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ABSTRACT Reconstruction of 3D space from visual data has always been a significant challenge in the
field of computer vision. A popular approach to address this problem can be found in the form of bottom-
up reconstruction techniques which try to model complex 3D scenes through a constellation of volumetric
primitives. Such techniques are inspired by the current understanding of the human visual system and are,
therefore, strongly related to the way humans process visual information, as suggested by recent visual
neuroscience literature. While advances have been made in recent years in the area of 3D reconstruction,
the problem remains challenging due to the many possible ways of representing 3D data, the ambiguity
of determining the shape and general position in 3D space and the difficulty to train efficient models for
the prediction of volumetric primitives. In this article, we address these challenges and present a novel
solution for recovering volumetric primitives from depth images. Specifically, we focus on the recovery
of superquadrics, a special type of parametric models able to describe a wide array of 3D shapes using
only a few parameters. We present a new learning objective that relies on the superquadric (inside-outside)
function and develop two learning strategies for training convolutional neural networks (CNN) capable
of predicting superquadric parameters. The first uses explicit supervision and penalizes the difference
between the predicted and reference superquadric parameters. The second strategy uses implicit supervision
and penalizes differences between the input depth images and depth images rendered from the predicted
parameters. CNN predictors for superquadric parameters are trained with both strategies and evaluated on
a large dataset of synthetic and real-world depth images. Experimental results show that both strategies
compare favourably to the existing state-of-the-art and result in high quality 3D reconstructions of the
modelled scenes at a much shorter processing time.

INDEX TERMS Superquadrics, parametric models, reconstruction, 3D, deep learning, convolutional neural
networks, CNN, parameter recovery.

I. INTRODUCTION

3D reconstruction represents one of the central problems of
computer vision. It aims to interpret the shape, appearance,
as well as the relative position of objects in the environment
and to derive a unique (typically parameterized) description
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of the 3D world. In the context of artificial systems, a recon-
structed scene can be used to inform an autonomous agent
of its surroundings and to enable complex interactions, such
as collision avoidance, maneuvering [1], [2] or grasping
[3], [4]. While different approaches have been proposed in
the literature for this task, bottom-up reconstruction of 3D
scenes with volumetric primitives is particularly appealing.
Such methods use a fixed vocabulary of possible elementary
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shapes to describe 3D scenes of arbitrary complexity, and
therefore represent a highly flexible and descriptive approach
to 3D reconstruction [5], [6].

The idea of a generalized bottom-up reconstruction orig-
inally came as a response to the advancements in percep-
tual psychology and neuroscience in the 1960’s and 70’s.
The first theoretical vision system, introduced by Marr [7],
heavily prioritized reconstruction and aimed at recovering 3D
shapes from images by recognizing various depth cues and by
fitting suitable volumetric models in a hierarchical manner.
Biederman [5] argued, that human object recognition works
by assembling specific volumetric primitives, called geons,
into larger constellations, forming complex models of the
environment. The transition from theoretical systems to
working practical applications was driven largely by the
choice of 3D representations. While highly-parameterized
representations were able to ensure accurate 3D reconstruc-
tion, these came at the expense of computational over-
heads and complex scene descriptions. Using constellations
of shape primitives (with comparably less parameters) to
model 3D scenes and objects, on the other hand, resulted in
more acceptable trade-offs between the reconstruction accu-
racy and the complexity of the scene description. Following
this latter line of research, Barr first introduced so-called
superquadrics [8] to the field of computer graphics and Pent-
land later brought them to the attention of the computer vision
community [6]. Superquadrics are parametrized 3D models
(or volumetric primitives), capable of forming a variety of dif-
ferent shapes with only a few shape parameters and represent
a popular choice for 3D object representation. Considerable
efforts have been directed towards recovering superquadrics
from 3D data, e.g., [9]-[12], but the highly non-linear nature
of the problem typically resulted in relatively slow opti-
mization methods. Further development was ultimately bur-
dened not only by this computational complexity, but also by
the lack of affordable and efficient mechanisms to capture
3D data.

While the initial hypotheses from Marr [7] and
Biedermann [5] lacked biological evidence, contemporary
neuroscience literature generally acknowledges that complex
shapes are represented as spatial arrangements of individual
3D parts in the human visual system [13]-[15]. The idea to
construct more complex structures from a small set of basic
elements is very powerful and is the foundation principle
in many other scientific fields. As observed in the visual
pathway of macaque monkeys, populations of neurons in
specific regions of the cortex spike in response to certain 3D
shapes, their positions and rotations [13], [15]. This neural
activity was later successfully modeled with deep neural
networks [16]. Our approach to the problem of 3D scene
reconstruction using superquadrics as basic building blocks
is thus heavily inspired by the current understanding of visual
pathways in biological systems. This is also reflected in the
choice of depth images as the input representation for our
reconstruction model. As neurons seem to encode 3D spatial
configurations of self-occluding 3D surface fragments, shape
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perception is not only based on 2D image processing [13].
It is now also well established that depth information is inter-
preted from binocular vision in the early stages of the visual
cortex [17]. This information is then propagated towards the
more complex areas of the cortex in a hierarchical feed-
forward manner.

Recent works in the field of computer vision show signs
of a revitalized interest in volumetric recovery with shape
primitives and build mostly on advances in deep learn-
ing and specifically convolutional neural networks (CNNs)
[18]-[21]. Novel solutions to this problem are typically con-
strained to labeled 3D datasets and lack the capacity to learn
from partial-view data (such as depth images) only. The
choice of learning objective also has a considerable effect
on the final accuracy of the estimated model parameters
and impacts the quality of the 3D reconstruction. A cer-
tain level of geometric awareness is needed to capture the
properties of target objects. In this work we investigate the
effect of various learning strategies and explore how different
conceptual approaches to superquadric recovery affect the
reconstruction process. Our aim is to revisit this problem with
the use of CNNs to (i) develop recovery models that don’t
exhibit the computational overhead of early iterative solu-
tions, such as [9], to (ii) ensure high prediction accuracy both
in terms of superquadric parameter values as well as the scene
reconstruction quality, and (ii) investigate different learning
strategies for training deep learning models for superquadric
recovery.

