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ABSTRACT A new robust cubature Kalman filter is proposed using adaptive generalized maximum
correntropy (AGMC) criterion rather than the conventional MMSE criterion in this paper. In the proposed
method, the adaptive generalized maximum correntropy (AGMC) criterion is firstly constructed from an
adaptive forgetting correntropy based cost function, which is rather robust with respect to the process
uncertainty and non-Gaussian noise. On this basis, a new robust cubature Kalman filter is further derived,
where the predicted state vector and received measurements are processed simultaneously based on the
regression form derived via the statistical linearization approach. An adaptive forgetting scheme is then
proposed in combination with the AGMC-CKF to update the parameters of the AGMC adaptively in real
time. Taking advantage of the AGMC, the unknown noise statistics caused by the process uncertainty and
non-Gaussian noise can be effectively suppressed. Simulations and car-mounted experiments demonstrate
that the proposed filter is superior in terms of estimation accuracy and robustness as compared with the
related state-of-art methods.

INDEX TERMS SINS/GNSS integrated navigation system, robust estimation, cubature Kalman filter,
dynamic state estimation.

I. INTRODUCTION
Because of the complementary properties of the strap-down
inertial navigation system (SINS) and global navigation satel-
lite system (GNSS), the integration of SINS and GNSS has
become one of the most popular approaches to the position
and attitude determination of a moving vehicle [1]–[3]. The
high-dimensional nonlinear SINS/GNSS integrated naviga-
tion system widely applies the cubature Kalman filter (CKF)
featuring satisfactory performance and ease of implementa-
tion [4], [5]. The CKF is developed based on the minimum
mean square error (MMSE) criterion and only suitable for
the Gaussian system with exact prior knowledge of process
noise and measurement noise [6]. However, in the practi-
cal applications, due to the vehicle’s severe maneuver and
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abnormal measurement of GNSS, the process noise of the
SINS/GNSS integrated navigation system is hard to obtain
and the measurement noise may not follow the Gaussian
distribution, thus causing a negative impact on the system
performance [7]–[9]. Therefore, this work is aimed to develop
an effective CKF to increase the estimation accuracy and
robustness against both of the uncertain process noise and
non-Gaussian measurement noise.

Recently, the adaptive Kalman filter (AKF) theory has
attracted wide attention and been extensively employed to
deal with the uncertain dynamic system. Existing methods
based on theAKF theory can be categorized into three groups,
i.e., multi-model adaptive estimation, adaptive stochastic
modeling, and covariance scaling. The multiple model AKF
(MMAKF), a multi-model adaptive estimation method, cap-
tures the uncertain process noise by running a bank of Kalman
filters with different stochastic models parallelly [10].
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However, it operates under the assumption that one of the
models in the model bank is correct, limiting its application
to systems with known dynamics [11]. The innovation-based
AKF (IAKF) is an adaptive stochastic modeling method,
which estimates the appropriate covariance matrix of process
noise by forcing the innovation sequence of the Kalman filter
to be white Gaussian noise sequence with zero mean [12].
However, the convergence to the right process noise covari-
ance matrix cannot be guaranteed and rather large windows
of data are required to achieve a reliable estimation of process
noise covariance matrix, making it only applicable to slowly
changing systems [13]. The strong tracking filter (STF) is a
covariance scaling method targeting the uncertain dynamic
system, which introduces the time-variant fading factor to
the state prediction covariance matrix [14], [15]. However,
the difficulty in determining the true value of the fading
factor in practical application results in a limited estimation
accuracy [16].

Existing methods for the robustness against non-Gaussian
measurement noise includes the particle filter (PF) [17]–[19],
robust student’s t nonlinear filter (RSTNF) [20]–[22] and
Maximum Correntropy Criterion Kalman filter (MCC-KF)
[23]–[25]. To solve the non-Gaussian state estimation prob-
lem, the PF utilizes a set of random particles to approx-
imate the posterior probability distribution of the system
state. However, in the high-dimensional SINS/GNSS inte-
grated navigation system, it is subject to the substantial
computational complexity, which increases exponentially
with the dimension of the state [26]. The RSTNF copes
with the non-Gaussian measurement noise by modeling the
heavy-tailed non-Gaussian noise as student’s t distribution,
which has heavier tails than the Gaussian distribution. How-
ever, the growth of the degree of freedom (DOF) may reduce
the estimation accuracy of the RSTNF [22]. The MCC-
KF deals with the non-Gaussian noise by maximizing the
Gaussian correntropy function of one-step prediction error
and residual. Its performance depends largely on the selec-
tion of Gaussian-kernel width. However, the determination
methods for the proper Gaussian-kernel width is lack of a
theoretical basis in actual SINS/GNSS integrated navigation
applications, which adversely impacts the performance of
MCC-KF [27].

To overcome the aforementioned challenges, a new
robust filtering algorithm is proposed here for a class of
uncertain and non-Gaussian SINS/GNSS integrated sys-
tems. This paper provides an integrated and comprehensive
method to improve the conventional CKF-based integration
approach. Its contributions are summarized below:

(1) The statistical linearization method is presented to
construct the general batch-mode linear regression model.
On this basis, the non-Gaussian measurement noise existed
in both of the linear and nonlinear dynamic systems can be
suppressed by using the maximum correntropy approach.

(2) The adaptive generalized maximum correntropy crite-
rion (AGMC) based on the batch-mode regression model is

proposed to process the predicted state vector and the mea-
surement simultaneously, yielding a new form of robust filter.

(3) An adaptive forgetting scheme in combination with the
AGMC-CKF is further developed to update AGMC parame-
ters adaptively in real time, displaying a good performance in
suppressing process uncertainty.

(4) A hypothesis test method based on Mahalanobis dis-
tance is presented to detect observation and innovation out-
liers, as well as avoid numerical singular in the calculation of
the measured noise covariance matrix.

