IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 7, 2020, accepted November 14, 2020, date of publication December 1, 2020,

date of current version January 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3041676

Effective Deep Learning Models for Automatic

Diacritization of Arabic Text

MOKTHAR ALI HASAN MADHFAR ! AND ALI MUSTAFA QAMAR!'-2

! Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
2Department of Computing, School of Electrical Engineering and Computer Science, National University of Sciences & Technology, Islamabad 44000, Pakistan

Corresponding author: Mokthar Ali Hasan Madhfar (mokhtarmodhfer @ gmail.com)

ABSTRACT While building a text-to-speech system for the Arabic language, we found that the system
synthesized speeches with many pronunciation errors. The primary source of these errors is the lack of
diacritics in modern standard Arabic writing. These diacritics are small strokes that appear above or below
each letter to provide pronunciation and grammatical information. We propose three deep learning models
to recover Arabic text diacritics based on our work in a text-to-speech synthesis system using deep learning.
The first model is a baseline model used to test how a simple deep learning model performs on the corpora.
The second model is based on an encoder-decoder architecture, which resembles our text-to-speech synthesis
model with many modifications to suit this problem. The last model is based on the encoder part of the text-
to-speech model, which achieves state-of-the-art performances in both word error rate and diacritic error
rate metrics. These models will benefit a wide range of natural language processing applications such as

text-to-speech, part-of-speech tagging, and machine translation.

INDEX TERMS Arabic language, Tacotron, diacritization, deep learning, text-to-speech.

I. INTRODUCTION

The Arabic language is a Semitic language and a native
language for 22 countries. It is the liturgical language for over
a billion Muslims throughout the world. The Arabic alphabet
consists of 28 letters, as shown in Figure 1.

While these letters are enough, in most cases, for the native
Arabic to resolve the ambiguity of homographs words from
context, it is challenging for new language learners. For this
reason, diacritics have been introduced to the Arabic lan-
guage to provide grammatical and pronunciation information.
Figure 2 shows the Arabic diacritics as they appear on the
letter (t).!

The diacritic Shadda (~) can be combined with other
diacritics:

o Shadda + Fatha: (~ a).

o Shadda + Damma: (~ u).

o Shadda + Kasra: (~ 1).

o Shadda + Tanween al-Fatha: (~ F).

o Shadda + Tanween al-Damma: (~ N).

o Shadda + Tanween al-Kasra: (~ K).

The total number of diacritics that should be recovered by the
diacritization model is 15, including the no-diacritic option,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang
ISince the latex template does not support writing Arabic letters, the Buck-
walter Transliteration is used in this paper.

VOLUME 9, 2021

Tg@&cctaa)
AREREREPIERARE
dﬂd(do;eg

FIGURE 1. The Arabic Alphabet Letters.

which is abundant in Arabic writing. All diacritics that are
composed of two diacritics, such as (~ a), are treated as one
diacritic.

Many of the Arabic words are homographs, which means
that multiple words have the same writing form. Let us take
an example of the Arabic word (Elm); searching through a
corpus, we found 27 variations of this word where multiple
variations can have the same meaning, but each variation has
its unique pronunciation. Figure 3 shows a few sentences that
use the word (Elm) with various meanings.

The diacritics are small strokes that may appear above or
below each letter to identify its pronunciation. The diacritics
also add grammatical information by using different diacritics
at the last character of each word to indicate its inflectional.
Figure 4 shows the sentences in Figure 3 in their diacritized
form.

The majority of the Arabic text characters can be dia-
critized with either one or two diacritics, but some charac-
ters should not be diacritized all, such as the first and last
characters of the first word of the last example in Figure 4.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 273

https://orcid.org/0000-0002-9820-0216
https://orcid.org/0000-0003-2238-6808

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

Diacritic Name Pronunciation Buckwalter Transliteration
Short Vowels

& Fatha Ja/ a

& Damma Ju/ u

< Kasra /i/ i
Doubled Case Ending

o Tanween al-Fatha Jan/ F

& Tanween al-Damma /un/ N

< Tanween al-Kasra /in/ K

/ Syllabification Marks

& Shadda Consonant Doubling ~

& Sukuun Vowel Absence 0

FIGURE 2. Arabic diacritics as they appear on the letter (t).

English Meaning Example
Knowledge rkc ;LJE J ok ad,
Knowledge é:, o byl el b

Know Lo b rkc oA
Knowledge oladl %c 4 Ls
Mountain Sk o Iyt %& 'S

Have been taught L rk o
Flag \q-\\,,é,;ri__‘;ef,;ﬂ_,{.llg.;
Teach ‘.L.aJL gc X

FIGURE 3. Various meanings of the word (EIm). The word has a different
pronunciation in each example, even if it has the same meaning.

English Meaning Example
Knowledge iJc ,il;jl;:c J o€ .Jj;
Knowledge g\c o 91;6?1 Lg:! [

Know Lo 43 %.; o4
Knowledge Oludl Jo & Lst
Mountain :\: ui;) :J\c ok

Have been taught e ,.,I)c d;

Flag H-\\J«J;rta@:uﬁjt}
Teach é\d\j P Al

FIGURE 4. The same sentences of Figure 3 in their diacritized forms.
Diacritics help in resolving the ambiguity of Arabic words by providing
additional information for pronunciation and grammar.

Given the correct diacritics for each word, there will not be
much ambiguity in Arabic text, which can help many applica-
tions such as Text-to-Speech (TTS) and Part-of-Speech (PoS)
tagging. Unfortunately, Modern Standard Arabic (MSA) text,
the standard language of writing these days, is mostly written
without diacritics. Recovering diacritics has gained much
attention in the last few years. The researchers have employed
many techniques such as Markov models, machine learning,
and lately, deep learning, but the results, especially for TTS
systems, are still far from perfect.

274

In this paper, we propose three deep learning models based
on the recent advances in deep learning. The first model
is a simple model used for comparison purposes. The sec-
ond model is based on the encoder-decoder architecture [1],
[2], which resembles the Tacotron TTS model [3]. The last
one, which achieves state-of-the-art results, is based on the
encoder of Tacotron with a few modifications to suit the
diacritization problem.

Il. BACKGROUND

Given a sequence of characters x (x1,...,xy), our
goal in diacritization is to generate a sequence of diacritics
y = (y1,...,Yn), Where yp is the diacritic of the character
X1, which is chosen from 15 possible values. From a proba-
bilistic perspective, the goal is to find a target sequence that
maximizes the conditional probability of y given a source
sentence x.

Automatic diacritization of Arabic text is one of the most
challenging tasks in Arabic natural language processing. The
researchers have employed several approaches to address this
problem, including rule-based, statistical, hybrid, and deep
learning ones.

The rule-based technique requires a deep understanding
of the language to build a set of rules to recover the dia-
critics. Many systems use this technique alongside other
techniques, such as statistical and deep learning techniques.
This approach has been used by [4] to build a text-to-speech
system and [5] to build several NLP systems such as machine
translation and named entity recognition.

Many systems are purely based on statistical approaches,
such as [6]-[9]. In an early work to address the diacritization
problem, Gal [6] built a Hidden Markov Model (HMM)
for Hebrew and Arabic languages. To train the Arabic lan-
guage model, he used the Quran corpus and reported a 14%
Word Error Rate (WER) with Case-Ending (CE). Nelken
and Shieber [7] used weighted finite-state transducers. The
system used a combination of three probabilistic language
models: a word-based, a letter-based, and an orthographical

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

language model. Their best model used a combination of
3-gram words, a clitics concatenation, and 4-gram letter mod-
els. The model got 23.61% WER, 12.79% Diacritic Error
Rate (DER) with CE; and 7.33% WER, 6.35% DER without
CE. Ananthakrishnan et al. [9] built a diacritization system
for acoustic modeling of speech recognition. The system
used acoustic information in combination with different lev-
els of morphological and contextual constraints. The system
attained a WER of 41.1% with CE. Elshafei et al. [10] pro-
posed a system based on the HMM approach, along with the
Viterbi Algorithm. The basic form of the algorithm achieved
4.1% DER. Alghamdi et al. [11] proposed the KACST Ara-
bic Diacritizer (KAD). The system used an extensive list
of frequently used quad-gram diacritics (68378 quad-grams)
and achieved 8.52% WER. Hifny [12] built a system based
on a statistical language model and dynamic programming.
The system used two models: a bi-gram-based model that
is first used for vocalization and a 4-gram character-based
model used to handle the words that remain not-diacritized
(also known as Out-Of-Vocabulary-OOV words). The system
achieved 11.53% WER and 4.30% DER with CE; and 6.28%
WER and 3.18% DER without CE. Schlippe et al. [8] treated
the diacritization problem as a monotone machine translation
problem. Using the same design scheme as machine transla-
tion, they built several models, including a character-based
model, a word-based model, and a model that combined
both character-level and word-level models. They also built a
model based on the sequence labeling approach showing that
the machine translation approach performed better. Their best
model with post-editing achieved 15.6% WER, 5.5% DER
with CE; and 10.3% WER, 3.5% DER without CE.