We focus on the problem of estimating the parameters of
a single superquadric in a general position, which include
parameters for size, shape, position and orientation of the
superquadric. This estimation process represents a complex
task due to the vagueness in describing spatial relations
and especially, rotation. While a simple CNN regression
model works for most superquadric parameters, as shown
in [21], the real challenge lies in determining the rotation
of the superquadric. Because symmetric superquadrics can
be rotated arbitrarily along certain axes (e.g., consider a
perfect sphere) without changing the appearance, rotation
introduces an ambiguity into the recovery process that is
difficult to address. Due to these symmetries we believe it is
important to try to determine superquadric parameters using a
geometry-aware learning criterion. To achieve this, we use the
superquadric surface equation, which has several desirable
characteristics and allows us to design a loss function that
takes into account the shape and general position of the
superquadrics. The optimization process with the considered
loss is, hence, based on the 3D properties of superquadric
surfaces, rather than the actual parameter values, which may
be ambiguous. Gathering of 3D data can be an expensive and
cumbersome process, especially when labeling individual
examples manually. This requires real-world measurement,
expert knowledge, or might even be impossible. It is therefore
equally important to have at hand an approach that does not
require a large labeled dataset, but is still able to learn a CNN
predictor for superquadric recovery.
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To address the challenges discussed above, we make the

following contributions in this article:
o We introduce a novel geometry-aware learning objec-

tive based on the superquadric (inside-outside) function
that allows us to train CNN predictors capable of pre-
dicting (with high accuracy) the parameters of a sin-
gle superquadric in general position from input depth
images. This learning objective improves on earlier work
based on direct parameter regression, capable of only
predicting parameters of unrotated superquadrics [21].

« Using the learning objective we propose two learning
strategies to train the CNN predictor. The first uses
explicit supervision and compares representations gen-
erated from the superquadric (inside-outside) function of
the predicted and ground truth superquadric parameters.
The second strategy relies on implicit supervision and
instead utilizes a differentiable renderer to construct a
depth image from the predicted parameters, which is
compared directly to the input depth image. No ground
truth parameters are needed during learning for this sec-
ond strategy.

o We evaluate our learning objective, and both learn-
ing strategies in rigorous experiments on a dataset of
more than 150.000 depth images containing various
superquadrics. We present an extensive analysis of the
generated results and compare our solutions to the state-
of-the-art in superquadric parameter recovery.

Il. RELATED WORK

This section provides a brief overview of existing
superquadric reconstruction techniques and discusses
relevant techniques used in 3D-oriented deep learning.

A. SUPERQUADRIC RECOVERY

Superquadric recovery refers to the problem of estimating the
parameters of the superquadric volumetric primitives, such
that the primitives describe the input data as well as possible.

1) EARLY METHODS

Pentland first proposed a brute-force search of the
superquadric parameter space [22] using parallel comput-
ing. He tried to recover superquadrics from color images
by analysing shading information, but had limited success.
In 1987, Solina and Bajcsy [23] devised a least-squares
minimization process for superquadric recovery from range
images, which they further refined a few years later [9].
To fit the models, they used the superquadric inside-outside
function, which explicitly describes the relationship between
a point and the superquadric surface. An alternative solution
to this problem was proposed by Boult and Gross in [10], [24].
Here, the authors proposed using the superquadric radial
distance, which approximates the distance from a given point
to the superquadric surface, as the fitting function. However,
the recovered superquadrics were visually almost identical to
those, recovered by the inside-outside function [25]. Because
calculation of the radial distance was computationally more
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demanding than using the inside-outside function, the latter
was used more extensively by researchers working in this
area [9], [26]-[28]. Certain superquadric shapes, particularly
those with sharp edges, can cause the inside-outside function
to become susceptible to numerical overflow and singulari-
ties. To alleviate this, Vaskevicius and Birk [29] introduced
a numerically stable method of computing the gradient of
the inside-outside function with respect to the superquadric
parameters, making possible to better model shapes, such as
cuboids and cylinders. Others have approached the recovery
procedure from another perspective, for example, by using
genetic algorithms [11]. Extensions to superquadrics were
also proposed [30], [31], but ultimately these also relied
on iterative optimization procedures during recovery, which
stalled further development in this direction.

The original method by Solina and Bajcsy [23], designed
for the recovery of isolated superquadrics, was later extended
by Leonardis et al. [12] to handle more complex shapes
that needed to be modelled by multiple superquadrics.
The authors achieved joint segmentation and recovery
of multiple superquadrics on the basis of the Minimum
Description Length (MDL) principle, by using a bottom-
up approach of splitting the shape into multiple parts
and then fitting superquadrics to shape parts individually.
The fitting function, however, remained of iterative nature.
Chevalier et al. [32] tackled the same problem using a top-
down approach, by splitting the shape iteratively until the
subshape was viable for superquadrics representation.

2) DEEP LEARNING METHODS

More recent work on the recovery of volumetric primitives
is mostly based on deep learning techniques. In 2017, for
example, Tulsiani et al. [18] proposed a method to learn shape
abstractions using primitive shapes. The authors used cuboids
as their geometric primitive of choice and fitted them to
triangle meshes. In a recent article by Paschalidou et al. [19],
the authors adapted this pipeline to use superquadrics instead
of cuboids, achieving a significantly smaller fitting error due
to the wide range of shapes that superquadrics can approx-
imate. A later expansion to this work [20] proposed a sys-
tem for hierarchical unsupervised recovery of superquadrics.
Both of the above works used labeled 3D data with spe-
cific object categories, e.g., planes, animals, chairs, etc.,
to train CNN superquadric predictors. However, to make
recovery techniques applicable to arbitrary data a more gen-
eralized approach is needed that does not necessarily rely on
explicit supervision. In [21], Oblak et al. presented a CNN
predictor for (unrotated) superquadric recovery, capable of
estimating superquadric parameters from a depth image in
a single forward pass of the model without the need for
costly iterative optimization techniques used in the early
work in this field [9]. Oblak’s work was later extended by
Sircelj et al. to include the capability of recovering multiple
super-quadrics [33]. Superquardics were also recovered from
point clouds by Slabanja et al. [34], but all techniques again
relied on ground truth parameters during training.

1089



IEEE Access

T. Oblak et al.: Learning to Predict Superquadric Parameters From Depth Images With Explicit and Implicit Supervision

The usefulness of superquadrics was already proven in
practical applications, especially in various robot grasping
tasks [4], where the shape and position of objects is unde-
terministic, or, for example, for handling of mail pieces [23].
Another recent example of their use is in heritage science for
3D documentation of artifacts [35], [36]. For a comprehensive
coverage of the field, the reader is referred to [28] for an
excellent survey on this topic.

B. DEEP LEARNING IN 3D

Contemporary techniques for superquadric recovery are
closely related to recent techniques for 3D-based deep learn-
ing. Below we discuss topics from this field that are also rele-
vant for the problem addressed in this work, that is, the choice
of 3D representation and the issue of pose estimation.