The rest of paper is organized as follows. Section II
presents the problem formulation, followed by the introduc-
tion of the proposed AGMC-CKF in Section III and the dis-
cussion of simulation and experimental results in Section IV.
Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION
A. NONLINEAR SINS/GNSS INTEGRATED NAVIGATION
SYSTEM MODEL
The nonlinear discrete-time dynamic system with additive
noise is expressed as follows:{

xk = f (xk−1)+ wk−1

zk = h (xk)+ vk
(1)

where xk ∈ Rn×1 and zk ∈ Rm×1 are respectively the
n-dimensional system state vector and m-dimensional mea-
surement vector at time step k. f (·) and h (·) are respec-
tively the nonlinear dynamic system model and measurement
model. wk−1 and vk are respectively the system process and
measurement noise, which are assumed to be Gaussian white
noise sequences with zero means and variance matricesQk−1
and Rk , respectively.

The SINS body frame (Front-Up-Right) is denoted by b; n
indicates the local level navigation frame (North-Up-East);
e refers to the earth frame; i represents the inertial frame.
In this paper, we define the 21-dimension state vector for
the low-cost SINS/GNSS integrated navigation system as
follows:

x =
[
ϕn δvn δpn bg bf δbg δbf

]T
where ϕn =

[
ϕN ϕu ϕE

]
is the misalignment angle between

the calculated navigation frame and true navigation frame
with ϕN , ϕu and ϕE being respectively the north, up and
east misalignment angle error. δvn = [δVN δVu δVE ] denotes
the velocity error component in north, up, and east direc-
tion. δpn = [δλ δL δh] is the position error with δλ, δL
and δh being respectively the longitude error, latitude error
and height error. bg and δbg denote the static and dynamic
bias of the tri-axis gyroscope, respectively. bf and δbf are
respectively the static and dynamic biases of the tri-axis
accelerometer. According to [5], the nonlinear system error
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equation of SINS can be formulated as follows:

ϕ̇n = C−1w
[(
I− Cp

n
)
wnin + δw

n
in − Cp

bδw
b
ib

]
δv̇n =

(
I− Cn

p

)
Cp
bf
b
ib + Cp

bδf
b
ib + δv

n
×
(
2wnie + w

n
en
)

+vn ×
(
2δwnie + δw

n
en
)

δλ̇ =
δVE

RN + h
secL + δL

VE secL
RN + h

tanL

δL̇ =
δVN

RN + h
δḣ = δVU
ḃg = 0
ḃf = 0

δḃg = −
1
τg
δbg + ηg

δḃf = −
1
τf
δbf + ηf

(2)

whereC−1w denotes the transformation matrix from angle rate
to Euler angle, Cp

n and C
p
b denote the attitude rotation matrix

from n-frame (ideal navigation frame) to p-frame (actual
navigation frame) and b-frame (body frame) to p-frame,
respectively;ωcba denotes the rotation velocity of a-framewith
respected to b-frame expressed in c-frame, and δωcba denotes
the corresponding error; RN is the normal radius; τg and τf
are respectively the correlation time of 1st-order Markovian
process for gyroscope and accelerometer; ηg and ηf denote
the zero-mean Gaussian white noise process.

In this paper, the loosely coupled method is adopted for
the integration of SINS and GNSS. In the state space model
of SINS/GNSS integrated navigation system, the SINS error
equation is utilized as the system process model and the
measurement vector is determined from the position error
between SINS and GNSS. Thus, the state transition function
f (·) can be obtained from (2). The measurement vector can
be expressed as

zk =


VGNSS − VSINS
LGNSS − LSINS
hGNSS − hSINS
λGNSS − λSINS

 ,
with the subscripts (GNSS and SINS) being the velocity
and geographical position obtained from GNSS and SINS,
respectively. The observation matrix can be formulated as
h(xk ) = [06×3, I6×6, 06×12].

B. DYNAMIC STATE ESTIMATION USING CKF
The procedure for the high dimensional nonlinear dynamic
system state estimation using CKF can be summarized as
follows [28]:
Time Update: Assuming the state estimate x̂k−1|k−1 and

variance matrix Pk−1|k−1 at time step k-1 is known, the cuba-
ture points for i = 1, . . . , 2n with weight ωi = 1

2n are
calculated as follows:

Xi,k−1|k−1 = x̂k−1|k−1 ±
(√

nPk−1|k−1
)
i

(3)

Then, the cubature points are propagated through the nonlin-
ear system process model as follows:

X∗i,k|k−1 = f
(
Xi,k−1|k−1

)
(4)

Next, the predicted states and the corresponding covariance
matrix are calculated as follows:

x̂k|k−1 =
1
2n

2n∑
i=1

X∗i,k|k−1 (5)

Pk|k−1 =
1
2n

2n∑
i=1

X∗i,k|k−1X
∗
T

i,k|k−1−x̂k|k−1x̂
T
k|k−1 +Qk−1 (6)

Measurement Update:Based on the predicted states x̂k|k−1
and the corresponding covariance matrix Pk|k−1, the cubature
points for i = 1, . . . , 2n with weight ωi = 1

2n are calculated
as follows:

Xi,k|k−1 = x̂k|k−1 ±
(√

nPk|k−1
)
i

(7)

Then, the cubature points are propagated through the nonlin-
ear measurement model as follows:

Zi,k|k−1 = h
(
Xi,k|k−1

)
(8)

Next, the predicted measurement vector ẑk|k−1, covariance
matrix Pzz,k|k−1, and cross-covariance matrix Pxz,k|k−1 are
respectively calculated as follows:

ẑk|k−1 =
1
2n

2n∑
i=1

Zi,k|k−1 (9)

Pzz,k|k−1 =
1
2n

2n∑
i=1

Zi,k|k−1Zi,k|k−1−ẑk|k−1ẑTk|k−1 + Rk (10)

Pxz,k|k−1 =
1
2n

2n∑
i=1

Xi,k|k−1ZTi,k|k−1−x̂k|k−1ẑ
T
k|k−1 (11)

