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ABSTRACT Data skew has an essential impact on the performance of big data processing. Spark task
scheduling with data skew and deadline constraints is considered to minimize the total rental cost in
this paper. A modified scheduling architecture is developed in terms of the unique characteristics of the
considered problem.Amathematical model is constructed, and a Spark task scheduling algorithm is proposed
considering both the data skew and deadline constraints. The algorithm consists of three components: stage
sequencing, task scheduling, and scheduling adjustment. Strategies for each of the components are presented.
The parameters and components of the proposed algorithm are calibrated over many random instances. The
calibrated algorithm is compared to two existing algorithms for similar problems over classical scientific
workflow applications. Experimental results show that the proposed algorithm outperforms the compared
algorithms statistically.

INDEX TERMS Data skew, spark, scheduling optimization, cloud computing.

I. INTRODUCTION
Deploying Spark applications on public clouds has become
increasingly popular for customers to efficiently process big
data or large quantities of data, mainly from social media,
e-commerce platforms, and search engines. Generally, these
data are incredibly unevenly distributed, i.e., data provided by
different customers have different sizes, and their processing
times are significantly distinct. If the processing times of
some data are much longer than those of the other data,
data skew has resulted, which might seriously degrade the
performance of a Spark system in cloud computing.

The most significant characteristic of these data is the
extremely uneven distribution of data, such as popular social
media topics, popular products on e-commerce platforms,
and search engines.

This paper considers the Spark task scheduling problem
to minimize the total rental cost in a public cloud. Cloud
nodes are heterogeneous and rented in an on-demandmanner.
The Spark application jobs are precedence constrained, which
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are depicted by a DAG (directed acyclic graph). Every job
contains many DAG-constrained stages, and there are some
independent tasks in each stage. Tasks are data skewed. The
Spark application is deadline constrained. There are twomain
challenges for the considered problem: (i) The optimized
objective is greatly influenced by the sequence of all the tasks.
Generally, the optimal task order is hard to obtain for DAG
applications. However, there are two levels of DAGs. The
stage DAG precedence constraints are embedded into those
of jobs, making it difficult to obtain an optimal topological
task order. (ii) The skewed data lead to incredibly varying
task processing times.

For the above challenges, the main contributions of
this paper are as follows: (i) The considered problem is
mathematically modeled using integer programming with
heterogeneous public cloud nodes, data skew, and the dead-
line constraint. (ii) SF (skew factor) is used to measure
the data skew of tasks. CoV (coefficient of variation) is
adopted at the stage level to measure the variation in tasks.
(iii) A task scheduling algorithm is proposed for tasks in
a Spark application with data skew and deadline in a pub-
lic cloud to minimize the total rental cost. There are three
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algorithmic components in the proposed algorithm: stage
sequencing, task scheduling, and scheduling adjustment.
An algorithm used a reservoir algorithm to sample the distri-
bution of key data values and labeled the nodes with heavy
loads before running. Workloads of massive nodes were
offloaded to other nodes to maintain the data balance in the
reduction stage.

The rest of the paper is organized as follows. Related
works are reviewed in Section II. Section III describes and
formalizes the problem under study. A heuristic algorithm is
proposed for the considered problem in Section IV. Section V
evaluates the performance of the proposal under different
workload scenarios followed by conclusions in Section VI.

II. RELATED WORK
Data skew is important for the performance of processing
big data. Mohammad et al. [1] surveyed data skew from
2010 to 2017. They divided the data skew problem into
four types: map stage, reduce stage, map & reduce stage,
and shuffle stage, according to data skew. They divided the
reduction phase into the sampling-based method and the
nonsampling-basedmethod. Qi et al. [2] proposed the LIBRA
algorithm, which uses a novel sampling method to alleviate
lightweight data skews. A highly accurate approximation of
the intermediate data distribution was achieved by sampling
only a small part of the intermediate data during map process-
ing. Liu et al. [3] proposed a partitioning algorithm for data
skew in Spark streaming’s reduce stage. The data are regarded
as candidate samples. The characteristics of intermediate data
are predicted by selected samples based on sampling.