1) 3D REPRESENTATION

The choice of 3D representation is an important factor to
consider for various types of input, intermediate and out-
put data. Depending on the task at hand, a combination
of these representations is used in the literature [37]-[41].
Wu et al. [37] were the first to introduce the idea of using
discretized volumetric grids for spatial representation and uti-
lize 3D encoders to process volumetric data. In another work,
Wu et al. proposed MarrNet [38], an end-to-end trainable
framework, which takes as input only a single RGB image,
as an intermediary step estimates surface normals, depth
and the silhouette of the object and finally predicts the 3D
shape of the object using a 3D decoder. Volumetric grids can
describe various spatial data, such as signed distance func-
tions [40] or occupancy functions [39], [41]. It is obvious,
that 3D encoders have a far greater impact on memory con-
sumption and performance than 2D encoders. Nevertheless,
volumetric grids allow for storage of true 3D data, whereas
2D images only contain a single perspective, leading to object
self-occlusion and loss of information. Different from the
works discussed above, our model relies on depth images,
a type of 2.5D representation, which encodes 3D information
into a 2D structure. This allows us to use 2D encoders to
process the data efficiently in contrast to 3D encoders, while
greatly benefiting from the more explicit spatial description
in comparison to a color image. The mechanisms to capture
depth images have also become more affordable in recent
years and are being incorporated into various consumer prod-
ucts with an ever smaller form factor, e.g., smartphones.

2) POSE ESTIMATION

Recent pose estimation models rely on CNN-based predic-
tors that generated pose estimates in the form of continuous
parameter values [42]-[44]. Zhu et al. [43], for example,
use a standard encoder-decoder architecture to reconstruct
volumetric data and simultaneously train a pose regressor.
Miao et al. [42] use a Mean Squared Error (MSE) based loss
to train 6 separate regressors for all parameters describing
object pose, i.e., position and rotation parameters. While
these techniques produce solid pose estimates, methods based
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on loss function that include a geometric component typically
achieve stronger results. For example, Xiang et al. [44] min-
imize the distance between points on the surface of rotated
objects to predict rotation and demonstrate impressive per-
formance. We strongly believe this geometric awareness is
crucial when learning representations in the spatial domain.
Additionally, the choice of rotation description also plays a
major role in the success of pose estimation techniques. For
example, Euler angles are known to suffer from gimbal lock,
whereas rotation quaternions have the unit norm constraint,
which makes regression a non-trivial task [43]. The problem
of superquadric recovery addressed in this article is related to
the methods discussed above in that it also requires pose esti-
mation and prediction of translation and rotation parameters.
In line with the most successful techniques in this domain,
our solutions also use a geometry-aware loss during training,
but are designed specifically for the problem of superquadric
recovery.

IIl. LEARNING CNN PREDICTORS FOR

SUPERQUADRIC RECOVERY

A critical component of bottom-up 3D scene reconstruction
techniques is an efficient estimation of the volumetric prim-
itives. In this section we present two CNN-based solutions
to this problem that are able to recover superquadric models
from depth images. As illustrated in Fig. 1, the first solution
uses a learning approach that relies on explicit supervision
defined over the superquadric function, whereas the second
exploits an implicit approach utilizing a differentiable ren-
derer to learn a predictor of the model parameters. In the
following section, we first present a formal description of
superquadrics and then describes both solutions proposed in
this work.

A. THEORETICAL BACKGROUND AND

PROBLEM FORMULATION

Superquadrics represent volumetric primitives defined by a
so-called inside-outside function. The function is defined
for each point p; = [x,y,z]” in object-space given by the
following equation:

€

2 2\ & 2
X € € €
F(x,y.2) = ((Z) gt (%) 2) + (i) RG))

where ap, ap, and a3 determine the size of the superquadric
in each axis of the coordinate system, and the parameters
€1 and e define the shape of the superquadric. A set of
superquadrics with various values of €] and €, and fixed size
parameters can be observed in Fig. 2.

The inside-outside function is defined in local (i.e.,
superquadric centered) coordinates, but a more convenient
way is to evaluate the function in world-space coordinates
Pw = [xw, yw,zw]T. Thus, a transformation is needed to
transform world coordinates p,, into local coordinates p; =
[xs, ys,zx]T. To do this, the inverse of the homogeneous
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(b) Implicit supervision

FIGURE 1. Proposed learning strategies and loss functions. We propose two strategies to train CNN predictors for superquadric recovery in this article.
Both strategies are based on the superquadric inside-outside function: (a) Explicit supervision: this learning strategy uses the ground-truth and predicted
superquadric parameters to compute 3D occupancy grids over which a learning objective is defined. (b) Implicit supervision: this learning strategy
requires no ground truth superquadric parameters and instead uses a differentiable renderer to reconstruct a depth image for the predicted superquadric
parameters; the rendered and input depth images are then compared to provide a supervisory signal for the learning procedure. The figure is best viewed

in color.

transformation matrix M can be used, i.e.,

—(t1r11 + tarp1 + 13131)
r2 o ry —(tire +hro +13r3)
r2 r3 3 —(ir3 + s +3r33)
0 0 0 1

11 21 r31

M=

@

where 7; j, for i, j € {1, 2, 3}, are elements of a 3 x 3 rotation
matrix and ¢+ = [t1, 2, 13]7 is a translation vector. Local
coordinates can then be computed using

DPs =M7]Pw, 3

which allows for the evaluation of the inside-outside function
in world-space coordinates, i.e., F'(M -1 Pw)- Note that homo-
geneous coordinates are utilized to calculate the transforma-
tion and that the inside-outside function only receives a local
3D point as input. To streamline the notation we use F(p)
hereafter to denote the inside-outside function, but note that
world-centered points p,, are used always as input. As a result
of this formulation, 12 parameters are needed to uniquely
define a superquadric F(p; A):

A= (a1, a2, a3, €1,€, 11, 0,1,41, 92, 43, 44), @

where ¢1, ¢2, q3, and g4 are rotational parameters,
which correspond to the coefficients of a unit quaternion.
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FIGURE 2. The superquadric vocabulary. By changing the value of the
parameters ¢ ,, superquadrics can form many different shapes, from
cuboids to ellipses and everything in between.

The quaternion can be trivially transformed into a rotation
matrix by using the Euler-Rodriguez formula [45].