Finally, the posterior state x̂k|k and the corresponding error
covariance matrix Pk|k are calculated as follows:

Kk = Pxz,k|k−1/Pzz,k|k−1 (12)

x̂k|k = x̂k|k−1 +Kk
(
zk − ẑk|k−1

)
(13)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k (14)

C. PROBLEM STATEMENT
If both the process noise and measurement noise of the
dynamic system follow the Gaussian distribution, the con-
ventional CKF-based SINS/GNSS integration will produce
the optimal estimation of navigation error when the statistics
of the process and measurement noise are accurately known.
However, due to the vehicle’s severe maneuver, substantial
measurement noise of accelerometer and gyro are produced.
As a result, the statistic of SINS/GNSS integrated navigation
system process noise may be time-variant and inaccurate.
Furthermore, due to the abnormal measurement of GNSS,
the Gaussian assumption may not always hold in practical
application. As a result, the sigma points of the conventional
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CKF may not capture the true statistics of the navigation
error, resulting in poor or even severely degraded estimation
performance. Thus, the statistic of SINS/GNSS integrated
navigation system process noise may be unknown and the
measurement noise may not follow the Gaussian distribution
in the case of the vehicle’s severe maneuver and abnormal
measurement of GNSS, which will significantly degrade the
performance of the conventional CKF-based SINS/GNSS
integrated navigation. The aforementioned challenges repre-
sent the main motivation for this work.

III. PROPOSED AGMC-CKF
The proposed AGMC-CKF is developed in the following
three major steps, namely a batch-mode regression form step,
a robust state estimation step and a parameter determina-
tion step. Then, some practical implementation issues are
discussed.

A. DERIVATION OF THE PROPOSED AGMC-CKF
Given the estimated state vector x̂k−1|k−1 and the correspond-
ing covariance matrix Pk−1|k−1 at time step k-1, the predicted
state vector x̂k|k−1 along with its covariance matrix Pk|k−1
can be obtained through (5) and (6). To derive the batch-mode
linear regressive form, we define the prior estimation error of
the state by δk = xk − x̂k|k−1, where E

[
δkδ

T
k

]
= Pk|k−1, xk

is the true state vector and x̂k|k−1 is the predicted state vec-
tor. Then applying the statistic linearization to the nonlinear
observation equation around x̂k|k−1, yielding:

zk = ẑk|k−1 + H̃k
(
x̂k − x̂k|k−1

)
+ ηk + vk (15)

where H̃k =
(
Pxz,k|k−1

)T P−1k|k−1 is the measurement slope
matrix, ηk is the statistical linearization error term which is
used to compensate the high order Taylor-series expansion
error. The covariance matrix of ηk is calculated as:

R̂k= E
[
ηkη

T
k

]
=Pzz,k|k−1−

(
Pxz,k|k−1

)TP−1k|k−1Pxz,k|k−1 (16)
In order to handle the predicted state vector and received
measurements simultaneously, we construct the batch-mode
linear regression form as follows:[

x̂k|k−1
z̃k

]
=

[
I
H̃k

]
xk +

[
−δk

ηk + vk

]
(17)

where z̃k = zk − ẑk|k−1 + H̃k x̂k|k−1, the batch-mode regres-
sion form in (17) can be written in the compact form as
follows:

z̄k = H̄kxk + ε̄k (18)

where ε̄k =
[
−δk

ηk + vk

]
, and the corresponding error covari-

ance matrixWk is given by

Wk = E
[
ε̄k ε̄

T
k

]
=

[
Pk|k−1 0

0
∑

k

]
=

[
Sp,k|k−1STp,k|k−1 0

0 S6,kST6,k

]
= SkSTk (19)

where
∑

k = E
[(
ηk + vk

) (
ηk + vk

)T ]
= Rk + R̂k , Sk can

be obtained by the Cholesky decomposition ofWk . To uncor-
related the predicted state vector and measurement vector,
we multiply both sides of (18), yielding:

S−1k z̄k = S−1k H̄kxk + S−1k ε̄k (20)

Then the batch-mode regression form can be further trans-
formed to

Dk = g (xk)+ ξ k (21)

where Dk = S−1k z̄k , g (xk) = S−1k H̄kxk and ξ k = S−1k ε̄k .

It can be easily verified that E
[
ξ kξ

T
k

]
= I.

To make the filtering robust to the non-gaussian noise,
we introduce the concept of maximum correntropy based
on the above batch-mode regression model. The definition
of maximum correntropy can be referred to Appendix A.
Motivated by the maximum correntropy and weighted least
square method, we proposed in this paper a new criterion
termed adaptive generalized maximum correntropy criterion
(AGMC) as follows:

JAGMC (xk) =
∥∥xk − x̂k|k−1

∥∥2
(λkpk|k−1)

−1 −

m∑
i=n

ρGMC
(
ek,i
)

(22)

where ‖x‖2A = xTAx is the quadratic form with respect
to A. λk is the fading factor, which is used to adaptively
adjust the predicted error covariance matrix and strengthen
the robustness of the proposed filter against the unknown
process noise. ek,i = Dk,i − g

(
xk,i

)
, ek,i is the i-th element

of ek , n and m are respectively the dimension of xk and Dk .
ρGMC

(
ek,i
)
is the kernel function of the correntropy. Due to

the fact that the correntropywith the standard Gaussian kernel
is not always the best in practical application, we adopt in this
paper the following generalized Gaussian density function as
the kernel function:

ρGMC
(
ek,i
)
=

α

2β0
(
1
/
α
) exp (−β−αeαk,i) (23)

where α is the shape parameter, β is the bandwidth parameter.
As can be seen from (23) that the original correntropywith the
Gaussian kernel is a special case of the generalized Gaussian
kernel when α = 2 and β =

√
2σ .