Many proposed diacritization systems use a hybrid
approach, which combines linguistic knowledge with other
techniques. Zitouni et al. [13] proposed a model based on
a maximum entropy approach, which integrates lexical and
PoS tagging features. The model achieved 17.3% WER, 5.1%
DER with CE; and 7.2% WER, 2.2% DER without CE.
Habash and Rambow [14] proposed a diacritization system
that combined a tagger and a lexeme language model. The
Buckwalter Arabic Morphological Analyzer (BAMA) is used
to produce a list of possible analyses for a word, including
the diacritization form. A set of taggers are trained to choose
the best possible analysis. The system achieved 14.9% WER,
4.8% DER with CE; and 5.5% WER, 2.2% DER with CE.
Shaalan et al. [15] integrated three techniques: 1) lexicon
retrieval, 2) diacritized bi-gram, and 3) SVM statistical-based
diacritizer. CE is treated as a separate post-processing task.
The system achieved 12.16% WER and 3.78% DER with
CE. Metwally et al. [16] used a multi-layered approach. The
first layer used a first-order HMM to select the most proba-
ble sequence of morphological diacritized words along with
their corresponding POS tags. The second layer used the
Standard Arabic Morphological Analyser (SAMA) to pro-
duce a list of possible words for the OOV words. The
last layer used a sequence labeling approach using Condi-
tional Random Field (CRF) to annotate every word with one

VOLUME 9, 2021

syntactic diacritic. The system achieved 13.7% WER with
CE. Chennoufi and Mazroui [17] presented a hybrid sys-
tem that combined linguistic rules and statistical treatments,
which is based on four phases. The first phase consists of
a morphological analysis using the second version of the
morphological analyzer, known as Alkhalil morphological
system. The second phase eliminated the invalid word tran-
sitions according to the syntactic rules. The third phase used
a discrete HMM and Viterbi algorithm to determine the most
probable diacritized sentence. Finally, the fourth phase used
statistical treatments for words that were not analyzed by
the Alkhalil analyzer. The system achieved 6.22% WER,
1.98% DER with CE; and 2.53% WER, 0.90% DER without
CE, which are better than most of the previous systems.
Darwish et al. [18] used a Viterbi decoder at word-level
with back-off to stem, morphological patterns, transliteration,
and sequence labeling based diacritization of named entities.
They used Support Vector Machine (SVM) based ranking
along with morphological patterns and linguistic rules to
guess CE. They reported 12.76% WER, 3.54% DER with CE;
and 3.29% WER, 1.06% without CE.

Deep Neural Networks (DNN) techniques have recently
been used to solve this problem with significant improve-
ments over the previous techniques. Many deep learning
models are simple sequential models consisting of Recur-
rent Neural Networks (RNNs) and fully-connected (FC)
layers. Al Sallab et al. [19] designed a system based on
DNN and Confused Sub-Classes Resolution (CSR). The
system attained 12.7% WER and 3.8% DER with CE.
Abandah et al. [20] proposed a deep learning model based
on Long short-term memory (LSTM) layers. The system
significantly improved the diacritization over the previous
works, achieving 5.82% WER, 2.09% DER with CE; and
3.54% WER, 1.28% DER without CE. Another system
based on deep learning is designed by [21]. They exam-
ine several deep learning models with different architectures
and different numbers of layers. Their best model, a three-
layer bidirectional LSTM model, achieved 8.14% WER and
5.08% DER with CE. Fadel et al. [22] used two deep learn-
ing approaches: Feed-Forward Neural Network (FFNN) and
RNN, with several techniques such as 100-hot encoding,
embeddings, CRF, and Block-Normalized Gradient (BNG).
Their best settings got 7.69% WER, 2.60% DER with CE;
and 4.57% WER, 2.11% DER without CE. Mubarak et al.
[23] presented a character-level sequence-to-sequence deep
learning model. The model used a Neural Machine Trans-
lation (NMT) setup on overlapping windows of words. The
system achieved state-of-the-art results of 4.49% WER and
1.21% DER with CE. The encoder-decoder model that we
propose in this paper, resembles this model to a great extent,
but our model adapted a TTS model, which requires signif-
icant modifications to fit the diacritization problem. More-
over, the encoder-decoder model uses the location-sensitive
attention [24], whereas Mubarak et al. used the content-based
attention [25]. Al-Thubaity et al. [26] built a model
using bidirectional LSTM networks with CRFE. The model

275

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

4
4

Z1

X2

Z3

Ty > >

FIGURE 5. The structure of a simple deep learning model that consists of
three fully-connected layers. Each layer can consist of any number of
neurons, depending on the task.

achieved 4.92% WER and 1.34% DER in the Holy Quran
corpus.

IIl. NEURAL NETWORKS

Neural networks have achieved excellent results in many
complex learning tasks such as neural machine translation
[1], [2], text-to-speech synthesis [3], [27], image captioning
[28], and speech recognition [24]. This section introduces
neural network layers and architectures that are used for
building the diacritization models.

A. FULLY-CONNECTED LAYER

A Fully-Connected layer (FC) is a type of feed-forward layer
in which each neuron is connected to all neurons in the next
layer (Figure 5). These are powerful layers that are used
in almost all deep learning models. In many cases, a fully-
connected layer is required as a projection layer to change the
output dimension. The output of one fully-connected layer is
calculated as follows:

$=xwl +b 1)
where W is the weight parameter and b is the bias parameter.

B. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are powerful extensions
of feed-forward layers that can be used with sequence data
[29], [30]. It is extensively used in many applications such
as NMT [1], [2], image captioning [28], and text-to-speech
synthesis [3], [27].

RNNs layers add the previous hidden state 4;_1 as an input
to the unit at time step ¢ (Figure 6). At each time step ¢,
an RNN layer outputs /; and y; using the following equations:

hy = gWixxe + Winhy + bp))
yi = gWyph: + by) 3)

where £, is the hidden state at time 7, y; is the output at time
t, x; is the input at time t, h;_ is the hidden state of the
previous layer at time # — 1 or the initial hidden state at time O,
and g is the activation function. An RNN layer can learn the
probability distribution over a sequence, where the output at
time step 7 is the conditional probability p(x;|{x;—1, ..., x1}).

C. LONG SHORT-TERM MEMORY

One of the most popular RNN types is Long Short-Term
Memory (LSTM) [31]. LSTM has been used in many
state-of-the-art models in many tasks, such as [2], [27].
LSTM uses several gates to control the flow of information

276

1 92 - 9.,

Wyn T Wyn N T Wyn
Unfold ho! ="~ hy 177~ Lo)

—> —> | RNN —> RNN ! —> RNN |

Wit = &A= *Whp' =A== Whpt =g~
T Whe T Whe T Whe

ar z T2 ZT,

FIGURE 6. The structure of an RNN layer. The layer takes as input a
sequence x and outputs a sequence y. The unfolded structure of an RNN,
on the right side, shows that an RNN receives, at each time step,

the previous hidden state h;_; and the current input x; to generate y;
and h;.

-
cr-1 ©)

~
AR o1
hi—1 T —>
y,

.

\ 4

Ct

Tt—1

FIGURE 7. LSTM cell with gating mechanisms to control the flow of
information.

in the network, which helps avoid the gradient’s vanishing
problem [32]. Figure 7 illustrates an LSTM unit. LSTM uses
three gates: the input gate, the forget gate, and the output gate.
All gates use the sigmoid activation function to output a value
in the range [0, 1].

fi = oWigx; + big + Wyrh—1y + bpr) 4)
ir = o(Wiix; + bii + Wiihg—1) + bpi) (5)
0y = 0(Wioxs + bio + Whoh—1) + bio) (6)

where f; is the forget gate, i, is the input gate, o, is the
output gate, and o is the sigmoid activation function. LSTM
calculates the candidate memory cell ¢; just like the gates, but
instead of using the sigmoid activation function, it uses the
tanh activation function, which outputs values in the range
[—1,1].