For a point p € R3, it is possible to determine it’s position
in relation to the superquadric surface. If the point lies inside

1091



IEEE Access

T. Oblak et al.: Learning to Predict Superquadric Parameters From Depth Images With Explicit and Implicit Supervision

the superquadric, then F(p) < 1, if it lies outside of the
superquadric, then F(p) > 1 and if F(p) = 1, then the point
lies on the surface of the superquadric model. The value of
F at the center of the superquadric is 0. The inside-outside
function F : R3 — RT is continuous and differentiable,
though it is numerically unstable for low values of the shape
parameters €1 2. This is usually alleviated by constraining the
parameters to €12 > 0.1 [9]. A recent work by Vaskevicius
and Birk [29] introduced a numerically stable formulation of
the gradients, even for 0 value shape parameters.

To estimate the parameters A of a superquadric model
from an input depth image X, we present in this work two
CNN learning strategies, such that the learned models fcyy
produce parameter estimates as close to the reference values
as possible, i.e.:

A = fonw (X; 0), Q)

where A is the CNN output and 6 are learnable parameters of
the network. Since superquadric parameters A are continuous
real values, we formulate this this task as a problem akin to
regression.

B. EXPLICIT SUPERVISION

The first approach to superquadric recovery proposed in this
article uses explicit supervision to estimate the parameters
A, as illustrated in the top row of Fig. 1. The assumption
here is that ground truth parameters X are available for every
training image X and the goal is to learn a CNN predictor that
produces parameter estimates A that are as close as possible
to the available ground truth. A direct minimization over the
estimated and ground truth parameters does not result in rep-
resentative parameter errors and consequently fails to capture
the ambiguous nature of rotation in 3D space. Thus, the first
approach minimizes the difference between 3D occupancy
grids of the predicted and reference superquadrics.

If evaluated for every point in space, the result of the
inside-outside function is a superquadric hypersurface in R*,
which can be used as an indicator of the model error during
training. The biggest differences between the predicted and
reference hypersurfaces occur outside of the superquadric
where F(x,y,z) > 1. To focus on the differences in close
proximity to the superquadric, which impact the model learn-
ing procedure the most, the inside-outside function is further
transformed into a differentiable occupancy function. We fol-
low the proposal of [20]:

G(x,y,2) = o(s(1 — F'(x, y, 2))), (6)

where G : R3 — (0, 1) and s is a scaling factor, which con-
trols the sharpness at the spatial border of the superquadric.
This function returns a value close to 1 if a point is inside the
superquadric, close to 0 if it is outside and 0.5 if the point
is directly on the surface of the superquadric. The function
is continuous and therefore differentiable. Note also that the
inside-outside function is raised to the power of € before
computing the occupancy function, as suggested in [28]. This
operation does not change the surface itself, but ensures that
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all model parameters contribute to a similar extent to the
overall prediction error and the learning procedure is not
dominated by the shape parameters.

An approximation of this hypersurface can be computed
by first discretizing the coordinate system into a set of fixed,
equally-distanced points. The discretization procedure is con-
trolled by a resolution parameter » and the minimum and
maximum bounds for each of the axes, b, and by, respec-
tively. We sample r equally spaced points in each axis from
bpin t0 bygy, which results in a 3D grid of discretized points.
For each of these points, the occupancy function is evaluated
and stored in a volumetric grid:

Ve, (i, ), k) =G,y zs &)y L, k=1,2,...,r, (7)

where x;, yj, zx denote the coordinates of the discretized
points in world space. By doing this, a discretization Vg ) of
the 3D occupancy function in Eq. (6) is obtained for the given
parameters A. In other words, a voxel grid is created, where
each voxel encodes the value of the occupancy function at
that location. The size of the grid corresponds to the selected
resolution: Vg ; € R” g

To learn the parameters 6 of the CNN predictor fcyy the
first approach studied in this article uses the Mean Squared
Error (MSE) to calculate the difference of two differentiable
occupancy grids:

r

Loc (n4) = |17| > Vealinjik) = Vg 0. 0P, (®)
ij.k

where A are ground truth parameters of the target

superquadric and X are estimated superquadric parameters.

In other terms, the sum of all the squared differences between

matching points is computed first and then divided by the size

of the grid |V|.

C. IMPLICIT SUPERVISION

The second proposed approach to superquadric recovery
uses implicit supervision to predict superquadric param-
eters. As illustrated in Fig. 1 (b), no explicit reference
value for the superquadric parameters is provided with this
approach. Instead a depth image is used as input to the predic-
tion procedure and a loss function is defined for the learning
stage between the input depth image and the depth image
rendered based on the current estimate of the superquadric
parameters. Such an approach eliminates the need for ground-
truth parameters and is able to learn a CNN predictor directly
by comparing the input and rendered shapes.

To derive a self-supervised loss function for model learn-
ing, a differentiable way of reconstructing depth images from
the predicted superquadric parameters is needed. While dif-
ferent techniques have been presented in the literature for this
purpose, the depth projection operator of Gadelha et al. [46]
assumes an orthographic projection, which makes it particu-
larly suitable for our approach, since the depth images used in
this work are rendered orthographically. The algorithm takes
a volumetric voxel grid as input and (from a specific view)
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(a) (b) ©

FIGURE 3. The depth projection operator. Following the procedure of
Gadelha et al. [46], this work relies on a differentiable renderer to
reconstruct depth images of superquadrics in orthographic projection
from predicted parameters. Visualized are the key 3D representations in
the process: (a) A superquadric, represented by a volumetric voxel grid,
rendered in an isometric projection, (b) the same voxel grid, viewed
perpendicular to the xy-plane and (c) a depth image of the superquadric.
The differentiable renderer takes a voxel grid (a) as input, then projects
the depth onto a specific plane (b), which results in a depth image (c),
similar in appearance to the depth images in the experimental dataset.
Note that a 643 space is used to visualize the voxel grid, while the depth
image shown is rendered in a space of size 2563. During training, these
resolutions are matched.

projects the depth for each line of sight onto a 2D surface.
Analogous to a voxel grid, the continuous superquadric occu-
pancy grid from Eq. (7) is taken and projected onto a 2D
plane perpendicular to the z axis. This procedure is illustrated
in Fig. 3.