Under the adaptive generalized maximum correntropy cri-
terion defined above, we develop a new robust CKF and
obtain the optimal solution of xk by minimizing the following
objective function as follows:

x̂k = argmin
xk

JAGMC (xk) (24)

Thus, the solution of (24) can be obtained by differencing
the cost function with respect to xk and setting it equal to zero
as follows:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)
−

m∑
i=n

ψ
(
ek,i
)∂ek,i
∂xk
= 0 (25)

1696 VOLUME 9, 2021



K. Feng et al.: AGMC-Based Robust Cubature Kalman Filter for SINS/GNSS Integrated Navigation System

whereψ
(
ek,i
)
=
∂ρGMC(ek,i)

∂ek,i
=−

α2eα−1k,i
2βα+10(1/α)

exp
(
−β−αeαk,i

)
,

by defining the functionCk,i=−
α2eα−2k,i

2βα+10(1/α)
exp

(
−β−αeαk,i

)
and dialog matrix Ck = diag

[
Ck,i

]
i = n, · · · ,m, we can

rewrite equation (25) as follows:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)
− H̃TS−T6,kCkek = 0 (26)

Substituting ek = Dk−g (xk) = S−16,k
(
z̃k − H̃kxk

)
into (26)

yields:(
λkPk|k−1

)−1 (xk − x̂k|k−1
)
− H̃T

k S
−T
6,kCkS−16,k

×

(
z̃k − H̃kxk

)
= 0 (27)

Let P̄k|k−1 = λkPk|k−1, R̄k = S6,kC−1k ST6,k and x̂k|k = xk it
can be obtained that:

P̄−1k|k−1
(
x̂k|k − x̂k|k−1

)
= H̃T

k R̄
−1
k

(
z̃k − H̃k x̂k|k

)
(28)

By adding and subtracting the term H̃T
k R̄
−1
k H̃k x̂k|k−1 on the

right side of (28) it can be acquired that:(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)
x̂k|k = P̄−1k|k−1x̂k|k−1 + H̃T

k R̄
−1
k z̃k

−H̃T
k R̄
−1
k H̃k x̂k|k−1 + H̃T

k R̄
−1
k H̃k x̂k|k−1 (29)(

P̄−1k|k−1+ H̃T
k R̄
−1
k H̃k

)
x̂k|k=

(
P̄−1k|k−1+ H̃T

k R̄
−1
k H̃k

)
x̂k|k−1

+H̃T
k R̄
−1
k

(
z̃k − H̃k x̂k|k−1

)
(30)

Then, left multiply both sides of (30) by (P̄−1k|k−1 + H̃T
k

R̄−1k H̃k )−1 to obtain the following results:

x̂k|k = x̂k|k−1 +Kk
(
zk − ẑk|k−1

)
(31)

Kk =

(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)−1
H̃T
k R̄
−1
k (32)

Meanwhile, the corresponding posterior covariance matrix
can be updated by:

P̄k|k =
(
I−KkH̃k

)
P̄k|k−1

(
I−KkH̃k

)T
+ Kk R̄kKT

k

=

(
I−KkH̃k

)
P̄k|k−1 (33)

It can be observed from the above equations that the fading
factor λk is the unknown parameter to be determined in
the process of dealing with uncertain process noise. In this
paper, we proposed an adaptive forgetting scheme to estimate
the fading factor adaptively. The basic idea of the adaptive
forgetting scheme is to update the fading factor by using the
empirically estimated residual covariance via the recursive
least squares (RLS) algorithm. Specifically, we can obtain the
innovation covariance matrix as follows:

Pzz,k|k−1 = Hk P̄k|k−1HT
k + R̄k (34)

where P̄k|k−1 = λkPk|k−1, R̄k = S6,kC−1k ST6,k , which
are different from the normal covariance matrix denoted by
Pk|k−1 and Rk due to the time-varying process noise and

non-Gaussian measurement noise. By substituting P̄k|k−1 =
λkPk|k−1 into (34), we get:

Pzz,k|k−1 = λkHkPk|k−1HT
k + R̄k (35)

By taking the trace on both sides of (35), yielding:

trace
(
Pzz,k|k−1

)
= λk trace

(
HkPk|k−1HT

k

)
+trace

(
R̄k
)
(36)

The innovation covariancematrixPzz,k|k−1 can also be esti-
mated empirically by using the innovations in a fixed-width
moving window under the assumption that the innovations
are stationary:

P̂zz,k|k−1 =
1
M

M−1∑
i=0

ek−ieTk−i (37)

where M is the width of the moving window for estimat-
ing the innovation covariance matrix. On one hand, if M
is too large, the proposed AGMC-CKF will suffer from a
severe computational burden. On the other hand, if M is too
small, it may yield large innovation variance. In this paper,
the window width is determined by minimizing the variance
parameters according to [29]. ek = zk − ẑk|k−1 denotes the
innovation matrix. Thus, the optimal estimation of the fading
factor λk can be reduced to the linear regressive problem as
follows:

trace
(
P̂zz,k|k−1

)
≈ λk trace

(
HkPk|k−1HT

k

)
+ trace

(
R̄k
)
(38)

To solve the linear regressive problem recursively, we pro-
pose to use the recursive least squares (RLS) algorithm to
efficiently produce the optimal estimation of λk online with
the following measurement model:

yλk = Hλkx
λ
k + vλk (39)

where yλk = trace
(
P̂zz,k|k−1

)
− trace

(
R̄k
)
is the measure-

ment vector, xλk = λk , Hλk = trace
(
HkPk|k−1HT

k

)
, vλk is

the zero-mean random vector with the variance matrix Rλk .
By utilizing the RLS, the fading factor λk at the k-1 iteration
can be calculated through

x̂λk = x̂λk−1 +Kλk
(
yλk − ŷλk

)
(40)

where Kλk = Pλk−1
(
Hλk
)T (Rλk +HλkP

λ
k−1

(
Hλk
)T)−1

,Pλk =(
I−KλmH

λ
m
)
Pλk−1, ŷ

λ
k = Hλk x̂

λ
k−1.