¢; = tanh(Wigx; + big + Wigh—1) + bpg) 7)

To calculate the output cell ¢;, it uses the input and forget
gates, as shown in Eq. 8.

a=f0ce-1)+i: O¢)

where © is the Hadamard product. The forget gate controls
how much of the old memory cell ¢;_ is retained, and the
input gate i; controls how much of the current candidate cell
¢; is taken into account. That is, if we have f; close to 1 and i,
is close to zero, we mostly use the previous cell ¢;_1, and vice
versa. The output hidden state is calculated using the output
gate o; and the cell state ¢;.

h; = 0; © tanh(c;) &)

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

he_1 >©) >(P)

Tt—1

FIGURE 8. GRU cell with gating mechanisms and simpler architecture
than LSTM.

D. GATED RECURRENT UNITS

A more recent but less complicated cell that performs as good
as LSTM is Gated Recurrent Unit (GRU) [2] (Figure 8).
Unlike LSTM, GRU consists of only two gates:

ry = o(Wipxy + b + Wpphg—1y + bpy) (10)
2 = o(Wigxy + bz + thh(tfl) + byz) (11)

where r; is the rest gate, and z; is the update gate.
It then calculates the candidate hidden state as shown in
Eq. 12.

n; = tanh(Wipx; + by +1: © (Whnh(t—l) + b)) (12)

where n; is the candidate hidden state. If the rest gate r; is
close to 1, the candidate hidden state will be calculated as
normal RNN. If the rest gate r; is close to 0, the previous
hidden state will not be used, and n; will be calculated like a
Multilayer Perceptron (MLP). Lastly, it calculates the hidden
state, which depends on the update gate.

h=0-z2)0n+z0 h(z—l) (13)

If the update gate z; is close to zero, the candidate state is
used. If the update gate is close to 1, then the current hidden
state is equal to the previous hidden state.

E. BIDIRECTIONAL RECURRENT NEURAL NETWORKS

As discussed earlier, RNNs use the previous hidden state at
time z — 1 to generate &, and j,. But for some problems, there
is a need to look into future inputs to generate more accurate
results. Bidirectional Recurrent Neural Networks (BRNN)
were introduced by [33] to use information from both past
and future inputs. BRNN adds a hidden layer in a back-
ward direction: from the last input to the first as depicted in
Figure 9.

— —
Ho=¢xWP + 7w + b0 (14)
<« <«

ho= ¢ WD+ h W2 + b (15)

where _h), is the forward hidden state, <h_, is the backward
hidden state, and ¢ is the activation function. The output of
the backward and forward hidden states are concatenated to
form the output of BRNN at each time step 7.

he="[he nl (16)

VOLUME 9, 2021

Forward States

(_

Backward States

t—1 t t+1

FIGURE 9. The structure of a bidirectional recurrent neural network
unfolded in time for three time steps. At each time step, the input is
passed to both forward and backward layers. Then, the output of the
forward and backward layers are concatenated to form the output of
BRNN.

Input
Kernel or Filter Output
3 3 1
0 1 7 13
0 2 5 * =
1 2 11 13
1 4 2

FIGURE 10. Two-dimensional cross-correlation operation, where the
shaded portions represent the first pass of the kernel to calculate the first
output. The output is calculated by summing the multiplications of each
entry in the input portion with its corresponding value in the kernel:
3x0+3x1+0x1+2x2=17.

Input
Output
3 3 1
3 5
0 2 5 2 X 2 Max Pooling
4 5
1 4 2

FIGURE 11. Maximum pooling using a 2 x 2 pooling window. The shaded
portions represent the first pass of the 2 x 2 pooling window to calculate
the first output: max(3, 3, 0, 2).

F. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (CNNs) are a powerful fam-
ily of deep neural networks used extensively in computer
vision and have also been adapted to many other fields, such
as natural language processing and text-to-speech.
Convolution Layer: The convolution layer consists of a
set of learnable filters with multiple sizes that slide over the
input multiplying the filters’ values with the portion’s values.
This layer performs a cross-correlation operation, as depicted
in Figure 10. Pooling Layer: This layer does not contain any
learnable parameters. It reduces the input size by passing a
filter over the input and taking either the maximum (max
pooling) or the average (average pooling) of that portion.
Figure 11 shows an example of maximum pooling using a
2 x 2 maximum pooling window.

G. EMBEDDING LAYER

Embedding is a technique in which a set of values (words
or characters) are mapped into vectors of real numbers [34],
[35]. It captures each input’s semantics and syntactic, where
similar inputs are grouped together in the embedding space.
It is one of the most popular techniques in natural language

277

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

processing used by many applications such as [1], [3]. We use
this technique in all models at the character-level, where the
embedding layer maps a sequence of characters (xy, ..., x7,)
to a sequence of character embeddings of- dimensionality d.

X =(Cx1),...,Cxr)) (17)

where X € RY9*Tx 4 is the dimensionality of the embed-
dings, T is the length of the source characters, and C is the
embedding lookup table.

H. HIGHWAY NETWORKS

Highway Networks were developed by [36] to overcome the
difficulty of training deep neural networks. The architecture
of Highway networks is inspired by LSTM recurrent net-
works. The architecture is a modified version of feed-forward
networks with a gating mechanism that allows for computa-
tion paths along which information can flow across multiple
layers without attenuation.

y=H(x, Wn) (18)
$ = H(x, Wy).T(x, Wr) +x.C(x, W¢) (19)

where H is an affine transform followed by an activation
function, T is the transform gate, and C is the carry gate. The
carry gate C is set to 1 — T as shown in Eq. 20.

y=H(x, Wg).T(x, Wr) +x.(1 = T(x, W¢)) (20)

I. THE ENCODER-DECODER ARCHITECTURE

The encoder-decoder is a powerful architecture that has been
used to solve many problems such as neural machine trans-
lation [1], [2], image captioning [28], and text-to-speech
synthesis [3], [27].

The need for this new architecture comes from the fact
that DNNs cannot be efficiently applied to variable-length
sequences, which is a major problem since many tasks such
as machine translation, text-to-speech conversion, and speech
recognition vary in their input and output lengths.

The architecture consists of an encoder and a decoder.
The encoder reads the input sequence x = (xi,...,xr,) to
obtain a fixed-length vector ¢, which is used by the decoder
to generate the output sequence (y1, ..., yr,), One output at a
time. Here, T is the length of the input sequence and Ty is the
length of the target sequence. The most common approach in
the encoder is to use RNNs to read the source sequence and
generate a sequence of hidden states 4 = (hy, ..., hr,) where
h; is computed as follows:

hy = f (s hi—1) 21

The encoder summarizes the inputs into a context vector ¢
to be used by the decoder to predict the target sequence. The
vector c is the last hidden state in RNN or the concatenation of
the left and right hidden states in BRNN. The decoder predicts
the output at each time step conditioned on the previously
predicted output and the context vector c.

T,
pOL. - ynlxn . xn) = [] pOile. B

t=1

,Yi—1))
(22)

278

Predicted Sequence

[

A B C D <start>

Input Sequence Ground Truth Sequence

FIGURE 12. An example of the encoder-decoder architecture when used
to generate the output sequence (E, K, G, H) from the input sequence

(A, B, C, D). The decoder uses the special tokens <start> and <end> to
indicate the start and end of decoding. In training, the ground truth input
is passed to the next time step, while, in inference, the output of the
decoder at time ¢ is passed to the next time step £ + 1 in a process called
teacher-forcing.

Predicted Sequence

<end>

Context Vector

Input Sequence Target Sequence

FIGURE 13. The structure of the attention mechanism for the first
decoding step. At each time step, a unique context vector is calculated
using the previous decoder hidden state s;_;, and the output of the
encoder h. The context vector ¢; and the previous hidden state s;_; are
used to output y;.

When using RNN as a decoder, each conditional
probability is calculated as follows:

p(yl|c’ {yls"~’yl—1}):g(yl—lasl—lvc) (23)

where g is a non-linear function that outputs the probability
of y;, and s, is the hidden state of the decoder RNN. Figure 12
illustrates the encoder-decoder architecture.

J. ATTENTION MECHANISMS

One major issue with the encoder-decoder architecture is
that the entire input sequence is compressed into a sin-
gle fixed-length vector c¢. This fixed-length vector may
not be able to summarize all the necessary information of
the input sequence, especially for long sequences. In fact,
[37] showed that the performance of NMT based on an
encoder-decoder architecture gets worse rapidly as the input
sequence increases. The attention mechanism extends the
encoder-decoder architecture to solve this issue by selecting
the portions of the input sequence that are most relevant to
the decoded output [25]. Figure 13 illustrates the process
of attention for the first time step. When using RNN as a
decoder, the conditional probability of each output y; using

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

attention is calculated as shown in Eq. 24.

P(,Yt|{y17 ---,Yt7]}7 {xla "'7xTX}) =g(yfflvsl‘*1’cl.)

