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ABSTRACT In this work, a versatile mathematical framework for multi-state probabilistic modeling
of Resistive Switching (RS) devices is proposed for the first time. The mathematical formulation of
memristor and Markov jump processes are combined and, by using the notion of master equations for
finite-states, the inherent probabilistic time-evolution of RS devices is sufficiently modeled. In particular,
the methodology is generic enough and can be applied for N states; as a proof of concept, the proposed
framework is further stressed for both a two-state RS paradigm, namely N = 2, and a multi-state device,
namely N = 4. The presented I-V results demonstrate in a qualitative and quantitative manner, adequate

matching with other modeling approaches.

INDEX TERMS ReRAM devices, probabilistic modeling, Markov processes, cycle-to-cycle variability.

I. INTRODUCTION
Novel nano-devices with resistive switching (RS) properties
have attracted a lot of attention, mainly due to their unprece-
dented electrical characteristics suitable for novel memory
and processing systems [1]. At the same time, they flourish
in the area of artificial neural networks and neuromorphic
computing because of their adaptive conductivity enabling
them as the electronic analog to the biological synapses. Fast
switching, non-volatility and low energy consumption are just
a few of their evident advantages. Devices like Resistive Ran-
dom Access Memory (ReRAM) [2], Phase-Change Memo-
ries (PCM) [3], and Ferroelectric Random Access Memories
(FeRAM) [4] can modify their resistivity (resistive switching)
under the application of the external electrical stimulus, while
they maintain it unchanged in the lack of stimulus.

Since 2008, when Hewlett-Packard (HP) Labs [5] managed
to bridge RS devices with the memristor conception [6],
a wide range of mathematical models has been developed
to describe the behavior of the aforementioned fabricated
devices [7]-[12]. From atomistic-level precision up to more
abstract-level compact models, all models aim to provide the
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necessary tools for the researchers, as well as circuit and
system designers (in the case of compact models), to under-
stand and utilize the novel characteristics of RS devices [13]
targeting on novel RS related applications like memories
and in-memory computing. More specifically, the existing
compact models are able to either describe the underlining
physical mechanisms or, phenomenologically, the behavior
of the devices. However, RS is governed by stochastic phe-
nomena at the microscopic level [14] that most of the compact
models lack to capture, thus, they insert random perturba-
tions to the state variables or parameters to incorporate such
behavior [15]. On the other hand, another category of inher-
ently stochastic models is the Kinetic Monte Carlo (KMC)
based modeling approach [16], [17], which describes at
the microscopic level the field-enabled stochastic disposi-
tions of ions within the switching layer. However, KMC is
not a compact modeling approach, while there are only a
few compact models developed on stochastic approaches of
RS limited to the two-state (binary) switching of the
device [18].

In this work, for the first time, a versatile mathematical
framework for the probabilistic modeling of RS devices with
multiple finite states is presented. The proposed framework
utilizes the finite-state Master Equations for Markov jump
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processes [19] for the development of compact model of the
stochastic RS in such devices, encapsulating local irregulari-
ties of the stochastic state evolution and multilevel program-
ming, which are essential for the design of real applications
such as high-radix arithmetic operations and neuromorphic
computing. As a generic framework, the proposed approach
is not focused on any particular type of RS device but aims
to formulate a probabilistic basis for RS devices that suf-
fer from stochastic switching. In this work, we expose the
proposed theoretical principles to deliver different modeling
paradigms, one for two-state and one for four-state (2-bit),
respectively adopting characteristics of existing RS devices.

Il. MARKOV JUMP PROCESS MASTER EQUATIONS

The notion of master equations is widely used in various
scientific fields, from classical mechanics and chemistry to
quantum mechanics, where stochasticity is an inherent prop-
erty of the system, like particle kinetics, chemical reactions
and quantum state vectors [20]-[22], as they provide a sim-
plified mathematical formulation of complex stochastic sys-
tems. The master equations are sets of low-order differential
equations that describe the evolution of the probability over
time of a discrete-state system and can be solved without
the use of nontrivial numerical methods like the stochastic
differential equations.