B. PRACTICAL IMPLEMENTATION ISSUES OF THE
PROPOSED AGMC-CKF
1) OUTLIER IDENTIFYING
It is worth noting that the measurement noise covariance
matrix R̄k = S6,kC−1k ST6,k in the proposed AGMC-CKF
depends largely on the calculation of C−1k . However, if the
outlier occurs, the inversion matrix of Ck may not exist, that
is when ‖zk‖ → ∞, Ck,i → 0, Ck = diag

[
Ck,i

]
→

0. To overcome this problem, we first detect the outliers
using the hypotheses test method, in which the square of the
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Mahalanobis distance from the predicted residual vector is
used as the test statistic:

γ k = M2
k = eTk

[
λkHkPk|k−1HT

k + R̄k

]−1
ek (41)

where ek = zk − ẑk|k−1 is the predicted residual, Mk =√
eTk
[
λkHkPk|k−1HT

k + R̄k
]−1

ek is the Mahalanobis dis-
tance of the predicted residual ek . Since ek is a random vari-
able roughly obeying the Gaussian distribution, the square
of the Mahalanobis distance of the predicted residual should
follow the χ2 distribution with m-degree of freedom (m is
the number of state variables that can be directly observed).
According to the hypothesis testing theory, for a chosen
significance level α, we have

P
(
χ2 < χ2

α,m

)
= 1− α (42)

where P (·) denotes the probability of a random event. The
χ2
α,m of the Chi-square distribution is predetermined as
χ2
α,m = 12.592 with the significance level at 5%. So if the

actual γk is lower than this α-quantile, i.e. γk < χ2
α,m, which

means that there is no measurement outlier existed, and then
both the time update andmeasurement update in the proposed
AGMC-CKF are carried out. Otherwise, it can be concluded
with high probability (1− α) that there exists a measurement
outlier in the dynamic system. To avoid the matrix Ck being
nearly singular, only the time update of the AGMC-CKF is
conducted under this condition. With the outlier identifica-
tion, the numerical problem when calculating the inversion
matrix of Ck can be effectively avoided.

2) PARAMETER SELECTION
To implement the proposed AGMC-CKF, several parame-
ters need to be selected, namely the setting of the kernel
parameters α and β of the adaptive generalized maximum
correntropy criterion and the covariance matrix R of the RLS
algorithm. Regarding the kernel parameters α and β, they
determine the robustness of AGMC and are generally selected
by trial in practical application since they are related to the
practical environment. On one hand, if the kernel parameters
are too large, the AGMC will be insensitive to some outliers
and even the AGMC-CKF reduced to the conventional CKF
when β →∞. On the other hand, when the kernel parameters
are too small, the contribution of the useful information will
be ignored, which may result in degraded performance and
even lead to filtering divergence. To find the optimal kernel
parameters and investigate how the kernel parameters affect
the filtering accuracy of the proposed AGMC-CKF, we evalu-
ated the several values of the kernel parameters by experience
according to the special environment in different applications.
The optimal determined kernel parameters are provided in the
simulation and experiment section. Rλk is the measurement
error covariance matrix in the measurement model as shown
in (39), which determines the weight between the recent
measurement data and the predicted state. Regarding the
covariance matrix Rλk of the RLS algorithm, a smaller Rλk

will put more emphasis on the recent measurement data; in
contrast, a large Rλk will discount the recent data and rely
more on the predicted state for state estimation. Extensive
simulations have shown that the covariance matrix Rλk can
be set to 0.01 to achieve a good estimation performance.

3) COMPUTATIONAL EFFICIENCY IMPROVEMENT
Another important problem that needs to be addressed in the
practical implementation of the proposedAGMC-CKF is how
to reduce the computational complexity. We can notice from
the expression (32) for the calculation of the Kalman filter
that two n×n and onem×m inversion matrix calculation are

required, since P̄k|k−1 ∈ Rn×n,
(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)−1
∈

Rn×n and R̄k ∈ Rm×m, which may leads to large computa-
tional burden in the proposed AGMC-CKF, especially for the
high-dimensional SINS/GNSS integrated navigation system.
To address this issue, we propose to modify the Kalman gain
in (32) as an alternate form as follows:

Similar to the measurement update of classical KF, we can
prove that the following formulas hold [6]:

Kk =

(
P̄−1k|k−1 + H̃T

k R̄
−1
k H̃k

)−1
H̃T
k R̄
−1
k = P̄k|kH̃T

k R̄
−1
k (43)

Substituting (33) into (43) gives:

Kk =

(
I−KkH̃k

)
P̄k|k−1H̃T

k R̄
−1
k (44)

Kk

(
I+ H̃k P̄k|k−1H̃T

k R̄
−1
k

)
= P̄k|k−1H̃T

k R̄
−1
k (45)

With I = R̄k R̄−1k , (45) can be transformed to the form as
follows:

Kk

(
R̄k + H̃k P̄k|k−1H̃T

k

)
R̄−1k = P̄k|k−1H̃T

k R̄
−1
k (46)

Kk =
P̄k|k−1H̃T

k

R̄k + H̃k P̄k|k−1H̃T
k

(47)

In contrast to the conventional form for Kk in (32), the
alternate form in (47) requires only one matrix inversion,
which greatly improves the computational efficiency of the
proposed AGMC-CKF for the high-dimensional SINS/GNSS
integrated navigation system.

C. SUMMARY OF THE PROPOSED AGMC-CKF
The implementation pseudocode for the proposed AGMC-
CKF algorithm is presented as Alogritm1.