To implement the procedure, we follow the formulation of
Gadelha et al. [46], however, some adjustments are also made
to the process, so the output matches the input depth images as
closely as possible. The value of an element in the occupancy
grid is either close to O at indices outside of the superquadric
or close to 1 at indices inside the superquadric. The sharpness
of transition close to superquadric surface is determined by
the parameter s in Eq. (6). To calculate the depth Erojecticgn,
the authors define an intermediate function A : R — R"":

k

AV, i.j. k) = exp(=T Y V(i.j. 1), ©9)
=1

where V : Z3 — (0, 1) is the occupancy grid, (i, j, k) are grid
indices and t is a parameter, which controls the sharpness of
transition between empty space and the object. With the term
Zlle V (i, j, 1), the cumulative sum of voxels along each line
of sight for each index k is calculated. The cumulative sum is
(for each index) then passed to an exponential function, which
generates A values of 1 until a voxel on the surface of the
superquadric is hit, since the sum is 0. When a surface voxel
is hit, the cumulative sum becomes greater than zero, driving
the exponential function close to zero. Again, the sharpness
of this transition is determined by parameter 7.

To render a depth image, we sum all values along the z axis
for each line of sight. Each of these values then represents
the distance from the near plane of the view frustum to the
first intersected surface in the line of sight. The original for-
mulation from [46] implies that the background has infinite
distance from the near plane of the viewing frustum. In our
case, the space is bounded into a 7> grid, so appropriate mod-
ifications are made to the method. Specifically, to calculate
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depth the following operator 7T : R” — R’ is utilized:
1
TWV)y=1—->» A(V,i,j,k), 10
V) - ; (Vi j. k) (10)

where r is the resolution of the voxel grid in a single axis.
The accumulated depth is divided by the resolution of the
voxel grid to normalize the depth values to the range [0, 1].
A value of 1 then represents a distant point and a value of 0
represents a point close to the observer. To match this with
the depth images in the dataset used for our experiments,
all generated values are subtracted from 1. For a given set
of superquadric parameters, the depth image rendered with
the presented approach is a close approximation of the depth
images present in the experimental dataset.

The overall loss function for this approach is then defined
as the Mean Absolute Error (MAE) between the input depth
image and the rendered depth image, constructed from the
predicted superquadric parameters:

1 r
X Y IXG ) - TVl (D)

ij

Lpr (X.3) =

where Vg 5 is the occupancy grid, r is the size of the image
in one axis and (i, j) are pixel indices of the image. Note,
that the input depth image X should be appropriately resized
to match the resolution 2 of the reconstructed depth image.
An Lj-based error measure is used, to reduce the impact of
outliers on the loss function.

D. THE CNN PREDICTOR

Both learning approaches described in the sections above use
a CNN model to predict superquadric parameters from input
depth images. Several models can be used here, but a modi-
fied ResNet [47] is selected for this work. The modular nature
of the model allows adapting the model depth in accordance
with the complexity of the prediction task.

Because in our case the input of the model receives rather
simple depth images with isolated superquadrics, we select
a shallow ResNet-18 [47] as the CNN predictor, as shown
in Fig. 4. The first convolutional layer of the model has a
filter of size 7 to capture a bigger initial receptive field. This
is needed, as the input depth images contain mostly low-
frequency information. From that point on, a filter of size
3 is used with all subsequent layers. By setting the stride
of convolution to 2 every 3 convolutional layers, the data
is pooled, which widens the receptive field of the convolu-
tional filters. At the top of the network a prediction head
with two 256-dimensional fully-connected layers is added.
This head mixes and processes features, received from the
convolutional layers. The network output is then split into
four groups, one for each parameter type. Size, shape and
translation parameter groups each have a fully-connected
layer with 3, 2 and 3 outputs, respectively. To these, a final
sigmoid activation is attached, which is done so the initial
predictions result in values close to ““0.5”’, making the result
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2D Convolution + ReLu + BatchNorm
2D Convolution, stride 2 + ReLu + BatchNorm
Max pooling

Average pooling
FC + sigmoid

FC + normalization

4 x {3x3, 64}
1 x {7x7, 64}

----Shortcut connections

FC + LeakyReLu

}size

}shape
< 1 = < - - - }translation
}rotation
4x {3x3, 512}
4'x {3x3, 256} 12
4x {3x3, 128} 2_x 256

FIGURE 4. The CNN predictor. The figure illustrates the architecture of the CNN model used to predict superquadric parameters from input depth
images. We use the X x Y, Z notation to denote a convolutional layer with Z filters of size X x Y. A modified Resnet-18 model is used, which
outputs a 12-dimensional vector of superquadric parameters, defining the general position, scale and appearance of the 3D shape in the input

range image. The figure is best viewed in color.

of the superquadric inside-outside function stable and suit-
able for backpropagation. The predicted values for size and
translation are multiplied by 256 to scale them back into the
256° space. Rotation parameters have a final fully-connected
layer with 4 outputs. Since versors (i.e., unit quaternions) are
used to describe rotation, L,-based normalization is selected
as the final activation function. To speed up the training
process, transfer learning is utilized. Specifically, pre-trained
weights for ResNet-18, trained on the ImageNet [48] dataset,
are loaded during model initialization.

IV. EXPERIMENTS

This section presents the experiments conducted to validate
the proposed learning strategies. The section starts with a
description of the experimental setup, dataset, performance
metrics and the training procedure and then proceeds to the
actual experiments and discussion of the main results and
findings.

A. DATASET

For the experiments we use a synthetic dataset, similar to [21].
The dataset contains artificially generated depth images,
where a single superquadric is placed in a scene and ren-
dered in orthographic projection using a custom ray-tracing
renderer. The renderer works by following a ray in discrete
steps along the z axis and by detecting the intersection with
the superquadric surface. When the intersection is detected,
the distance from the viewport to the superquadric surface is
used as the depth value of the corresponding pixel. The result
of this rendering procedure is an image of size 256 x 256. This
is convenient, since raw grayscale pixels are usually stored
with 8 bits of information, which yields a total of 256 possible
pixel values. This way, the depth image represents a 3D space
of size 256°.
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The training part of the dataset consists of 150.000 depth
images. Each image is annotated with 12 parameters that
encode the shape, size, translation and rotation of the ren-
dered superquadrics. For the test set, an additional set of
20.000 examples is generated and used for the final perfor-
mance evaluation and comparison with competing models
from the literature. To generate the dataset, the values of
the superquadric parameters are sampled from U (25, 75)
for the size parameters, from U/ (88, 168) for the translation
parameters and from ¢/ (0.1, 1) for the shape parameters. The
Subgroup algorithm [49] is used to draw a random uniform
rotation in the form of a quaternion. A selection of examples
can be seen in Fig. 5.