On the other hand, Markov Jump processes find appli-
cations on various topics in electronics and information
systems [23]. In specific, practical problems of dynamic
control systems, i.e in robotics or in sensing systems when
random faults and abrupt environmental changes are evi-
dent, have been effectively addressed by Markov Jump
processes [24]-[27]. Moreover, they are widely used in inte-
grated and wireless communication networks for control as
well as for security applications [28], [29].

Following the formulation of master equations in [19], let
S denote a system which, at any time ¢, can be in one of
the states of X = xy,xp,...,xy such S(f) = x;, where
i = 1,2,...,N and N € N. The probability of S(¢) to
be in state x; is defined as P;(¢). Assuming a Markov jump
process with transition rate w;; > 0 from x; to x; with
{j =1,2,...,N |j # i}, the master equations that describe
the time evolution of probability P;(¢) read:

dPi(t)

N
10 = 3 o PO —wig PO]. )

j=Li#j

In (1), right side, the first term derives from the finite
Kolmogorov forward equations that correspond to the escape
rates between states, whereas the second term derives from
the finite Kolmogorov backward equations where the prob-
ability to stay in x; is expressed as the negative sum of the
transition rates from all x; to x;. Moreover, the conservation
of total probability holds, i.e.:

d N
=2 Pi)=0 @)
i=1
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resulting in va: | Pi(t) = 1, V1, if the initial state of the

systems is vaz 1 Pi(to) = 1. Thus, equation (1) stands for
any value of w; ;, which are natural entities not bounded by
the limitation of probabilities in the interval [0, 1].

IIl. RS DEVICE MASTER EQUATIONS

By definition, RS devices are elements with memory, math-
ematically described by a state variable x and with switch-
ing behavior attributed to various physical entities, e.g.
the length of the conductive filament. Even if the direct
correlation of such devices and memristor notion is still
arguable [30], the mathematical description of memristor is
often used to develop RS devices’ models. Thus, along with
the state equation(s) that describe the state evolution over
time, the conductance equation of the RS device is formu-
lated by the state-dependent Ohm’s law. A general form of a
voltage-controlled memristor that models RS devices reads:

i(r) = g(x(1), v(1)) (3)
dx(t)
I = f(x(@), v(1)) 4

where i(t), v(¢), and x(¢#) are the time-dependent current
through, the voltage across and state of the device, respec-
tively. Moreover, g(x(z), v(¢)) is a function of the device’s
conductance and f (x(¢), v(¢)) is the function that governs the
state evolution of the device, both dependent on the state
and voltage across the device, which represents the external
stimuli in this voltage-dependent form. Accordingly,
the current-dependent form of such systems can be extracted
by interchanging i(r) and v(z) in (3)-(4) and replacing
g(x(2), v(t)) with a state- and current-dependent function of
device’s resistance r(x(t), i(t)). Without loss of generality,
the voltage-dependent form is considered for the rest of the
manuscript, where the externally applied voltage represents
the system’s input.

Focusing on the state evolution function f(x(t), v(¢)), it is
obvious that the state at any time T = ¢+ Af¢, where [t, 1+ At]
is an infinitesimal interval and 7, At > O, is calculated as
a function of the state and the external stimuli at 7. In par-
ticular, considering a discrete-time evolution, which applies
for any numerical integration method, the state at t is x; =
F(x;, vs, At), where F is any discrete-time numerical integra-
tion method, i.e. x; = x; + At - f(x;, v;) that corresponds to
the Euler method. Thus, it is clear that x; is independent of
any previous state x;, where s < ¢, and complies with the
Markov memoryless property! that is required for a system
to be described as a Markov process.