(24)

where y;_1 is the previous output, s;_1 is the previous decoder
hidden state, and c; is the context vector. The major change
from the encoder-decoder (Eq. 23) is the use of a distinct
vector c¢; for each output y,, instead of a fixed-length vector ¢
that is used for all output in the encoder-decoder architecture.
To calculate the context vector ¢; at each time step, we first
calculate the score using each encoder output h; and the
previous decoder hidden state s;_1 as follows:

eij = score(si_1, h)) (25)

The score is modeled using a feed-forward neural network,
which is trained jointly with the other components of the
model.

ej = w' tanh(Ws;_1 + Vhj + b) (26)

The attention weights are calculated using a softmax as
follows:

oy = _explep) 27)

T
Zj'zl ex[’(eij)

where o; € R~ is the attention weights of the i-th decoder
step. The context vector is calculated by multiplying the
attention weights with the encoder output.

Ty
Cc; = Za,-jhj (28)
j=1

There are many variants of the attention mechanism that
mainly differ in how they calculate the score. One type of
attention is called location-sensitive attention proposed by
[24] for speech recognition. The main purpose of this atten-
tion is to deal with long sequences. This attention is also used
in text-to-speech [27].

The attention becomes location-aware by taking into
account the previous attention weights or alignment. Eq. 25
is extended to use the previous alignment.

ejj = score(s;_1, oj, hj) (29)

This is done by extracting k vectors f;; € R* from the
previous alignment «;_1, by convolving it with a matrix F €
R*"_ These vectors f;, j are then used in the scoring equation:

eij = w' tanh(Wsi_y + Vhj + Uf; j + b) (30)
where W, V, and U are the weight parameters.

K. CBHG MODULE

The CBHG module (1-D Convolution Bank + Highway
network + Bidirectional GRU) was proposed by [38] for a
character-level NMT model. It was adapted by [3] for build-
ing the Tacotron text-to-speech model. The CBHG module
is illustrated in Figure 14. It consists of 1-D convolution fil-
ters, followed by highway networks, and bidirectional gated
recurrent networks.

VOLUME 9, 2021

Bidirectional RNN

Highway layers
A
= Residual connection

FIGURE 14. The CBHG module architecture, taken from [3]. It consists of a
1-D convolution bank, a multi-layer highway network, and a bidirectional
GRU layer.

The module starts by convolving the input sequence with
K sets of 1-D filters, where the k-th set contains Cy filters
of length (1,2, ..., K). These filters model uni-grams, bi-
grams, up to k-grams. The output of the convolutional layer
is passed to a max-pooling layer over time with a stride
of 1. The max-pooling layer’s output is passed to several
fixed-width 1-D convolution layers with residual connections
to the original inputs. The output of these convolution layers
is passed to a multi-layer highway network. The last layer is a
bidirectional GRU RNN that extracts the sequential features
of the input sequence.

IV. METHODOLOGY

In this section, we will discuss our implementation of three
character-level deep learning models for restoring Arabic text
diacritics. The first model is a baseline model that consists
of an embedding layer and three bidirectional LSTM layers.
The purpose of this model is to show how a simple deep
learning model performs on the corpora. The second model
is an encoder-decoder model with attention, which resembles
NMT translation models [25], adapted from Tacotron [3]. The
last model uses only the encoder part of the encoder-decoder
model with a few modifications to output the diacritics.
We will also discuss the corpus, the preprocessing of the
corpus, and the evaluation metrics of the diacritization
models.

A. DIACRITIZATION CORPORA

The crucial part of any deep learning model is the training
data. Unfortunately, the Arabic language lacks any standard
corpus that can be used for diacritics recovery. Two corpora
are available: Tashkeela [39] (free) and ATL (paid). There
are other corpora mentioned in other papers, such as the
corpus used by [18], but they did not cite the corpora sources.
We used the Tashkeela corpus, which consists of 75 million
fully vocalized words from 97 classical Arabic books. While
this corpus is large enough for training deep learning models,
it has some issues as mentioned next:

279

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

o More than 99% of the corpus is from CA books, which
may limit the generalization of the models when using
MSA text.

« It contains many partially diacritized sentences, which
can hurt the model learning of correct diacritization by
learning to skip diacritization of some letters or words.

o The corpus has some wrong diacritics: It appears in
many ways, such as some characters have more than two
diacritics (which is impossible in the Arabic language),
or they may have correct diacritics but in the reverse
order.

o It is highly probable that the corpus also contains
many other errors, especially errors that depend on
grammatical rules, but we do not have any method to
detect them.

B. CORPUS PREPROCESSING
The data preprocessing can be divided into two stages:

Data Cleaning: All characters except the Arabic letters,
diacritics, and punctuation are removed from the corpus,
which is essential as it keeps only the characters that con-
tribute to the diacritization to be learned by the models.
In inference, we designed algorithms that can restore the
removed characters and put them back in their right places.

Data Splitting: In this stage, the corpus is divided into
sentences. The absence of strict punctuation rules in Arabic
makes recognizing sentence boundaries much harder than
other languages such as English [40]. The sentences in Arabic
can be conjoined with Arabic coordinators such as (w) wa and
(f) fa, which are merged with the first word in the second sen-
tence. What makes it even harder is that many Arabic words
can contain these coordinators as their initial letter, making it
challenging to split the text using these coordinators.

Moreover, the obvious indicator of the end of sentences
in Arabic is a period, like many other languages. However,
if we use a period as our primary indicator of a sentence
ending, we will have very long sentences since much of
Arabic writings, especially classical writings, conjoin the
sentences with coordinators and use a period only at the end
of each paragraph. For these reasons, we split the corpus using
multiple delimiters to generate as many sentences as possible:

o For reasons of computational efficiency, we only use
sentences of lengths at most 600 characters. This choice
comes after experimenting with various models where a
larger length will require a smaller batch size (< 16).

o Split the corpus using a period, which will generate
many sentences, some of which are larger than 600 char-
acters. All sentences with a length less than 601 are
directly used in training; other sentences are processed
further in the following step.

« Iterate over all sentences that are larger than 600 char-
acters from the previous step, and split on punctuation:
starting with *,”, *;”, followed by ““:”.

o If there are still some sentences larger than 600 charac-
ters after the last two steps, they are excluded from the
training data.

280

To study the relationship between MSA and CA, and how
the models trained using CA text can diacritize MSA text and
vice versa, we created multiple versions of the corpus; each
one is divided into training, validation, and test sets:

Classical Arabic Corpus (CA Corpus): All MSA sen-
tences are removed from the corpus. This corpus constitutes
more than 99.97% of the Tashkeela corpus. The corpus is
divided into training (94%, 2,333,825 sentences), test (5%,
124,139 sentences), and validation (1%, 24,827 sentences)
sets.

Modern Standard Arabic Corpus (MSA Corpus): All CA
sentences are removed from the corpus. This corpus is tiny
compared with the CA corpus, about 0.0026% or 6552 sen-
tences. The purpose of using this corpus is to study the
relationship between the CA and MSA language variations.
The corpus is divided into training (82%, 5373 sentences),
test (15%, 983 sentences), and validation (3%, 196 sentences)
sets.

CA_MSA Corpus: The training sentences and validation
sentences of the CA and MSA corpora are merged together,
while the test sentences of both corpora are kept separate to
study how much the models can improve using these addi-
tional MSA training sentences. Table 1 shows the statistics
for CA and MSA corpora.

C. DEALING WITH DIACRITIZATION ERRORS

The task of annotating Arabic text with diacritics is chal-
lenging and time-consuming because diacritics appear on the
text as small strokes above or below each letter. Additionally,
the annotators need to be experts in the language since anno-
tation of many characters depend on grammatical rules. These
are probably the two main reasons why only minimal text of
MSA is fully diacritized. As mentioned before, the Tashkeela
corpus has many diacritization errors, some of which can be
easily detected, while others are hard to detect since they
depend on grammatical rules. Next, we discuss how we dealt
with various corpus errors:

« Many sentences use wrong diacritics, such as using
wrong combinations of diacritics or having characters
with more than two diacritics (which is impossible
in Arabic). We dealt with these types of errors by
eliminating any sentence that contains them (Table 2).

o Many sentences are not fully diacritized, which is a
common problem that can highly affect the models’
performance. Since we do not have a way to check if
a character can be diacritized or not, we checked all
words of each sentence and eliminated any sentence that
contains a word that is not fully diacritized. It is a partial
solution but can get rid of many partially diacritized
sentences as shown in Table 2.

o There are many errors in the choice of diacritics either
on the core word or because of grammatical rules’ vio-
lations. This type of error can only be detected and fixed
with a manual review by experts.