IV. PERFORMANCE EVALUATION
In this section, the car-mounted experiment is carried out to
assess the performance of the proposed AGMC-CKF. To fur-
ther verify the effectiveness and superiority of the proposed
AGMC-CKF, some representative state-of-the-art approaches
such as the cubature Kalman filter (CKF), robust Student’s
t-based nonlinear filter (RSTNF) and Strong tracking maxi-
mum correntropy cubature Kalman filter (MCCKF) are used
for comparison.
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Algorithm 1 One Time Step of the Proposed AGMC-CKF
Algorithm

Initialization: x̂0|0, P̄0|0,
1. Compute the predicted state vector x̂k|k−1 and the corre-

sponding error covariance matrix Pk|k−1 using (5) - (11);
2. Identify the outlier according to (41)-(42). If the outliers

existed, x̂k|k = x̂k|k−1, P̄k|k = Pk|k−1, k = k+1 and go back
to step 1; else go to step 3;

3. Calculate Sk by applying Cholesky decomposition
Wk = SkSTk ;

4. Calculate ek,i using ek,i = Dk,i − g
(
xk,i

)
where Dk =

S−1k z̄k , g (xk) = S−1k H̄kxk ;
5. Calculate Ck using Ck = diag

[
Ck,i

]
i = 1, · · · ,m,

where Ck,i = −
α2eα−2k,i

2βα+10(1/α)
exp

(
−β−αeαk,i

)
;

6. Calculate R̄k using R̄k = SkC−1k STk ;
7. Calculate the fading factor λk using (35)∼(40);
8. P̄k|k−1 = λkPk|k−1
9. Kk =

P̄k|k−1HT
k

R̄k+Hk P̄k|k−1HT
k

x̂k|k = x̂k|k−1 +Kk
(
zk −Hk x̂k|k−1

)
P̄k|k = (I−KkHk) P̄k|k−1 (I−KkHk)

T
+ Kk R̄kKT

k =

(I−KkHk) P̄k|k−1
Output: x̂k|k , P̄k|k

A. NOISE STATISTICAL MODEL OF LOOSE SINS/GNSS
For the loosely coupled SINS/GNSS nonlinear model in
equation (2), vk−1 ∼ N (0,Qk) denotes the process noise,
which is assumed to be white and independent of each other.
Under the condition of vehicle’s severe maneuvering, Qk =

diag([n2g,n
2
f ,n

2
gδb,n

2
f δb]) is the time-varying process noise

covariance matrix with ng,nf ,ngδb,nf δb being respectively
the power spectral density (PSD) of the gyroscope random
noise, accelerometer random noise, gyroscope dynamic bias
and the accelerometer dynamic bias. The simulation of the
time-varing process noise can be shown in the number simu-
lations part.

For the loosely coupled SINS/GNSS measurement model,
vk is the non-Gaussian measurement noise under the con-
dition of abnormal GNSS measurement, which can be gen-
erated according to the mix-Gaussian distribution described
in [30] as follows:

vk ∼ (1− ε)N (0,Rk)+ εN (0, 100Rk) (48)

whereRk is the nominal covariance matrix from the Gaussian
distribution, ε denotes the level of the non-Gaussian con-
tamination, which means that 100 (1− ε) percent of normal
values modeled as zero-mean Gaussian distribution and 100
ε percent of measurement noise are drawn from the Gaussian
distribution with severely increased covariance.

B. NUMERICAL SIMULATIONS
In this section, we carry out extensive simulations on the
SINS/GNSS integrated navigation system to demonstrate the

FIGURE 1. Simulation trajectory of the SINS/GNSS.

performance of the proposed AGMC-CKF subjected to var-
ious types of unknown noise. Specially, the true trajectory
of the SINS/GNSS integrated navigation system is shown
in Figure 1. The constant bias of gyroscope and accelerom-
eter are respectively 12 ◦/h and 5mg. The random noise
of gyroscope and accelerometer are respectively 0.6◦/

√
h

and 0.002m/s2/
√
h. The position and velocity error of GNSS

are respectively 1m and 0.1m/s. The update rate of IMU
and GNSS are respectively 100Hz and 10Hz. The existing
CKF [28], strong tracking Maximum correntropy cubature
Kalman filter (MCCKF) [31] and robust student’s t based
nonlinear filter (RSTNF) [21] are taken into comparison to
verify the superiority of the proposed AGMC-CKF. All the
filers are configured with identical parameters such as ini-
tial state and initial covariance. In the MCCFK, the kernel
bandwidth is set as σ = 3. In the RSTNF, the dof parameter,
turning parameter and the iteration number are respectively
chosen as: v = 0.5, τ = 5,N = 10. The proposed filter and
the existing filters are all coded with MATLAB and carried
out on a computer with CPU at 2.60GHz, 8Gb memory.

To evaluate the estimation accuracy of the proposed fil-
ter and the existing filters, the mean square error (RMSE)
of the velocity and position obtained from the SINS/GNSS
integrated navigation system that averaged across all time
instances is chosen as the performance metric, which is
defined as follows:

RMSE =

√√√√ 1
N

N∑
k=1

(
xk − x̂k

)2 (49)

where N is the total sample number, xk and x̂k denote the true
value and the estimated value of velocity and position at time
k, respectively.

1) SCENARIOS 1: TIME-VARYING PROCESS NOISE
Due to the different maneuvers of vehicle, the process noise
Qt may vary over time, yielding deviations from nominal
values. In such cases, the performance of the SINS/GNSS
will be degraded since the process noises are unknown to the
integrated filtering. To validate the performance of different
methods to the unknown process noise, the process noise
are assumed to be Gaussian distributed with zero means
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and time-varying covariance matrix, where the actual pro-
cess noise covariance matrix are respectively magnified to
10 times and 100 times in the time interval (100, 200) and
(250, 350), which are set as follows:

Qt =



Qk 0 ≤ k ≤ 100
10Qk100 ≤ k ≤ 200
Qk200 ≤ k ≤ 250
100Qk250 ≤ k ≤ 350
Qk350 ≤ k ≤ 405

The velocity RMSEs of the SINS/GNSS integrated naviga-
tion system obtained from existing filters and the proposed
filter are displayed in Figure 2. We have not presented the
result of the position RMSE here owing to the fact that the
position estimation is mainly determined by the measurement
noise matrix R and not sensitive to the time-varying process
noise. It is apparent that the filtering performance of the tradi-
tional CKF is significantly disturbed by the bias process noise
covariance, resulting in a large velocity RMSE. Although
the RSTNF and MCCKF can cope with them, it produces
increased biases on the estimates at the time when the
time-varying process noise increases severely. By contrast,
the proposed AGMC-CKF can deal with the time-varying
process noise and produce much less bias then the RSTNF
andMCCKF. This is due to the fact that our proposed adaptive
forgetting scheme can effectively track the fading factor and
is better than the strong tracking method, hence yielding very
good estimates.