B. METRICS

We evaluate the two CNN predictors by comparing the pre-
dicted parameters to the ground truth parameters using the
Mean Absolute Error (MAE). The order of the predicted
size and shape parameters can be arbitrary at the output of
the CNNs due to the ambiguity of the superquadric shape
description [9]. For example, an unrotated cuboid with size
parameters aj 2 = 1, az = 2 is visually identical to a cuboid
with parameters a; 3 = 1, a; = 2, which is rotated by 90°
around the x axis in the local coordinate system. A similar
property can be observed with the shape parameters €1 7. Due
to this uncertainty, we average over the elements of the size
and shape parameter groups, giving us only one value for the
size parameter subset @ and € for the shape parameter subset.

3 2
_ 1 _ 1
a=§ Ei a; e:g Ei € (12)

We omit rotational parameters in this evaluation as rotation
can be particularly ambiguous, i.e., different quaternions
can result in the same superquadric surface. For example,
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FIGURE 5. Examples in our superquadric dataset. Depth images contain a
single superquadric inside a 2563 space, rendered in a orthographic
projection. Higher pixel values represent surfaces closer to the viewer
and black pixels represent the background.

an arbitrary rotation can be applied to a perfectly spherical
superquadric with parameters aj 23 = 1,€;2 = 1 and the
resulting shape would be visually identical to the original
shape.

To have a measure that compares superquadrics in a
geometric manner, the Intersection over Union (IoU) is
reported in the experiments. Specifically, a special variant of
IoU, defined inside 3D space, is adopted. Using the binary
occupancy function

B,y = [ Erna=l (13)
= 0; FUl(x,y,z)>1

a superquadric voxel grid Vp ; is generated. All points that
lie outside of the superquadric then have a value of 0 and all
outside have a value of 1. The IoU metric is then calculated
between binarized voxel grids of predicted and ground-truth
superquadric parameters, calculating the number of voxels
that are surrounded by both superquadrics divided by the
number of voxels surrounded by either one of them, i.e.:

Z;],k VB’i(i’ja k) A VB,)\.(i7j7 k)

IoU(h, X)) = o7 S
ik Ve k) v Vs, j, k)

(14)

where A are ground-truth parameters and A are the predicted
parameters. The goal of superquadric recovery is to max-
imise this performance measure, which represents the ratio
of coverage between the generated and true superquadrics.
A value of 0 means that there is no overlap and a value of
1 means that the predicted and ground truth superquadrics
overlap perfectly.
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100 iterations 1000 iterations 10k iterations

20 iterations
(a) training progression with explicit supervision, Loc

1000 iterations 10k iterations

100 iterations
(b) training progression with implicit supervision, Lp r

20 iterations

FIGURE 6. Parameter fitting during training. We visualize on a sample
superquadric the fitting procedure during training for both learning
strategies, that is, with explicit and implicit supervision. Size and
translation parameters are learned first, followed by rotation and finally
shape.

The IoU measure also enables us to indirectly evaluate the
prediction capability for the rotation, which is not possible
with the simple MAE metric used for the rest of the param-
eters. Since IoU is dependent on the overlap between the
predicted and ground truth surface, it is robust to orthogonal
or 180° rotations along the superquadric axes.

C. TRAINING PROCEDURE

The experimental dataset described in Section IV-A is split
into three parts: 135.000 images that are used for training the
CNN predictors, 15.000 images for validation and another
20.000 images to perform the final tests and report results.
During each epoch, we iterate through the whole training
dataset and then evaluate the performance on the validation
set. The data is also shuffled in each pass to ensure a represen-
tative distribution of the whole dataset in a single batch. For
the optimization algorithm, the Adam [50] optimizer is used
with an initial learning rate of le—4 and batch size of 32 in
accordance with standard methodology [51]-[53]. To stabi-
lize the gradient descent around the local minimum and to
ensure convergence of the loss function, the learning rate is
decreased by a factor of 10, when the validation loss stagnates
for 10 epochs. The training procedure is stopped when the
validation loss fails to improve for more than 20 epochs.

To calibrate the renderer (Section III-C) needed for the
learning strategy with implicit supervision, the two sharpness
hyper-parameters, s (from Eq. (6)) and t (from Eq. (9)) are
set by conducting a grid search over the parameter space
(using the training data). Ultimately, the parameters are set
tor = 4.8 and s = 117, so that the rendered images
differ as little as possible from the ones in the dataset for
the same set of superquadric parameters. There is also the
resolution parameter r, which determines the granularity of
any 3D representation used in our learning criterions, e.g.,
voxel grids and depth images. Higher resolutions lead to
better approximation of a continuous 3D space and smoother
loss functions, but lower resolutions result in faster training
times. A value of r = 32 is used for the explicit supervision
method and r = 64 for the implicit supervision.
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FIGURE 7. Error distributions for the predicted parameters. Both learning strategies result in CNN predictors that are capable of predicting
superquadrics with a reasonable level of accuracy. The models learned with explicit supervision, however, produce somewhat more accurate and more
consistent estimates with the considered experimental dataset. The figure is best viewed in color.

TABLE 1. Parameter prediction accuracy of the learned models. The table reports Mean Absolute Errors (MAE) and loU accuracy of the predicted
parameters computed over all test images. Note that the errors of the shape (¢) and size (a) parameters are averaged over the individual parameters (i.e.,
over a;, a, and a; for shape and over ¢; and ¢, for size), since their predicted order is arbitrary.

Size [0-256] Shape [0-1]

Translation [0-256]

Method ToU [%]

a € t1 t2 t3
Explicit supervision Lo 0.35+0.31 0.03 +0.03 0.17+0.14 0.18+0.14 0.45+0.47 94.62+3.18
Implicit supervision Lp g 1.94 £1.49 0.06 4+ 0.05 1.95+0.28 1.61 £0.23 2.19 4+ 2.08 85.64 + 5.72

During training, the CNN predictor learns some parameters
faster than others, as visualized in Fig. 6 for a sample image
from the training part of the dataset. The model trained with
explicit supervision first learns the position and size of the
superquadric. This is achieved in about 100 iterations. Then,
the superquadric is slowly rotated into the appropriate general
position. Shape parameters are fitted last, at a slow pace,
requiring the model to complete more than 10k iterations to
converge to a local minimum. This behaviour changes for the
model trained with implicit supervision. With this approach,
parameters are fitted first to match the 2D contour of the
reconstructed depth image to the contour of the input depth
image. As a result of this initial fitting, pixels that contain
the superquadric in one depth image, but are part of the
background in the other, now have the biggest impact on
the learning objective. This effect is consequently minimized
next. The size and rotation of the superquadric then gradually
converge in about 1000 iterations. As with the explicitly
learned model, the shape of the superquadric is learned last.
The choice of 3D representation used in loss functions deter-
mines the shape of parameter space during training. When
using depth images, the optimization is initially guided by
differences in 2D features, such as object contour. In contrast,
parameters are optimized more equally when comparing 3D
data representations.
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D. RESULTS AND DISCUSSION

This section presents quantitative and qualitative results
obtained with the CNN predictors learned with the two pro-
posed learning strategies. Comparisons with state-of-the-art
methods from the literature are also reported.