Assuming now a finite-state RS device with instantaneous
switching between the states, the state evolution can be
described as a Markov jumping process. This assumption
stands for high transition speed, which is valid for RS devices
under high-amplitude and/or low-frequency stimuli; how-
ever, the proposed multilevel approach extends the validity

IThe memory of RS devices and the Markov property need not to be
confused, as the first attributes the physical capability of the device to
maintain its state under no external excitation.
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of this assumption as it provides finer granularity between
states.

Taking into account the above, the modeling of stochastic
RS device can be performed by the combination of mem-
ristor’s mathematical formulation and the master equations
of Markov jump processes. The required step to model a
RS device with the proposed mathematical framework is
to estimate the transition rates w;;. Since the RS devices
are dependent on the external stimuli and they are non-
volatile, w;; can be estimated by the combination of
the voltage-dependent (Wiv,tjlt) and the state-dependent rates
(wffjlt) that are also time-varying functions. The former one

can be approximated by the switching frequencies between
the states, which corresponds to the inverse of the switching
times of the device, such as:

Wi, = (1 wo) ™ )

where tfjw(vt) is the time needed by memristor to switch
from state x; to xj. These rates can be used directly in (1),
denoting the voltage-dependent probability evolution equa-
tion, i.e. dPiV’/dt. On the other hand, the state-conservation
rates for state-dependent probability evolution, due to the
non-volatility, are defined as:

dth N

d;’t = ; [ — k(xj, x) - Py + k(xi, x;) - Pj”]’ ©
i#j
T "
, i

where 7; is the conservation rate of state x; and (6) sat-
isfies (2). Thus, a finite-state RS device with probabilistic
switching in discrete time is formulated as:

ir = g(xt, Vt), ®)

dp; ey 4Py
a4
=W . P, +W, . P, =W, P, ®
where, in bold are the vector-form of the probabilities with
size N x 1, whereas, W; is the transition matrix of the system
composed of the voltage-dependent transition matrix W," and
the state-dependent conservation matrix W', with size N xN.
In addition, the calculation of the state becomes implicit as it
depends on the probability to be in any state and a random
variable U;, which follows a uniform distribution bounded in
the interval [0, 1] and acts as the selector of the state, and it

reads:

i—1 i
xr=x;, U1 € [ZPj,t—l, ZPj,t—l) (10)
j=1 j=1

with the exception that Py ;—1 includes the upper bound of
the interval, i.e. the value 1. Moreover, when a jump from
x; to x; occurs with regard to (10), the probability vector
P, is redefined as Pj,t = 1 and P, = 0, where {I =
1,2,...,N | I # j}, because the probability of the system
to be at x; in the next time-step is the maximum.
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IV. VALIDATION

The verification of versatility and expected functionality of
the proposed stochastic RS device model is provided through
different paradigms. More specifically, the most common
case, namely a two-state (binary) RS device model, is for-
mulated to show in detail how the presented framework
is applied. Furthermore, the multilevel capabilities of the
framework are adequately delivered with a four-state (2-bit)
probabilistic RS device example.

The proposed generic mathematical framework model cov-
ers the macro-modeling of the RS devices state evolution,
so the conductance function g(x;, v;) can be indifferent in
regard to the conductance mechanisms that take place in the
structure of each fabricated device, like for example quan-
tum tunneling, Schottky emission, Poole-Frenkel effect, etc.
In particular, for the two selected examples, we will adopt
the conductance mechanisms of previous works, and more
specifically, ohmic conductance for the binary case and the
combination of Schottky emission and ohmic conductance for
the 2-bit case.

For the application of the aforementioned modeling frame-
work, the transition matrix needs to be defined. In the case of
a simplified pulse programming scheme, where the amplitude
of pulses is fixed, the transition rates can be pre-defined
as a set of coefficients. However, for the general case of a
continuous range of input voltages, the voltage-dependent
functions of transition rates require to be estimated.