Table 2 shows the number of removed sentences and the
reasons for removal. It is also critical to note that diacritics

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

TABLE 1. Statistics of the CA and MSA corpora showing the number of sentences, the number of unique words, and the number of unique diacritized

words.
CA Corpus MSA Corpus
No. Train Test Eval Train Test Eval
Sentences 2.33.106 1.24-10° 24,829 5,370 984 198
Unique Words 7.95-10° 1.95-10° 77,628 29,383 7,929 1,864
Unique Diacritized Words ~ 4.35-10% 1.25-10% 54,057 22,552 6,916 1,745

TABLE 2. Number of removed sentences from Classical Arabic (CA) and
Modern Standard Arabic (MSA) corpora with reasons for removal.

Removal Reason CA Corpus MSA Corpus
Small Sentences 4.4-10° 2,719
Partially Diacritized Sentences 3.53-10° 1,135
Sentences With No Diacritics 1,152 178
Large Sentences 59,140 4
Wrong Diacritics 3,483 65

TABLE 3. The frequencies of diacritics in the CA and MSA corpora, which
shows significant variations that may lead the models to favor diacritics
with higher frequencies.

Diacritics CA Corpus MSA Corpus
No Diacritic 9.55 - 107 1.93-10°
Fatha 6.79 - 107 1.27-10°
Kasra 3.05 - 107 66,770
Sukun 2.76 - 107 52,258
Damma 1.84-107 32,626
Fathatah 1.4-108 2,895
Dammatan 1.25 - 106 2,371
Kasratan 1.71- 106 4,150
Shaddah 2.18 - 10° 283
Shaddah + Fatha 7.73 - 106 15,769
Shaddah + Damma 1.12 - 108 2,328
Shaddah + Kasra 1.57 - 108 4,605
Shaddah + Kasratan 1.02 - 10° 244
Shaddah + Dammatan 88,267 172
Shaddah + Fathatah 77,380 271

differ significantly in their frequencies, which can affect the
models’ performances by favoring diacritics with higher fre-
quencies. Table 3 shows the frequencies of diacritics in the
CA and MSA corpora. The confusion matrix can be used
to analyze the errors made by the models for each diacritic
separately.

D. DIACRITIZATION SYSTEMS EVALUATION

The two popular metrics for evaluating diacritization systems
are Diacritic Error Rate (DER) and Word Error Rate (WER).
These metrics can be calculated either with Case-Ending
(CE) or without CE. The calculation without CE excludes
each word’s last character from error calculation since they
mostly depend on grammatical rules. Error rates without CE
show the performance on the core word, while error rates with
CE show the overall performance. It is almost always the case
that both metrics’ error rates without CE are lower (better)
than the error rates using CE.

Diacritization Error Rate (DER): Given all charac-
ters and their correct corresponding diacritics, this metric
calculates the percentage of characters that were not cor-
rectly diacritized. We calculate this metric by extracting
diacritics from both the original and the predicted files

VOLUME 9, 2021

and apply Eq. 31:

Dy
Dw + D¢

where Dy is the number of wrong diacritics, and D¢ is
number of correct diacritics.

Eq. 31 calculates the errors of all characters, including
spaces and punctuations. The characters that can be dia-
critized with more than one diacritic are treated as one dia-
critic. In the case of error rate without CE, the last character
of each word is excluded from the calculation.

Word Error Rate (WER): This metric calculates the per-
centage of words that contain at least one diacritization error.
In this calculation, we compare all words from both the
original and the predicted files to calculate the percentage of
unequal words.

DER = x 100 31)

Ww
Ww + W

where Wy is the number of unequal words, and W is the
number of equal words.

In the case of calculation without CE, the two com-
pared words are equal even if both words’ last diacritics are
different.

WER = x 100 (32)

E. RESTORING CLEANED CHARACTERS IN INFERENCE

In the data preprocessing stage, all characters except punc-
tuation, Arabic characters, and diacritics are removed from
the training data. However, in inference, the model should
not modify the text in any way other than annotating each
character with its corresponding diacritic. We designed sim-
ple algorithms that clean the text before feeding it to the
diacritization model and then restore the cleaned characters
after predicting the diacritics. The first algorithm is CleanText
(Algorithm 1), which takes T, the text to be diacritized as
input, and returns two texts: C is the text after cleaning, and R
is the text that contains all characters that are removed. It is a
simple algorithm that iterates the characters of the input text 7
and checks if each character is in the set V (a set that contains
all possible characters that are accepted by the model: Arabic
characters, punctuation, and diacritics) or not. It appends
the character to C if it is in V; otherwise, it appends it
to R.

Algorithm 2 shows how we use the CleanText function
to clean the unwanted characters and restore them after the
model predicts the diacritics sequence. The first step in dia-
critization is to remove any diacritics from the text. Then,
it calls the CleanText function to output two texts: C and R.
The diacritizationModel function outputs the diacritics of the

281

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

Algorithm 1 Text Cleaning Algorithm
Input: T - The Text to Be Cleaned
Output: C - The Cleaned Text, and R - The Removed
Text
1: function CleanText(T)
2: Let V be a set of all characters accepted by the model
(Arabic characters, Punctuation, and Diacritics)

3: Let C be an empty text
4: Let R be an empty text
5: for ¢ = 0 to T.length do
6: if T[c] in V then
7: add T[c] to C
8: else
9: add T[c] to R
10: end if
11: end for
12: return C, R

13: end function

Algorithm 2 Diacritize and Recover Removed Characters

Input: T - The Text to Be Diacritized
Output: TD - The Diacritized Text

1: function Diacritize(T)

2: Remove any diacritics from the text T
3: C.,R = CleanText(T)

4: D = DiacritizationModel (C)
5: Let TD be an empty text

6: Leti=0

7: for ¢ = 0 to T.length do

8: if T[c]in R then

9: Append T[c] to TD
10: else
11: Append T[c] to TD
12: Append DI[i] to TD
13: i=i+1
14: end if
15: end for
16: return TD

17: end function

cleaned text (D), where the length of D is equal to the length
of C. The algorithm defines an empty text 7D, which is the
diacritized form of the input text. It iterates over the original
text 7 and appends the characters to 7D if it is in R; otherwise
(if the character is in C), it performs the following three steps:
1) appends the character to 7D, 2) appends the i diacritics
to TD, and 3) increments i so that the next diacritics will
be used.

F. THE BASELINE MODEL
The purpose of this model is to show how a simple deep learn-
ing model performs on the corpora. This model resembles

in its architecture the model created for the same purpose
by [21].

282

Embedding :
Layer (512) :

FIGURE 15. The structure of the baseline model. It consists of an
embedding layer of 512 dimensions, followed by three bidirectional LSTM
layers, each consisting of 256 cells, then a fully connected layer to project
to the output size, and lastly, a softmax layer to output the probability for
each diacritic.

It consists of an embedding layer (512 dimensions), fol-
lowed by three bidirectional 256 cells LSTM layers, then a
fully-connected layer used as a projection layer to project
down the output of the last LSTM layer to the size of
the diacritics vocabulary (15 including no-diacritic option).
Lastly, a softmax layer is used to output a probability distri-
bution over the output diacritics as shown in Figure 15. The
model has 4.8 Million trainable parameters, which is the least
compared with the CBHG and encoder-decoder models.

G. THE ENCODER-DECODER MODEL

The encoder-decoder model is adapted from Tacotron [3].
It has the same encoder with the same parameters but differs
from Tacotron in the type of attention and the output of the
decoder. This model uses the location-sensitive attention [24],
which is more appropriate for long sequences. Moreover,
the output of the decoder is a sequence of diacritics instead
of a sequence of frames.

The encoder converts the input sequences into hidden rep-
resentations, which are then used by the decoder to gener-
ate the diacritics. It represents the input sequences with an
embedding layer of 256 dimensions. These vectors are passed
to two layers of linear transformations called pre-net, which
consists of two fully-connected layers with a tanh activation
function and a dropout rate of 0.5. Its output is consumed by
the CBHG module to generate the final representation of the
input sequence.