1) MODEL EVALUATION AND ANALYSIS

The first series of experiments aims at evaluating the perfor-
mance of the proposed CNN predictors on the test data of the
experimental dataset.

Table 1 shows the comparison of the two proposed mod-
els in terms of prediction accuracy and Fig. 7 shows the
error distribution over the predicted parameters. As can be
seen, the model learned with explicit supervision performs
best and exhibits stable behaviour with Gaussian-like error
distributions for all parameter groups. No major biases are
induced into the model, since most parameters are centered
around an error of 0. Most parameters also exhibit limited
prediction-error variance, which suggest the parameters are
valid and close to the ground truth for most of the images in
the dataset. The behaviour of the model trained with implicit
supervision is more irregular. The predicted superquadrics
have on average a slightly bigger volume, which is indi-
cated by the positive average error of the size parameters a
shown in Fig. 7. The shape of the predicted superquadrics
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FIGURE 8. Distribution of loU values. The graphs show a comparison of
the loU scores generated on the test images by the CNN predictors
trained with (a) explicit and (b) implicit supervision.

is also more rounded in comparison to the ground-truth -
positive average error of e in Fig. 7. The center coordinates
11 and 1, exhibit a bias in the positive and negative direction,
respectively. This suggests that the predicted superquadrics
are positioned somewhat towards the upper right corner of
the reconstructed depth image, though the displacement is
relatively small in relation to the whole 3D space. If we
compare the distribution of the third coordinate 3 between
the models learned with explicit and implicit supervision,
we observe a large disparity in the error variance. The implicit
loss function has to derive depth information from pixel
values during training, which differs from the positional
cues provided by the x and y axes. In contrast, information
is represented equally for all axes with the explicit super-
vision, which results in similar variance for all positional
parameters #1 2 3.

Because the rotation parameters are ambiguous (i.e., dif-
ferent parameterizations result in the same outcome), param-
eter predictions cannot be compared directly to the ground
truth values. IoU values, which capture the overall predic-
tion performance, are, therefore, also reported in Table 1.
The distributions of IoU scores over the test dataset for
both learning strategies are shown in Fig. 8. As expected,
the supervised approach results in a better parameter esti-
mation overall, since labeled parameters are provided during
training and the 3D appearance of the target superquadrics
is reconstructed very closely from the predicted parameters.
The model trained with explicit supervision reaches an IoU
score of 94.6% on test depth images containing a single
superquadric. The model learned with implicit supervision,
on the other hand, performs somewhat weaker with an IoU
score of 85.6% and a slightly larger variance. Nevertheless,
given that no ground truth parameters are needed to learn
the predictor with implicit supervision, this learning strategy
may be better suited for more challenging problems involving
real world data, where visual appearance is the only factor
available to drive the learning procedure.
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TABLE 2. Comparison with the state-of-the-art. We compare our models
to the approach proposed by Solina and Bajcsy [9] and

Paschalidou et al. [19] on the whole test dataset (with 20k images),

as well as on a subset (with 8.93k images), which represents the
intersection of the superquadric vocabulary considered in all papers.

Test dataset Method ToU [%]
Explicit sup. Loc (ours) 94.62 + 3.18
full (20k) Implicit sup. Lp i (ours) 85.64 + 5.72
01<e2<D Solina and Bajesy [9] 84.51 + 8.89
Paschalidou et al. [19] 81.48 +6.67
Explicit sup. Loc (ours)  95.52 + 2.65
subset (8.93k) Implicit sup. Lp g (ours) 86.88 + 5.16
(04<e12<1 Solina and Bajcsy [9] 82.58 +9.28
Paschalidou et al. [19] 83.29 +6.15

2) COMPARISON WITH THE STATE OF THE ART
The next series of experiments compares the proposed models
to the state-of-the-art in superquadric recovery. Specifically,
results are compared with the iterative minimization method
from Solina and Bajcsy [9] and the more recent work (also
using CNNs) from Paschalidou et al. from [19].

To ensure a fair comparison to the work of
Paschalidou et al. [19] we use the source code provided by
the authors.! Because the solution from [19] was proposed for
the recovery of multiple superquadrics, we limit the output of
their model to a single superquadric. The model was origi-
nally trained on ShapeNet objects represented in voxel form,
so we retrain it on our superquadric dataset while discarding
the parsimony loss. The loss is not needed for our use case as
it only helps to estimate the number of superquadrics present
in the data. Instead of using depth images as input, the voxel
representation of the superquadrics is used with the same grid
size of 128 x 128 x 128 as advocated in [19]. This voxel
representation gives Paschalidou et al. a slight advantage
over the models proposed in this work, since depth images
only contain object points from the objects front-face relative
to the viewing angle, while the back-face is occluded. This
is not the case with the voxel representation. As the source
code provided by [19] was used for the experiments, where
the shape parameter predictions are hard-coded between 0.4
and 1.5, we present results on the our full dataset with the
€ values ranging between 0.1 and 1 as well as on its subset
containing only superquadrics whose shape parameters fall
into the range of intersection of both papers, namely between
0.4 and 1. In the same fashion as [19] we train the model
on the entire training set for 40k iterations. We also use the
source code provided by [9] for the iterative minimization
method. No modification is needed for this approach, which
is used directly with the images in our dataset.

The results of the comparison in terms of average IoU
scores and standard deviations are shown in Table 2.
On the whole test dataset, the model from [19] achieves
a smaller IoU score in comparison to our supervised and
unsupervised models by 13.14% and 4.16%, respectively.

1 https://github.com/paschalidoud/superquadric_parsing
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FIGURE 9. Qualitative results. We show examples of both models across the whole loU distribution range. For each example, from left to right,
we show: the ground-truth depth image, the reconstructed depth image, and a 3D render of the predicted (gray) and ground-truth (red)

superquadrics. The figure is best viewed electronically.