So, starting from the binary example case (N = 2),
measurements on fabricated RS devices with abrupt binary
switching have shown that their switching time can be
estimated by voltage-dependent log-normal or Poisson
distributions [31], [32], according to the type of the
RS device. Apparently, in this example, the Poisson-like
switching from [32] is adopted, ie. 5 = a/exp(v;/B),

ijlt
where « and B are fitting parameters. Thus, by using (5) and
assuming:
P
P= " 11
z [ Pogrs Y

the transition matrix reads:

_[—Umﬂp 1ﬂﬁ%>}
LSy —yash)

rst|t set|t

_k(Roﬁ) k(Ron)
+[kmﬂ) —u&m] (12
where t}i‘t)‘(t (t‘;i%) is the voltage-dependent switching time
for the transition Ry,->Rof (Rofr->Ro,), Which is assumed
infinite whenv; > OV (v; < 0V), and k is calculated from (6)
with 5., and 7,4 representing the fitting parameters of the
conservation rates.

Utilizing (8), (9), (10) with the probability vector (11)
and transition matrix (12), the time evolution of the binary
switching paradigm under a sinusoidal excitation is pre-
sented in Fig. 1. In particular, for the duration of two input
signal periods, the probability and the state evolution are
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FIGURE 1. Binary stochastic switching. (a) Input voltage. (b) Probability

and (c) State evolution over time. The simulation results obtained for
Oset = Opst =3 X 10%, Bsep = Brsp = 0.05, and 5on = nofr = 1.5 x 108.

shown and for this specific realization, the jump Ryp->Ro,
never occurred for the second period, while the stochastic
switching is also evident in the first period, where the two
jumps occurred randomly in a different time, even though the
switching parameters are selected to be equal. A more general
preview of the stochastic behavior of the binary model is
illustrated through the I-V characteristic under sinusoidal
excitation. Firstly, Fig. 2(a) shows a set of 1000 sweeps of
fixed frequency and voltage amplitude {10 Hz, 1.5 V} and
the ensemble average of the current (IyEp) (orange line),
while Figs. 2(b, c) illustrate the (Iyep) over 1000 sweeps
for different voltage amplitude and frequency values, respec-
tively. The frequency dependency is one of the key features
of memristors.

Furthermore, another, multi-state this time paradigm, with
a 2-bit (N = 4) stochastic RS device model is presented.
In this case, the transition rates are estimated according to the
switching time of a deterministic multistate model [33] that
describes the behavior of fabricated multilevel RS devices
such as in [34]. Under these circumstances, the probability
vector P; is a 4 x 1 vector, while the size of the transition
matrix W; is 4 x 4 and its values are estimated from the
energy-dependent switching in [33]. In particular, the switch-
ing time between the states is expressed as the function:

tis,% = Vi,j/ Ve - Lip), (13)

where lj; = ¢ - exp(y/[v]) for the states with Schottky
emission (i = 1,2,3) and I;; = ¢ - v; for the ohmic
conductance state (i = 4). The value of ¢; derives from a
number of parameters in [33] and can be embodied in the
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FIGURE 2. (a) I-V curve for binary stochastic switching and (/y;ey)-
(b, ©) (Iyem)-V curve for various amplitudes and frequencies.

parameter y; j, so the voltage-dependent switching time reads:

pw _ Vil (- exp/iD), =123
M g vz i=4.