Task scheduling problems for big data have been studied
in recent years. The most concerning constraints are dead-
lines and budgets, and the commonly considered objectives
are makespan, the total rental cost, and energy minimiza-
tion. To minimize the VM rental cost, Cai et al. [4] pro-
posed a heuristic algorithm based on multiple priority rules.
Zeng et al. [5] proposed a greedy-based MapReduce applica-
tion scheduling algorithm to minimize the total rental cost of
cloud resources while meeting the SLA (service level agree-
ments) level with deadline constraints. To meet the deadline
requirements in a hybrid cloud, Michael et al. [6] proposed a
strategy for dynamically configuring public cloud resources.
Tasks were concurrently executed to accelerate MapReduce.
Zacheilas et al. [7] considered the balance between perfor-
mance and budget. A Pareto-based scheduler was constructed
to minimize completion time without exceeding user bud-
gets. The scheduler systematically searches and detects the
allocation of slots. Recently, attention has been on Spark
task scheduling from different perspectives. Cheng et al. [8]
designed a cross-platform middleware for resource schedul-
ing onHadoop and Spark platforms that can improve resource
utilization and performance on multitenant Spark-on-YARN
clusters. Liu et al. [9] proposed a framework that facilitates
submitting, monitoring, and executing Spark workflows in
heterogeneous environments. For multijob and multicluster
scheduling, they used a greedy strategy to obtain an initial

solution and a simulated annealing algorithm to search the
globally optimal solution.

As mentioned above, data skew has been studied in
MapReduce task scheduling. Although task scheduling has
been widely studied, little attention has been on Spark task
scheduling with data skew. To the best of our knowledge,
this problem has not yet been studied. Existing scheduling
architectures are not suitable for the problem considered in
this paper.

III. PROBLEM DESCRIPTION
By considering the data skew and deadline constraints,
a modified system architecture is developed from the tra-
ditional architecture, as shown in Figure 1. Three roles are
included in the system architecture: user, broker, and cloud
provider. There are fourmodules in the proposed architecture:
stage dividing, task scheduler, resource pool, and schedul-
ing adjustment. Stage dividing divides a Spark application
into jobs and stages according to the embedded precedence
constraints. Their priorities queue all stages. Task scheduler
sorts tasks of stages and assigns the tasks to VMs (virtual
machines) of the resource pool sequentially. The resource
pool is responsible for renting and releasing VMs from the
cloud provider with the on-demand pricing model. Schedul-
ing adjustment manages to adjust the task schedule and the
resource pool to minimize the Spark application’s total rental
cost without exceeding the deadline.

FIGURE 1. A system architecture for Spark.

A Spark workflow application consists of a set of prece-
dence constrained jobs depicted by a job-DAG. Each job is
composed of a set of precedence constrained stages, which
are represented by a stage DAG. A stage-DAG is embed-
ded into a vertex of the job-DAG. Each stage consists of
several independent tasks that can be processed in parallel.
The schematic architecture of a Spark application is depicted
in Figure 2. We make the following assumptions for the
problem considered in this paper: (i) The bandwidths are
the same in the public cloud regardless of the network envi-
ronment. (ii) One node processes only one task, and one
task is processed only by one node at a time. Tasks are
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FIGURE 2. Schematic architecture of the Spark system in a public cloud.

nonpreemptive during execution. (iii) VM setup times are
neglected. (iv) Heterogeneity of VMs implies their difference
in processing speeds. Notations to be used in the following are
listed in Table 1.

TABLE 1. Notations to be used.

Since stage-DAGs are embedded in a Spark application’s
job-DAG, we depict the whole Spark application as ‘‘big’’
stage-DAG G = (S,E). Let the number of jobs be m and
the ith job contains µi stages, i.e., there are |S| =

∑m
i=1 µi

vertices inG. Stage Sk =
{
Tk,1, . . . ,Tk,wk

}
containswk tasks

that can be executed in parallel. The start and finish times
of Vk are Bk and Fk , respectively. The start and finish times
of Tk,l are bk,l and fk,l , respectively. The Spark application

deadline is D, i.e., all tasks of the application must finish
before D. ZPk and ZSk are the sets of immediate predecessors
and immediate successors of Vk .
In the considered situation, we assume that there are n

types of VM. The pth type contains ap VMs with the pro-
cess speed vp. The resource pool is denoted as VMpool ={
VMp,q|p ∈ {1, . . . , n} , q ∈