The comparison on the full dataset works in our favor, since
the model of [19] is not capable of predicting superquadrics
with sharp edges (€;»> < 0.4). The comparison on the
subset of the test dataset shows a similar picture with our
models maintaining higher IoU accuracies. While the model
from [19] does show the biggest improvement of 1.81%
on the subset of examples, our models also perform bet-
ter (by 0.9% and 1.24% IoU). Note, that the method from
Paschalidou et al. is originally designed to predict multi-
ple superquadrics as individual parts of a more complex
object. Nevertheless, we can observe a better performance
of our models on the base case — the recovery of a single
superquadric.

When looking at the results for the approach from Solina
and Bajcsy [9], it can be seen that both proposed models also

1098

outperform the iterative approach. While the model learned
with implicit supervision only results in slightly higher IoU
values on both the full test set as well as the smaller sub-
set of images, the model trained with explicit supervision
achieves significantly better results comparatively. Addi-
tionally, the variance of the scores is considerably smaller
with both proposed models than the variance of the scores
produced by the solution from [9].

In Table 3, we observe the average processing times,
required by each approach. With our CNN predictors, we are
able to process an image in 3 ms on average. In comparison,
the model from Paschalidou et al. [19] requires 1 ms and
the iterative method [9] requires 690.52 ms on average. All
CNN models are able to process the data in a single forward
pass through the network, which results in such a drastic
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(a) Dataset of real objects

MAE: 0.54

MAE: 1.53

MAE: 0.86 MAE: 1.48

MAE: 1.10 MAE: 0.90

MAE: 1.12

(b) Explicit supervision Loc

MAE: 1.18

MAE: 0.45 MAE: 1.37 MAE: 0.68

MAE: 0.75 MAE: 1.56

MAE: 1.32

(c) Implicit supervision Lpr

FIGURE 10. Qualitative results on real data. We show how our models work on (a) a collection of real-world data, captured with a 3D scanner. The results
can be observed for (b) the explicitly supervised model and for (c) the implicitly supervised model. For (b) and (c), the top row represents the
reconstructed superquadric and the bottom row shows the absolute difference between images along with the Mean Absolute Error (MAE).

TABLE 3. Processing time comparison. We compare the processing time
of our models to the iterative method by Solina and Bajcsy [9] and
Paschalidou et al. [19] on the whole test dataset. Rounded average
processing time computed over all test data is reported.

Method Processing time
Explicit supervision Lo (ours) 3ms
Implicit supervision £ p g (ours) 3ms
Solina and Bajcsy [9] 690 ms
Paschalidou et al. [19] 1ms

decrease in processing time in comparison to the classic
iterative method. Paschalidou et al. [19] achieve a slightly
better performance in comparison to our models, since the
authors use an architecture with 5 convolutional layers in
comparison to ours, which has 18 convolutional layers to
process the depth images.

3) QUALITATIVE ANALYSIS
Next, we present a few qualitative examples of the fitting
result produced by the proposed two models. A selection of
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examples with various IoU scores is shown in Fig. 9. We first
observe the model trained with explicit supervision in the
left column. Examples scoring less than 70% IoU are usually
cases where the amount of self-occlusion is the highest and
only a single side of the superquadric is visible, similar to
those in the first and third row. Consequently, the model has
to guess the size of the superquadric along the occluded axis,
based on similar examples from training data. Such cases are
expected, since the occluded data is lost at the moment of
capture. We observe that even in examples with lower IoU
(below 70%), the rotation is correctly estimated at least in the
major axis of the superquadric. Among the results with 70%
IoU only corner roundness is slightly overestimated.

In the right column are predictions, made by the model
trained with implicit supervision. Examples with lower IoU
scores (below 70% in the example) have degenerated prop-
erties, e.g., the contour of superquadrics matches closely the
ground truth depth images, however, the actual 3D shape is
not fitted properly. In cases with high IoU scores (80% and
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above), the error does not come from shape parameters as
with the explicitly learned model, but instead comes from the
slight displacement of the superquadric. This might be due to
the small difference between the original depth images and
images, reconstructed by our differentiable renderer.

4) PERFORMANCE ON REAL DATA

Finally, we analyze the performance of the two models on
real data. The Artec MHT 3D scanner is used to capture point
cloud data of real objects. The point clouds are then trans-
formed into meshes and outlier points are removed. A depth
image of the mesh is created by reading from the depth buffer.
The scanned objects are captured in fixed rotation. Finally the
captured dataset is augmented by adding a random rotation to
each object.

We use both models to recover parameters from real
images and visualize the results in Fig. 10. Overall,
we observe a tight fitting of the predicted superquadrics
on the scanned objects. With every example, the volume
of the superquadric is slightly underestimated. Both models
appear to be handling well the noise around the borders of
the scanned objects. The models are able to interpret the
different shapes of the objects. For example, they are able
to differentiate between a food can with sharp edges versus
a drink can with rounded edges. They are also insensitive to
some amount of deformation, which is demonstrated with the
object, shown second from the right. In general, the explic-
itly learned model performs better and results in an average
MAE of 0.98, while in contrast, the implicitly learned model
achieves an average MAE of 1.13.

V. CONCLUSION

The paper addressed the problem of superquadric recovery
from depth images and presented two strategies for learning
CNN models capable of predicting the parameters of a single
superquadric in depth data. The proposed learning strategies
rely on loss functions that capture the geometric properties
of superquadrics in general position and penalize the shape,
size, translation and rotation parameters. The first proposed
strategy uses explicit supervision and compares the predicted
superquadric parameters with the ground-truth parameters
by reconstructing 3D occupancy voxel grids. The second
strategy uses implicit supervision and relies on appearance
comparisons. Specifically, it reconstructs a depth image from
the predicted parameters and compares it to the input depth
image. Both methods surpass the classic iterative method
from [9] and the more recent deep learning method from [19]
in terms of IoU accuracy on our experimental dataset.

By successfully improving the process of parameter
recovery of a single superquadric, we showed that the accu-
racy of 3D reconstruction for objects modelled by a single
superquadric can be improved in comparison to existing
techniques. This may lead to better performing (biologi-
cally relevant) solutions for complex reconstruction prob-
lems, where recovery of multiple superquadrics is needed.
In addition, the model trained with implicit supervision
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offers the possibility of training on depth images only (with-
out ground-truth parameters), which alleviates the need for
labeled training data. We also demonstrated the ability to
recover superquadric parameters from depth images of real-
world objects by learning only from synthetic data.
However, to compete with more complex methods,
we need to extend our learning strategies to support simulta-
neous segmentation and recovery of multiple superquadrics.
We believe that the directions, outlined in this article, have
potential for extensions that would allow for the interpretation
of more complex objects and environments, where more than
a single superquadric model is needed to describe the scene.
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