The decoder consumes the output of the encoder and gen-
erates diacritics one at a time. During training, the decoder,
in each time step, uses the ground truth output instead of the
predicted output in a process called teacher forcing. However,
in inference, it uses the predicted output instead. The decoder
input is first processed by a pre-net, which has the same
structure as the encoder pre-net. The pre-net output is passed

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

9o G gTv
o] o]]
ERIE NI

D000 0: 5»\ o P oo [o |
AN

e x t 1 1

Attention

v

Attention Attention Attention

4
obgon t ot

Bk

—— ﬂ

0oooo

FIGURE 16. The structure of the encoder-decoder model with attention,
which is adapted from Tacotron [3]. The encoder part is the same as
Tacotron, but the decoder and the attention are different.

to an RNN attention layer, which uses the location-sensitive
attention to generate the context vector in each time step.
The context vector and the previous hidden state are then
passed to two layers of RNN, each consisting of 256 cells
with residual connections. The output of the decoder RNN
layers is projected down to a fully-connected layer. We then
used a softmax layer to output the probability distribution of
the output diacritics. Figure 16 shows the architecture of this
model.

The model has 5.2 Million trainable parameters, which
is greater than the baseline model but less than the CBHG
model. This model is the slowest to train since its decoder
outputs one diacritic at a time, which is then passed to the next
time step to generate the next output until the whole predicted
sequence is generated.

H. THE CBHG MODEL
The encoder-decoder architecture is designed for problems
in which input and output sequences are different. In the dia-
critization problem, however, the length of input and output
sequences are the same. This property allows us to design a
model based on only the encoder part of the encoder-decoder.
The model has 14 Million trainable parameters, much more
than the encoder-decoder model, but will be much faster since
all the diacritics are predicted at once, unlike the encoder-
decoder, where for each time step, the decoder predicts only
one diacritic. We called this model the CBHG model since it
used the CBHG module as its core architecture. We added a
fully-connected projection layer and a softmax layer on top
of the CBHG module to output the diacritics (Figure 17).
The CBHG model works as follows: a 512-dimensions
embedding layer first processes the input sequence. The
embedding output is passed to two layers of non-linear trans-
formation called pre-net: the first consists of 512 units with
a RELU activation function and a dropout probability of 0.5,
and the second consists of 256 units with the same activation
and dropout probability. The pre-net output is then fed to
the CBHG module, which outputs the input sequence’s final
representation. We added a fully-connected layer to project

VOLUME 9, 2021

Fully Connected
(Projection Layer) :

FIGURE 17. The CBHG model architecture. It is implemented using only
the encoder of the encoder-decoder model with more robust parameters.
We added a fully-connected layer and a softmax layer on top of the
encoder to output the probability distribution for each character.

TABLE 4. The results of training the three models for 500k steps using
the CA corpus.

With CE Without CE
Model WER DER WER DER

Baseline Model 8.74 2.24 5.75 1.83
CBHG Model 4.47 1.14 2.49 0.85
Encoder-decoder 4.84 1.34 2.76 1.02

down the CBHG module’s output to the number of possible
diacritics. Lastly, we used a softmax layer to output the
probability distribution for each diacritic.

V. RESULTS

We trained the three models using the three corpora that we
extracted from the Tashkeela corpus. We trained both the
baseline and the CBHG models using RTX 2070 GPU with
64 batch size. The encoder-decoder model requires larger
GPU memory, so we used the same GPU with a mixed
precision and a batch size of 32. We used the Adam optimizer
[41] with B; = 0.9, and B, = 0.99. We varied the learning
rate during training, using the formula given by [42].

A. USING THE CA CORPUS
Our first experiment is to train the three models using the CA
corpus for 500k steps (Table 4).

The CBHG model performs better than the other two
models in every metric. Surprisingly, the CBHG performs
better than the encoder-decoder model, given that it trains
five times faster. We do not use teacher forcing during testing
for the encoder-decoder model. The baseline model achieves
the worst results, but its results are comparable with many
previous results, such as [21]. Figure 18 illustrates the results
of the three models during training using the validation set.
Figures 18a and 18b show that the encoder-decoder model
performs better than the other two models, but this is due to
the teacher forcing mechanism that is used during training.
When the model is tested without teacher forcing, the CBHG
model performs better, as it is apparent in Figures 18 (c-f).

283

IEEE Access

. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

;
l
e

CBHG Model

—— Encoder-decoder Model

Baseline Model

0.2

0.1}

3 4

Step

(a) Training Loss

S

12

10 -

CBHG Model
I —— Encoder-decoder Model

Baseline Model

100

90

CBHG Model

Baseline Model

—=— Encoder-decoder Model

o=

10

CBHG Model
—=— Encoder-decoder Model
Baseline Model

ol

0 1 2 3 4 0 1 2 3 4
Step -10° Step 10°

(b) Training Accuracy (c) WER

‘ ‘ ‘ ‘ ‘ 4 ‘ ‘ ‘

— CBHG Model — CBHG Model

Baseline Model

T
M
I
J —— Encoder-decoder Model
\

—— Encoder-decoder Model

Baseline Model

Step -10°

(d) WER Without CE

(e) DER

Step -10°

(f) DER Without CE

FIGURE 18. The results of the models during training using the validation set. The CBHG model learns faster and smoother than
the encoder-decoder model. The training accuracy in b shows that the encoder-decoder model results are better than the CBHG
model, but this is due to the teacher forcing that is used during training.

TABLE 5. The results of the models that were trained using the CA corpus
when tested using the training sentences of the MSA corpus.

With CE Without CE

Model WER DER WER DER
Baseline Model 3495 986 25.69 833
CBHG Model 23.01 6.23 1582 5.11
Encoder-decoder Model 24.0 6.92 16.84 5.77

TABLE 6. The results of the models after training for 50k steps using the

MSA corpus.
With CE Without CE
Model WER DER WER DER
Baseline Model 30.75 8.64 22.9 7.33
CBHG Model 2348 6.41 16.76 5.37
Encoder-decoder Model ~ 23.55 6.86 17.11 5.87

To study how the models that are trained with the CA corpus
perform in MSA sentences, we tested the previous models
with the training set of the MSA corpus. As Table 5 shows,
the performance is much worse than the CA sentences in all
metrics, which suggests significant differences between the
two language variations.

B. USING THE MSA CORPUS

We replicated the previous experiment using the MSA corpus.
As Table 6 shows, the MSA corpus could be considered small
for training deep learning models, reflected in the far worse
results produced by the models compared with the models
that were trained using the CA corpus. We only trained
the models for 50k steps since the models quickly overfit

284

95 —

90 —

R CBHG Model Train Accuracy
—=— Encoder-decoder Model Train Accuracy
— CBHG Validation Accuracy
—+— Encoder-decoder Model Validation A Y
85 — H
| | | | | |
0 1 2 3 4 5
Step 104

FIGURE 19. The models trained with the MSA corpus overfit the data
since the training accuracies are close to 100%, while the validation
accuracies keep fluctuating and are always less than 95%.

the data after 10k steps (Figure 19). However, the models
produced results that were closer to the models that were
trained with the larger CA corpus and tested with the MSA
training data (Table 5). These results, again, suggest that
there are significant differences in the MSA and CA language
variations.

C. USING THE CA_MSA CORPUS

In this experiment, we investigate whether the additional
MSA sentences can improve the results of the models.
As discussed earlier, we merged the training and validation

VOLUME 9, 2021

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

TABLE 7. The results of the models after training for 500k steps using the
CA_MSA corpus and tested using the CA test data.

With CE Without CE
Model WER DER WER DER
CBHG Model 4.43 1.13 2.47 0.84

Encoder-decoder Model 4.71 1.29 2.68 0.98

TABLE 8. The results of the models after training for 500k steps using the
CA_MSA corpus and tested using the MSA test data.

With CE Without CE
Model WER DER WER DER
CBHG Model 21.28 5.65 1475 4.64

Encoder-decoder Model 22.7 6.35 15.64 525

TABLE 9. Comparing the CBHG model and the encoder-decoder models
with previous results.

With CE Without CE
System WER DER WER DER
Shieber [7] 23.61 12.79 7.33 6.35
Hifny [12] 11.53 4.30 6.28 3.18
Schlippe et al. [8] 15.6 5.5 10.3 3.5
Zitouni et al. [13] 17.3 5.1 7.2 2.2
Habash and Rambow [14] 14.9 4.8 5.5 2.2
Shaalan et al [15] 12.16 3.78
Chennoufi and Mazroui [17] 6.22 1.98 2.53 0.90
Darwish et al. [18] 2.76 3.54 3.29 1.06
Al Sallab et al. [19] 12.7 3.8
Abandah et al. [20] 5.8 2.09 3.5 1.28
Belinkovand Glass [21] 8.14 5.08
Fadel et al. [22] 7.69 2.60 4.57 2.11
Mubarak et al. [23] 4.49 1.21
Al-Thubaity et al. [26] 4.92 1.34
Encoder-decoder Model 4.71 1.29 2.68 0.98
CBHG Model 4.43 1.13 2.47 0.84

sentences of both CA and MSA corpora and kept the test
sentences separate to test each variation. We trained only
the CBHG and encoder-decoder models using this corpus.
Table 7 shows the results when testing the models using the
CA test data.

