6), Tspec(H2,A,G) = {(6, 2), (6, 3)}.
Moreover, by (4), the set of confusable state pairs in G under
P is Tconf (P) = {(q, q) : q ∈ Q} ∪ {(2, 4), (3, 8), (6, 8)}. By
Proposition 4,

Tconf (2N
D ) = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3),

(2, 4), (2, 5), (4, 5), (5, 6), (6, 7), (6, 8),

(7, 8), (2, 7), (3, 7), (3, 8)} ∪ {(q, q) : q ∈ Q}.

Note that in Tconf (P) and Tconf (2N
D ), we only list (q, q′)

and omit (q′, q) for brevity. Then, it can be verified that
Tspec(H1,A,G)∩Tconf (2N

D ) = ∅. By Proposition 6, L(H1) is
relatively delay observable w.r.t. C , 2N

D , and L(G). By Step
3, H∗← H1. By Corollary 2, H↑ = H∗ and H↑ is unique.

To pass the intersection safely with observation delays,
by H↑ = H1, vehicle x needs to stop when it approaches the
intersection nomatter whether the traffic signal in the forward
direction is red or not. In other words, it should enable c2 and
disable c3 when the system is in 2 and 3. After that, vehicle x
can pass the intersection (enabling c3) at the time the traffic
signal in the forward direction is switched to green (o2 occurs
at state 5).

VI. CONCLUSION
In this article, we simplify the existence condition for a deter-
ministic networked supervisor introduced in [1] and prove
there exists a deterministic networked supervisor that can be
used to achieve the specification language if the specification
language is controllable and delay observable. To overcome
the difficulty delay observability is not closed under union,
relative delay observability is introduced. Techniques are pro-
posed for checking relative delay observability. To calculate
the supremal controllable and relatively delay observable
sublanguage for the specification language, a general algo-
rithm is introduced to calculate the supremal sublanguage (of
the specification language) that satisfies controllability and
another given language property. We prove such a unique
supremal element exists if the given language property is
closed under union, and there exits at least one element in
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the finite solution space that satifies both controllability and
the given property.
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