{
1, . . . , ap

}}
. The total number

of VMs a =
∑n

p=1 ap. The decision variable xk,l;p,q ∈ {0, 1}
takes 1 if task Tk,l is scheduled to VM VMp,q and 0 otherwise.
The execution time and transmission time of Tk,l are ECTk,l
and τk,l , respectively. The data size of Tk,l is Datak,l . Pp is
the unit price of the pth type VM. The bandwidth of the public
cloud is bw.

min Cost=
n∑

p=1

ap∑
q=1

Pp

⌈∑w
k=1

∑wk
l=1 xk,l;p,q(ECTk,l+τk,l)

BTU

⌉
(1)

s.t. τk,l =
n∑

p=1

ap∑
q=1

xk,l;p,q ×
Datak,l
bw

(2)

ECTk,l =
n∑

p=1

ap∑
q=1

xk,l;p,q ×
Datak,l
vp

(3)

max
k=1,...,w

Fk 6 D (4)

bk,1 = Bk (5)

Fk = max
l=1,...,wk

fk,l (6)

fk,l = bk,l + τk,l + ECTk,l (7)

Fk 6 min
Sk′∈Z

S
k

Bk ′ (8)

Bk > max
Sk′∈Z

P
k

Fk ′ (9)

B1 = 0 (10)
w∑
k=1

wk∑
l=1

xk,l;p,q = 1 (11)

xk,l;p,q ∈ {0, 1} (12)

where k = 1, . . . ,w; l = 1, . . . ,wk ; p = 1, . . . , n;
q = 1, . . . , ap.
Eqn. (1) calculates the optimization objective, which is

mainly determined by the processing and transmission times
of tasks. Eqn. (2) calculates the data transmission time of
a task. Eqn. (3) computes the processing time of task Tk,l .
Formula (4) indicates that the completion time of all stages
cannot exceed the deadline of the Spark application. Eqn. (5)
indicates that the start time of a task is set as that of the stage to
which it belongs. Eqn. (6) indicates that the completion time
of Sk is determined by the latest completion time of tasks in
Sk . Eqn. (7) means the completion time of task Tk,l is the
sum of its start time, processing time, and transmission time.
Eqn. (8) and Eqn. (9) represents the precedence constrained
relationship between stages. It is assumed that the application
arrives at time zero, which is indicated in Eqn. (10). Eqn. (11)
and Eqn. (12) ensures that each task can be assigned only to
one virtual machine at a time.

VOLUME 9, 2021 2795



H. Gu et al.: Scheduling Spark Tasks With Data Skew and Deadline Constraints

IV. PROPOSED ALGORITHMS
Although there are some existing algorithms for scheduling
MapReduce tasks and Spark tasks, no existing algorithm can
be directly used for the considered problem with both data
skew and deadline constraints. In this paper, we propose the
STSDD (Spark task scheduling with data skew and deadline)
algorithm for the considered problem.

A. SKEWNESS MEASUREMENT
Since data skew is a qualitative term, it needs to be specified
or measured for task scheduling. Similar to Zhuo et al. [10],
CoV (coefficient of variation) is used to measure skewness
quantitatively. The stage skewness of Sk is measured byCovk ,
which is the ratio of the standard data volume deviation to the
average data volumes of the tasks in Sk as in Eqn. (13). In Eqn.
(14), Stdk is the standard deviation of the data required to be
processed by all tasks in Sk . Eqn. (15) represents the average
data volume required by the task set. A larger Covk implies a
higher skewness of Sk , and vice versa.

Covk =
Stdk
Datak

(13)

Stdk =

√∑wk
l=1 (Datak,l − Datak )

2

wk
(14)

Datak =

∑wk
l=1Datak,l
wk

(15)

Similarly, the skewness of task Tk,l is measured by the
SF (skew factor) FSk,l defined in Eqn. (16). FSk,l is limited
within the upper bound UB and the lower bound LB. If SFk,l
is greater than UB, Tk,l is regarded as a skewed task. If it is
less than the lower bound LB, Tk,l is regarded as a small task.