2) SCENARIOS 2: NON-GAUSSIAN MEASUREMENT NOISE
Due to the occlusion of trees and buildings, the GNSS
measurement noise will deviate from the Gaussian distribu-
tion and follow the heavy-tailed non-Gaussian distribution.
To assess the sensitivity of different methods to the unknown
non-Gaussian noise, the non-Gaussian noise is assumed to
follow the Gaussian mixture model, that is the 80% mea-
surement data are drawn from the Gaussian distribution with
nominal covariance while the left 20% measurement data are
contaminated with the severely increased covariance. In this
section, we set the increased covariance as 100 Rk randomly
according to the probability of 20%.The RMSEs of velocity
and position of the SINS/GNSS integrated navigation system
obtained from the existing filters and proposed filter are
respectively shown in Figure 3-4. It can be clearly shown
in Figure 3-4 that the velocity and position provided by the
traditional CKF has larger RMSE as it is unable to filter out
the non-Gaussian noise. By contrast, the RSTNF, MCCKF
and the proposed AGMC-CKF are capable of dealing with
the non-Gaussian noise thanks to their robustness provided by
the maximum correntropy technology, variational Bayesian
approach and generalized maximum correntropy approach.
However, the proposed AGMC-CKF achieves better estima-
tion accuracy than the MCCKF and RSTNF, which indicates
that the generalized maximum correntropy approach has bet-
ter robustness against the heavy-tailed non-Gaussian noise

FIGURE 2. Estimated RMSEs of different filters in scenarios 1.

than the maximum correntropy technology and variational
Bayesian approach.

3) COMPUTATIONAL EFFICIENCY
The computational efficiency of the proposed AGMC-CKF
is analyzed using MATLAB simulations and compared to
that of the existing CKF, MCCKF and RSTNF. The simu-
lations are performed on a PC with intel core i5-3320 CPU at
2.60GHz, 8Gb memory. The single-step running time of each
algorithm is utilized to evaluate the computational efficiency.
The implementation time of the CKF, MCCKF, RSTNF
and the proposed AGMC-CKF for a single-step run in the
above two simulation scenarios are presented in Table 1.
We can observe from this table that the traditional CKF,
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FIGURE 3. Estimated Velocity RMSEs of different filters in scenarios 2.

TABLE 1. A single-step running time for the different algorithms.

MCCKF and RSTNF have better computational efficiency
then the proposed AGMC-CKF, but their state estimation
precision is unsatisfied in the above two simulation scenarios.
Thus, we can conclude that the proposed AGMC-CKF can
achieve better performance with the compromised compu-
tational cost when compared with the existing state-of-art
methods.

FIGURE 4. Estimated Position RMSEs of different filters in scenarios 2.

C. CAR-MOUNTED EXPERIMENT
1) EXPERIMENTAL SETUP AND SCENARIOS
In this section, the experimental results are presented to
illustrate the effectiveness and superiority of the proposed
AGMC-CKF. The car-mounted experimental platform is
shown in Figure 5, which is composed of a four-wheeled
vehicle equipped with our self-made miniature SINS/GNSS
integration navigation system and a high-accuracy reference
integration navigation system. In our self-made miniature
SINS/GNSS integration navigation system, the sample rate
of the GNSS and IMU (inertial measurement unit) data
are respectively 10Hz and 1kHz. The dynamic bias of the
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FIGURE 5. The car-mounted experimental platform.

FIGURE 6. The true trajectory of the vehicle.

gyroscope and accelerometer are respectively 12◦/h and 5mg.
The high-accuracy reference integration navigation system
consists of a LCI-1 IMU and a propak satellite receiver, which
can provide the reference attitude, velocity and position for
performance comparison. For the high-accuracy reference
integration navigation, the attitude, velocity and position
accuracy are respectively 0.01deg, 0.05m/s and 0.1m. The
experiment was carried out in Taiyuan (China), and the
total test time is 459s. Figure. 6 demonstrates the true test
trajectory. The raw IMU and GPS position information in
the experiment are respectively shown in Figure. 7–9. In the
car-mounted test, the vehicle maneuvers along a dump road,
which produces the time-varying process noise. The IMU
measurement and true value influenced by the vehicle vibra-
tion in the experiment is shown in Figure. 10. Furthermore,
the GNSS always works abnormally due to the occlusion of
trees and buildings during the maneuvering, which leads to

FIGURE 7. The angler rate of the vehicle.

FIGURE 8. The acceleration of the vehicle.

FIGURE 9. The position of the vehicle measured by GNSS.

the non-Gaussian measurement noise. The error distribution
of GNSS velocity measurement in the experiment is shown
in Figure. 11. Hence, the car-mounted experiment can be uti-
lized to verify the performance of the proposed AGMC-CKF
against the unknown process noise and non-Gaussian mea-
surement noise.

2) PERFORMANCE COMPARISON WITH DIFFERENT
ROBUST FILTERING ALGORITHMS
In this section, existing cubature kalman filter (CKF) [28],
strong tracking maximum correntropy cubature kalman fil-
ter (MCCKF) [31], robust student’s t based nonlinear filter
(RSTNF) [21] and the proposed AGMC-CKF are tested and
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FIGURE 10. The Imu measurement and true value influenced by the
vehicle vibration in the experiment.