Both models have improved in all metrics using the addi-
tional MSA data compared with using only the CA corpus
(Table 4). These are interesting results that require more
investigation as we show earlier that there is a considerable
difference between the CA and MSA language variations.

Lastly, we tested the models with the MSA corpus test data
(Table 8). The results are also better than both the results
when training using only the CA corpus (Table 5) and only
the MSA corpus (Table 6).

Table 9 shows the results of the CBHG and encoder-decoder
models compared with the state-of-the-art methods. The
CBHG model achieves better results than all other methods
in all metrics. While the results of Mubarak et al. [23] are
very close to the CBHG model, the advantage of the CBHG
model is that it is simpler and much faster.

VI. DISCUSSION
To study how the models perform for each diacritic, we used
the confusion matrix to show in percentage how each diacritic

VOLUME 9, 2021

True Diacritics

> < SN SRS ° T I S

Predicted Diacritics

FIGURE 20. Confusion matrix of the CBHG model that was trained with
the CA_MSA corpus and tested with the CA test data. For each diacritic,
we show the percentage in which it was predicted. The empty cells
indicate that the percentage is less than 0.01%.

True Diacritics

Predicted Diacritics

FIGURE 21. Confusion matrix of the CBHG model trained with the
CA_MSA corpus and tested with the MSA test data. For each diacritic,
we show the percentage in which it was predicted. The empty cells
indicate that that the percentage is less than 0.01%.

is predicted. Figure 20 shows the confusion matrix of the
CBHG model when trained using the CA_MSA corpus and
tested using the CA test data. It shows that the model pre-
dicted no-diacritic with 100% accuracy, which is the most fre-
quent option in the corpus. The diacritic Shadda (~) has the
lowest accuracy of 70%, where it was predicted as (Shadda
+ Fatha, ~ a) for 18%, (Shadda + Damma, ~ u) for 4%, and
(Shadda + Kasra, ~ 1) for 4% of the predictions.

285

IEEE Access

M. A. H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

200

N
o
S

,_.
I
S

Encoder timestep
Encoder timestep
-
&
S

=
o
=)

100

0 50 100 150 200 100 150

Decoder timestep

250 300

(a) After 2000 steps

250
200

200

,_.
&
=)

-

I

o

Encoder timestep
=
S
3
Encoder timestep
-
S
S

50

100 150
Decoder timestep

100
Decoder timestep

(d) After 1000 steps

Decoder timestep

(b) After 20000 steps

(e) After 20000 steps

Encoder timestep

0.5

300
250 0.4

200
0.3

150
0.2

100
0.1

50
0 0.0

250 300

0 50 100 150 200
Decoder timestep

200 250 300

(c) After 40000 steps

300
0.8

250
200 0.6

150
0.4

100
0.2

50

0

250 300

Encoder timestep

0 50 100 150 200
Decoder timestep

200

(f) After 40000 steps

FIGURE 22. The alignments of the encoder-decoder model using the content-based attention [25] versus the location-based attention [24]. The
content-based attention is visualized in a, b, and c. It learns the alignment after 2000 steps (a) but then forgets them in the future steps (b and c). The
location-based attention, however, learns the attention faster after 1000 steps (d) and keeps improving the alignment in future steps (e and f).

When the model is tested with the MSA test data, it per-
formed poorly for all diacritics. Figure 21 shows the con-
fusion matrix of the CBHG model when trained with the
CA_MSA corpus and tested with the MSA corpus test data.
Compared with Figure 20, the no-diacritic option has an
accuracy of 96%, which means that the model predicted
diacritics for many characters that should not be diacritized.
Here, the Shadda diacritic also has the lowest accuracy, but it
was able to score only 18% in this test. It is mostly confused
with (Shadda + Fatha, ~ a) for 40%, and (Shadda + Kasra,
~ 1) for 25% of the predictions.

The encoder-decoder model confusion matrix has the same
pattern as the confusion matrix of the CBHG model. When
trained with the CA_MSA corpus and tested with the CA
corpus test data, it predicted no-diacritic with 100% accuracy.
The Shadda was predicted with lowest accuracy of 38%,
which is much worse than the CBHG model (70%). The
Shadda is mostly predicted as (Shadda + Fatha, ~ a) for 43%
of the predictions.

One critical aspect of the encoder-decoder model is the
attention mechanism. We first tried the content-based atten-
tion [25], but we find that the model learns the alignments
and forgets them in future steps as shown in Figure 22 (a-c).
When we used the location-based attention [24], we found
that the model learns the alignment very fast (after 1k steps)
and improves the alignment in future steps, as depicted in
Figures 22 (d-f).

286

VIl. CONCLUSION AND FUTURE WORK

In this paper, we proposed three deep learning models to
recover Arabic text diacritics. While the encoder-decoder
works for this problem and performs better than many sys-
tems in the literature, we found that the CBHG model trains
much faster and achieves state-of-the-art results for all met-
rics. The results clearly show that there are significant dif-
ferences in Modern Standard Arabic (MSA) and Classical
Arabic (CA) language variations. These differences require
a large amount of data from both variations, not as common
in most corpora, including the Tashkeela corpus, where CA
data are much more than the MSA data.

We consider that the most critical future work is to col-
lect more diacritized MSA text, which will be significant
for this work and other works in the literature. There are
plenty of ways to improve the models, such as trying differ-
ent hyper-parameters, changing the encoder-decoder model’s
attention mechanisms, and trying recent architecture such as
the transformer language model.

REFERENCES

[1] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP). Doha, Qatar: Associa-
tion Computational Linguistics, 2014, pp. 1724-1734. [Online]. Available:
https://www.aclweb.org/anthology/D14-1179

[2] L Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst.,
vol. 2. Cambridge, MA, USA: MIT Press, 2014, pp. 3104-3112.

VOLUME 9, 2021

M. A

H. Madhfar, A. M. Qamar: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

IEEE Access

[3]

[4]

[5

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, “Tacotron: Towards end-to-end speech syn-
thesis,” in Proc. Interspeech, Aug. 2017, pp. 4006-4010.

Y. A. El-Imam, ““Phonetization of Arabic: Rules and algorithms,” Comput.
Speech Lang., vol. 18, no. 4, pp. 339-373, Oct. 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0885230803000354

K. Shaalan, ““Rule-based approach in Arabic natural language processing,”
Int. J. Inf. Commun. Technol., vol. 3, no. 3, pp. 11-19, 2010.

Y. Gal, “An HMM approach to vowel restoration in Arabic and Hebrew,”
in Proc.ACL-Workshop Comput. Approaches Semitic Lang. Philadelphia,
PA, USA: Association for Computational Linguistics, Jul. 2002, pp. 1-7.
[Online]. Available: https://www.aclweb.org/anthology/W02-0504

R. Nelken and S. M. Shieber, “Arabic diacritization using weighted
finite-state transducers,” in Proc. ACL Workshop Comput. Approaches
Semitic Lang. Stroudsburg, PA, USA: Association Computational Lin-
guistics, 2005, pp. 79-86. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1621787.1621802

T. Schlippe, T. Nguyen, and S. Vogel, “Diacritization as a translation
problem and as a sequence labeling problem,” in Proc. 8th Conf. Assoc.
Mach. Transl. Amer., Waikiki, HI, USA, 2008, pp. 21-25. [Online]. Avail-
able: https://www.csl.uni-bremen.de/cms/images/documents/publications/
AMTA-2008-Schlippe.pdf

S. Ananthakrishnan, S. Bangalore, and S. S. Narayanan, ‘‘Automatic
diacritization of Arabic transcripts for automatic speech recognition,” in
Proc. Int. Conf. Natural Lang. Process. (ICON), Kanpur, India, Dec. 2005,
pp. 47-54.

M. Elshafei, H. Al-Muhtaseb, and M. Alghamdi, ‘Statistical methods for
automatic diacritization of Arabic text,” in Proc. Saudi 18th Nat. Comput.
Conf., Riyadh, Saudi Arabia, vol. 18, 2006, pp. 301-306.

M. Alghamdi and Z. Muzafar, “Kacst Arabic diacritizer,” in Proc.
Ist Int. Symp. Comput. Arabic Lang., Riyadh, Saudi Arabia, 2007,
pp- 1-8. [Online]. Available: https://www.researchgate.net/publication/
242693866_KACST_Arabic_Diacritizer

Y. Hifny, “Smoothing techniques for Arabic diacritics restoration,” in
Proc. 12th Conf. Lang. Eng. (ESOLEC), Egypt, 2012, pp. 6-12.