FSk,l =
Datak,l − Datak

Datak
(16)

B. PROPOSED ALGORITHM FRAMEWORK
For the problem under study, we propose an STSDD (Spark
task scheduling with data skew and deadline) framework.
The skewness of stages and tasks are calculated. Parame-
ters are initialized. STSDD mainly consists of the following
algorithm components: (i) Stages are sequenced by an SPQ
(stage priority queue). (ii) Tasks of each stage are scheduled
by task scheduling. (iii) The obtained solutions are itera-
tively improved. The proposed STSDD algorithm is formally
described in Algorithm 1.

C. STAGE SEQUENCING
During scheduling, stages are processed one by one with
some order. Because of the precedence constraints, stages
of the application cannot start at the same time. We use the
stage priority queue SPQ to keep the currently ready stages,
i.e., stages in SPQ dynamically change during scheduling.
Stages in SPQ are managed by a heap structure (a complete
binary tree). If a stage Sk is scheduled, all of its immediate
successors are checked to be ready or not. Any ready imme-
diate successors are inserted to SPQ. The stage sequence is

Algorithm 1 STSDD (Spark Task Scheduling With Data
Skew and deadline)
Input: Spark application G; deadline D;
Output: The rental cost Cost
begin

for k = 1 to m do
for l = 1 to ml do

Bk,l ← 0;

VMpool← ∅;
Generate a stage topological order;
Create the stage priority queue SPQ based on a stage
sorting strategy;
while SPQ 6= ∅ do

Pop Sk from SPQ;
foreach Tk,l ∈ Sk do

Call TSA; /* Task Scheduling
Algorithm */

Update bk,l and fk,l of Sk ;
Add new ready stages to SPQ;

Call SAA; /* Scheduling Adjustment
Algorithm */

return Cost .

crucial to the scheduling performance, i.e., how to construct
the SPQ heap is important. Based on the stage skewness,
four-stage sequencing strategies are developed in this paper:
HSF (heaviest skewfirst), LSRF (largest skew rate first), LDF
(largest data first), and RAND (RANDOM).
(1) HSF (heaviest skew first): All ready stages in SPQ are

sorted by a nonincreasing order of CoVs (coefficient of
variation) defined in Eqn. (13), i.e., stages in SPQ are
organized using the max-heap.

(2) LSRF (largest skew rate and skew first): All ready stages
in SPQ are sorted by a nonincreasing order of skew rates
defined in Eqn.(17) where stk is the number of skewed
tasks in Sk with skew factors greater than UB. wk is the
number of tasks in Sk . If the skew rates are equal, the tie is
broken by the descending order of CoVs. Stages in SPQ
are organized using the max-heap.

SRk =
stk
wk

(17)

(3) LDF (largest data first): All ready stages in SPQ are
sorted by a nonincreasing order of the total quantity of
data defined in Eqn. (18), i.e., stages in SPQ are orga-
nized using the max-heap.

Dk =
wk∑
l=1

Dk,l (18)

(4) RAND: Stages are sorted randomly.
To illustrate the four strategies’ distinctions, an example

with five stages is shown in Figure 3. The numbers in the
circles are the data sizes to be processed by the tasks. The

2796 VOLUME 9, 2021



H. Gu et al.: Scheduling Spark Tasks With Data Skew and Deadline Constraints

FIGURE 3. Stage sequencing.

TABLE 2. Stage parameter calculation results.

corresponding measurements (CoVs, skew rates, and data
sizes) are shown in Table 2. According to the above strategies,
the stage sequences in SPQ are HSF: S2 → S5 → S1 →
S4 → S3; LSRF: S4 → S3 → S5 → S1 → S2); LDF:
(S2 → S4 → S5 → S1 → S3. Different stage orders are
obtained through different strategies.

D. TASK SCHEDULING
Because of heterogeneity, VMs have different execution
speeds, meaning that the processing times of tasks cannot be
determined in advance. Since all tasks’ data sizes are assumed
to be fixed, it is necessary to estimate the average processing
speed of all VMs before estimating the temporal parameter.
In this paper, we define the average processing speed of all
VM types as:

v̂ =

∑n
p=1 vp
n

. (19)

The processing time of Tk,l includes two parts: the data
processing time and the data transmission time, as shown
in Eqn. (20). Datak,lv̂ is the data processing time, and Datak,l

bw
denotes the data transmission time.