FIGURE 11. The error distribution of GNSS velocity in the experiment.

compared in the car-mounted experiment to evaluate the over-
all performance of the proposed SINS/GNSS integrated navi-
gation system. In this experiment, the algorithm parameters of
the proposed filter and existing filters are respectively set as:
The initial state vector and the associated covariance are set as
x̂0|0 = 021×1 and P0|0 = diag ([0.005rad, 0.015rad, 0.005rad,
0.2m/s, 0.2m/s, 0.2m/s, 10m, 15m, 10m, 0.2deg/s, 0.2deg/s,
0.2deg/s, 16mg, 16mg, 16mg, 0.0018deg/s, 0.0018deg/s,
0.0018deg/s, 0.1mg, 0.1mg, 0.1mg])2, respectively. The ini-
tial value of the nominal process noise covariance matrix
andmeasurement noise covariance matrix are respectively set
as Qk = diag([0.3deg/sqrt(h), 0.3deg/sqrt(h), 0.3deg/sqrt(h),
0.3m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz), 0.3
deg/sqrt(h), 0.3deg/sqrt(h), 0.3deg/sqrt(h), 0.3m/s2/sqrt(Hz),
0.3 m/s2/sqrt(Hz), 0.3m/s2/sqrt(Hz)])2 and Rk = diag
([0.2m/s, 0.2m/s, 0.2m/s, 10m, 15m, 10m])2. In the MCCFK,
the kernel bandwidth is set as σ = 10. In the RSTNF, the dof
parameter, turning parameter and the iteration number are
chosen as: v = 0.2, τ = 5 and N = 5. In our proposed
AGMC-CKF, the shape parameter and kernel size are respec-
tively set as: σ = 3 and β = 0.5.

The velocity error and position error from the existing
methods and the proposed method are respectively shown

FIGURE 12. Estimated Velocity errors of different filters.

in Figure. 12–Figure. 13, and the corresponding RMSE are
listed in Table 2. It can be seen clearly that the RSTNF,
MCCKF and the proposed AGMC-CKF all outperform the
traditional CKF, owing to using the different robust tech-
nologies, i.e. the student’s t-based variational Bayesian tech-
nology, the strong tracking based maximum correntropy
technology and the proposed adaptive generalized maxi-
mum correntropy technology. The MCCKF performs better
than the RSTNF, which demonstrates that the strong track-
ing based maximum correntropy technology more effective
than the student’s t-based variational Bayesian technology
when simultaneously dealing with the process uncertainty
and non-Gaussian measurement noise. We can also see that
the proposed AGMC-CKF outperforms the MCCKF. This
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FIGURE 13. Estimated Position errors of different filters.

is not surprising since the GMCC in general works better
than the MCC under the condition of non-Gaussian. On the
other hand, it has been proven that our proposed adaptive
fading factor determination method is superior to the strong
tracking filter technology. However, the better performance
is achieved at the price of slightly higher computational
costs. Therefore, we can conclude that our proposed robust
framework is able to deal with the process uncertainty and
non-Gaussian measurement noise effectively and can achieve
better performance than the existing robust filters under
the condition of the vehicle’s severe maneuver and abnor-
mal measurements in SINS/GNSS integrated navigation
system.

TABLE 2. RMSEs of velocity and position from different algorithms.

V. CONCLUSION
In this paper, we focused on the handling of the process
uncertainty and non-Gaussian measurement noise of the
SINS/GNSS integrated navigation system induced by the
vehicle’s severe maneuver and abnormal measurement of
GNSS. A new robust cubature Kalman filter based on
the adaptive generalized maximum correntropy approach
(termed AGMC-CKF) is proposed. The proposed new robust
CKF suppresses the uncertain process noise via the adap-
tive forgetting recursive least square method and provides
robustness against non-Gaussian measurement noise via
the generalized maximum correntropy approach, based on
which a new criterion termed adaptive generalized maxi-
mum correntropy (AGMC) criterion for SINS/GNSS inte-
gration is constructed. A new robust cubature Kalman filter
for SINS/GNSS integration is derived utilizing the con-
structed AGMC criterion, where the predicted state vector
and received measurements are processed simultaneously
based on the regression form derived via the statistical
linearization approach, and the parameters of the AGMC
are updated adaptively via the adaptive forgetting scheme.
Car-mounted experiments carried out on the SINS/GNSS
integrated navigation system demonstrate the effectiveness
and robustness of the proposed method.

APPENDIX
A. THE DEFINATION OF MAXIMUM CORRENTROPY
Correntropy is defined as a local and nonlinear similarity
measure between two random variables. Given two scalar
random variables X and Y, their correntropy is presented
mathematically as [32], [33]:

V (X ,Y ) = E [κ (X ,Y )] =
∫
κ (X ,Y ) dFXY (X ,Y ) (50)

where E[·] is the expectation operator, k(., .) represents the
shift-invariant Mercer’s type positive definite kernel func-
tion, FXY (X ,Y ) denotes the joint probability density function
of X and Y. Given a finite number of samples {Xi,Yi}Ni=1
drawn from the joint probability density function FXY (X ,Y ),
the correntropy can be estimated by using the sample estima-
tor with N data points as follow:

V̂ (X ,Y ) =
1
N

N∑
i=1

κ (Xi,Yi) (51)
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In general, the kernel function is chosen as the Gaussian
kernel:

κ (X ,Y ) = Gσ (X − Y ) = exp

(
−
‖X − Y‖2

2σ 2

)
(52)

where σ > 0 is the kernel bandwidth, Gσ (·) is the Gaussian
kernel function.

Compared with the mean square error (MSE) which uses
the second-order statistic information (mean and variance)
of the error, the correntropy contains a weighted sum of
all even order moments of the error between the desired
signal and filter output, making it being more sensitive to the
heavy-tailed non-Gaussian noise. Thus, given a sequence of
the data {Xi,Yi}Ni=1, the optimal solution can be obtained by
maximum the correntropy as follows:

X̂ = argmax
X

1
N

N∑
i=1

κ (Xi,Yi) (53)
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