I. Zitouni, J. S. Sorensen, and R. Sarikaya, ‘““Maximum entropy based
restoration of Arabic diacritics,” in Proc. 21st Int. Conf. Comput. Linguis-
tics 44th Annu. Meeting ACL Stroudsburg, PA, USA: Association Compu-
tational Linguistics, 2006, pp. 577-584, doi: 10.3115/1220175.1220248.
N. Habash and O. Rambow, ‘‘Arabic diacritization through full morpholog-
ical tagging,” in Proc. Hum. Lang. Technol., Conf. North Amer. Chapter.
Rochester, NY, USA: Association Computational Linguistics, Apr. 2007,
pp- 53-56. [Online]. Available: https://www.aclweb.org/anthology/N07-
2014

K. Shaalan, H. M. Abo Bakr, and 1. Ziedan, “A hybrid approach
for building Arabic diacritizer,” in Proc. EACL Workshop Comput.
Approaches Semitic Lang. Athens, Greece: Association Computational
Linguistics, Mar. 2009, pp.27-35. [Online]. Available: https://www.
aclweb.org/anthology/W09-0804

A. S. Metwally, M. A. Rashwan, and A. F. Atiya, “A multi-layered
approach for Arabic text diacritization,” in Proc. IEEE Int. Conf. Cloud
Comput. Big Data Anal. (ICCCBDA), Jul. 2016, pp. 389-393.

A. Chennoufi and A. Mazroui, ‘“Morphological, syntactic and diacritics
rules for automatic diacritization of Arabic sentences,” J. King Saud Univ.-
Comput. Inf. Sci., vol. 29, no. 2, pp. 156-163, Apr. 2017.

K. Darwish, H. Mubarak, and A. Abdelali, “Arabic diacritization: Stats,
rules, and hacks,” in Proc. 3rd Arabic Natural Lang. Process. Work-
shop. Valencia, Spain: Association Computational Linguistics, Apr. 2017,
pp. 9-17. [Online]. Available: https://www.aclweb.org/anthology/W17-
1302

A. Al Sallab, M. Rashwan, H. M. Raafat, and A. Rafea, ‘“Automatic
Arabic diacritics restoration based on deep nets,” in Proc. EMNLP Work-
shop Arabic Natural Lang. Process. (ANLP). Doha, Qatar: Association
Computational Linguistics, Oct. 2014, pp. 65-72. [Online]. Available:
https://www.aclweb.org/anthology/W14-3608

G. A. Abandah, A. Graves, B. Al-Shagoor, A. Arabiyat, F. Jamour, and
M. Al-Taee, “Automatic diacritization of Arabic text using recurrent neural
networks,” Int. J. Document Anal. Recognit., vol. 18, no. 2, pp. 183-197,
Jun. 2015.

Y. Belinkov and J. Glass, ‘“‘Arabic diacritization with recurrent
neural networks,” in Proc. Conf. Empirical Methods Natural Lang.
Process. Lisbon, Portugal: Association Computational Linguistics,
Sep. 2015, pp. 2281-2285. [Online]. Available: https://www.aclweb.org/
anthology/D15-1274

VOLUME 9, 2021

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]
(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

A. Fadel, I. Tuffaha, B. Al-Jawarneh, and M. Al-Ayyoub, ‘“Neural Arabic
text diacritization: State of the art results and a novel approach for machine
translation,” in Proc. 6th Workshop Asian Transl. Hong Kong: Association
Computational Linguistics, Nov. 2019, pp. 215-225. [Online]. Available:
https://www.aclweb.org/anthology/D19-5229

H. Mubarak, A. Abdelali, H. Sajjad, Y. Samih, and K. Darwish, “Highly
effective Arabic diacritization using sequence to sequence modeling,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol., vol. 1. Minneapolis, MN, USA: Association Com-
putational Linguistics, Jun. 2019, pp. 2390-2395. [Online]. Available:
https://www.aclweb.org/anthology/N19-1248

J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., vol. 1. Cambridge, MA, USA: MIT Press, 2015,
pp. 577-585.

D. Bahdanau, K. Cho, and Y. Bengio, ‘“Neural machine translation by
jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn. Rep-
resent. (ICLR), Y. Bengio and Y. LeCun, Eds. San Diego, CA, USA, May
2015, pp. 1-15. [Online]. Available: https://arxiv.org/pdf/1409.0473.pdf
A. Al-Thubaity, A. Alkhalifa, A. Almuhareb, and W. Alsanie, “Arabic
diacritization using bidirectional long short-term memory neural networks
with conditional random fields,” IEEE Access, vol. 8, pp. 154984-154996,
2020.

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous, Y. Agiomvrgiannakis,
and Y. Wu, “Natural TTS synthesis by conditioning wavenet on MEL
spectrogram predictions,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Apr. 2018, pp. 4779-4783.

K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,
R. S. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” in Proc. 32nd Int. Conf. Mach. Learn.,
vol. 37, 2015, pp. 2048-2057.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533-536, Oct. 1986.

P. J. Werbos, “Backpropagation through time: What it does and how to do
it,” Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

S. Hochreiter and J. J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. 30th Int. Conf. Mach. Learn., vol. 28,
2013, pp. I1I-1310-111-1318.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997.
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Proc.
26th Int. Conf. Neural Inf. Process. Syst., vol. 2. Red Hook, NY, USA:
Curran Associates Inc., 2013, pp. 3111-3119.

J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vec-
tors for word representation,” in Proc. Conf. Empirical Methods Nat-
ural Lang. Process. (EMNLP). Doha, Qatar: Association Compu-
tational Linguistics, Oct. 2014, pp. 1532-1543. [Online]. Available:
https://www.aclweb.org/anthology/D14-1162

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Proc. 28th Int. Conf. Neural Inf. Process. Syst., vol. 2.
Cambridge, MA, USA: MIT Press, 2015, pp. 2377-2385.

K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio, ““‘On the proper-
ties of neural machine translation: Encoder—decoder approaches,” in Proc.
SSST 8th Workshop Syntax, Semantics Struct. Stat. Transl. Doha, Qatar:
Association Computational Linguistics, Oct. 2014, pp. 103—111. [Online].
Available: https://www.aclweb.org/anthology/W14-4012

J. Lee, K. Cho, and T. Hofmann, “Fully character-level neural machine
translation without explicit segmentation,” Trans. Assoc. Comput. Lin-
guistics, vol. 5, pp. 365-378, Dec. 2017. [Online]. Available: https://www.
aclweb.org/anthology/Q17-1026

T. Zerrouki and A. Balla, “Tashkeela: Novel corpus of Arabic vocal-
ized texts, data for auto-diacritization systems,” Data Brief, vol. 11,
pp. 147-151, Apr. 2017.

A. Farghaly and K. Shaalan, “Arabic natural language processing: Chal-
lenges and solutions,” ACM Trans. Asian Lang. Inf. Process., vol. 8, no. 4,
pp. 1-22, Dec. 2009.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds. Ithaca, NY, USA: arXiv.org, May 2015, pp. 1-15. [Online]. Available:
http://arxiv.org/abs/1412.6980

287

http://dx.doi.org/10.3115/1220175.1220248

l E E E ACCGSS M. A. H. Madhfar, A. M. Qamar:

: Effective Deep Learning Models for Automatic Diacritization of Arabic Text

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates
Inc., 2017, pp. 6000-6010.

\113 = ,/,

MOKTHAR ALI HASAN MADHFAR received
the bachelor’s degree in computer science from
Qassim University, Saudi Arabia, in 2015, where

288

he is currently pursuing the master’s degree. Along fessor of computer scienc
with his master’s study, he works as a Program- Buraydah, Saudi Arabia, since 2014. He has also been an Assistant Professor

ALI MUSTAFA QAMAR received the B.E. degree
(Hons.) in computer software engineering from
the National University of Sciences & Technology,
Islamabad, Pakistan, in 2005, the M.S. degree in
computer science from University Joseph Fourier
(UJF), Grenoble, France, in 2007, and the Ph.D.
degree in computer science from the University
of Grenoble, France, in 2010. He worked as a
Temporary Assistant Professor with UJF from Nov
2010 till June 2011. He has been an Assistant Pro-
e with the College of Computer, Qassim University,

mer and Data Analyst with Qassim University. His of computer science with the School of Electrical Engineering and Computer
research interests include data analysis and deep Science, National University of Sciences & Technology, since 2011. His
learning. research interests include machine learning, data mining, deep learning,

social networks, and information filtering.

VOLUME 9, 2021