Equations (14) and (5) are used to construct W} for the
N = 4 paradigm, whereas (6) and (7) with state conservation
rates 7; are used for W;'. Similarly to the binary paradigm,
the switching time tf% fori > j (j < i) is assumed infinite
when v, > 0V (vy; < 0V), as well as when |i —j| > 1.
The input voltage, the probability of the 4 states and the state
evolution over time for two randomly-selected periods of the
applied voltage are presented respectively in Fig. 3. Under
the influence of the applied voltage, the probability of being
in each state is varying, while the stochastic switching is
clearly depicted in Fig. 4(c) through the random occurrence
of transitions between the states. In addition, Fig. 4 presents
the I-V characteristic of the 2-bit stochastic model for a sinu-
soidal excitation with frequency 10 Hz during 100 periods,
in comparison to the deterministic 2-bit RS device model
from [33], along with the ensemble mean switching time
between states of the stochastic one ({Switching Time)).
The parameters were fitted according to the ensemble mean
switching time. In Fig. 4, the four discrete conductance levels
are illustrated, where the three lower levels correspond to low
Schottky emission currents and the highest one to high ohmic
current, as in [33]. The stochastic switching between the
states of the proposed RS device model is evident through the
non-deterministic jumps depicted in the blue lines. The pre-
sented I-V results demonstrate the robustness of the proposed
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FIGURE 3. 2-bit (N = 4) stochastic switching. (a) Input voltage,
(b) Probability and (c) State evolution over time. The simulation results
were obtained for {y; 5,7, 3,73 4, 74,3, 73,2, ¥2,1) =
{0.263, 1.155, 19.11,9.15 x 10~4,3.06 x 10~2, 0.578} and
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FIGURE 4. Logarithmic I-V curve of the 2-bit (N = 4) paradigm along with
the deterministic RS device model from [33] and the ensemble mean
switching time between states of the stochastic paradigm.

modeling approach to meet efficiently with other modeling
approaches in both a qualitative and quantitative manner.
Given that the increase of states results in the growth of the
system’s size, the computational complexity of the proposed
framework is further discussed. Considering the calculation
of the transition rate and the multiplication with a value of
the probability vector as an operation, there are N2 operations
required for the calculation of the voltage-depended prob-
ability update and N2 operations due to the state-depended
probability update, hence a quadratic O(~ 2N?) increase in
the system’s complexity. However, the number of zero values
in both the transition and conservation matrices is consider-
ably high, which can be exploited towards a computationally
efficient implementation by performing only the non-zero
operations, such as in sparse matrix format. So, the number
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of operations for the voltage-depended probability update is
reduced to 2N, as the worst case scenario (N on average),
because only N transition rates are non-zero, for a given
polarity of the applied voltage, and the N corresponding val-
ues of the diagonal. The state-depended probability update is,
then, reduced to exactly N operations because (7) is non-zero
only for the column of the current state in W' in each time-
step, so in total, the complexity increase is roughly estimated
to be linear O(~ 3N). The increasing complexity of the
proposed framework should be considered when the circuit
design scales-up both in the number of RS devices and device
states. However, the number of stable states in manufactured
RS device is still constrained by the device’s physics and
fabrication processes, so a small amount of states is suitable
for the modeling of a wide range of RS devices up to date.

V. CONCLUSION

In this work, we postulate a novel probabilistic framework
to model the stochastic resistive switching of nano-devices
using multiple finite states, surpassing the limitations of the
existing binary RS device stochastic models. Such a model
has a direct application in multi-bit storage, multi-value
logic operations and neuromorphic computing when a lim-
ited number of resistive states is used due to the constraints
of the state retention of fabricated RS devices. The mathe-
matical background of the proposed framework is based on
the formulation of memristor and the Master Equations of
the Markov Jump processes, which can be both integrated
to conventional circuit simulators through either Simulation
Program with Integrated Circuit Emphasis (SPICE) or com-
pact Verilog-A models.

Compared to the existing modeling approaches that incor-
porate the stochastic switching of the RS devices, the pro-
posed framework provides a technology-agnostic tool that is
not focused on specific physical properties and mechanisms,
such as [15]. Moreover, it is less computationally demanding
than the atomistic-level KMC approaches [16], [17] and it
can be effectively described by circuit simulator compatible
languages that enable its suitability for large-scale designs.
Also, the proposed framework covers more complicated cases
than binary switching [18].

The next steps are the migration to any of these circuit sim-
ulation platforms, along with the introduction of higher-level
features, such as the resistance range degradation due to aging
or over-tuning in order to establish a complete probabilistic
platform to evaluate the reliability of the RS device-based
systems.
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