T̂imek,l =
Datak,l

v̂
+
Datak,l
bw

. (20)

Since all tasks in Sk can be executed in parallel, the pro-
cessing time of Sk is determined by the latest finishing task:

T̂imek = max
l=1,...,wk

T̂imek,l . (21)

The latest start and finish times of Sk can be estimated by
Eqn.(22) and Eqn.(23).

L̂ST k = L̂FT k − T̂imek . (22)

L̂FT k =

D, ifZSk == ∅
min
Sk′∈Z

S
k

L̂ST k ′ , otherwise. (23)

(i) By comparing the calculated skew factor to the upper
and lower bounds, UB and LB, all ready tasks are classified
into three categories according to task skewness: skewed
tasks, normal tasks, and small tasks. UB > 0 and LB ≤
0 are set by users. (ii) In terms of task skewness and the
data volume, suitable VM types are selected by a strategy.
(iii) Available VMs of each selected type are searched from
VMpool for the set of available virtual machine resources. (iv)
Specific VMs are selected for the ready tasks by a VM selec-
tion method, i.e., the ready tasks are scheduled to VMs. The
task scheduling process is shown in Algorithm 2.

Algorithm 2 TSA (Task Scheduling Algorithm)
Input: Tk,l
begin

if (FSk,l > UB ) then
Tk,l is a skewed task ;

else
if (FSk,l 6 LB ) then

Tk,l is a small task ;
else

Tk,l is a normal task ;

Call VM type selection;
Generate the available VM set πa by AVMSA;
/* Available virtual machines

searching algorithm */
Select VMp,q from πa using the VM selection;
Schedule Tk,l to VMp,q ;
Update Bk,l and Fk,l of Tk,l ;
Update BTp,q and FTp,q of VMp,q ;
return.

1) TASK CLASSIFICATION
Tasks are classified into skewed tasks, small tasks, and nor-
mal tasks:
(i) A task is a skewed task if the skew factor calculated by

Eqn. (16) is greater than UB.
(ii) A task is a small task if the skew factor is less than LB.
(iii) A task is a normal task if the skew factor locates

between LB and UB.

2) VM TYPE SELECTION
We assume that the same types of VMs have the same speeds,
which means that the processing time is identical for VMs of
the same type. In terms of data skewness and the classified
tasks, four strategies are introduced for VM type selection:
(1) STF (skewed task first): The VM type with the fastest

speeds are selected for skewed tasks.
(2) LTF (largest task first): The VM type with the fastest

speeds are selected for tasks with the largest data size.
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TABLE 3. Task related parameter calculation.

(3) SLTF (skewed and largest task first): The VM types with
the fastest speeds are selected for skewed tasks and tasks
with the largest data size.

(4) RAND (RANDOM): A type of VM is randomly selected
for a task.

To demonstrate the effects of the above strategies, an exam-
ple with the skewed upper bound UB = 0.5 and the skewed
lower bound LB = −0.5 is shown in Table 3. If the STF
strategy is used, T1,1, T2,3 and T2,4 select the type 1 VM. T1,2,
T3,1 and T3,2 select the type 2 VM. T1,3, T2,1, T2,2 and T3,3
select the type 3VM. If the LTF strategy is used: T1,1, T2,3 and
T3,1 select the type 1 VM. T1,2, T2,4, T3,1 and T3,2 select the
type 2 VM. T1,3, T2,1, T2,2 and T3,3 select the type 3 VM. If
the SLTF strategy is used: T1,1 and T2,3 select the type 1 VM.
T1,2, T2,1, T2,2, T2,4, T3,1 and T3,2 select the type 2 VM. T1,3,
T2,2 and T3,3 select the type 3 VM.

3) AVAILABLE VIRTUAL MACHINES SEARCHING
An available VM set πa for task Tk,l is constructed by search-
ing all available VMs for Tk,l from the current resource pool
in terms of the start time of Tk,l and the required VM type
Typek,l . If no available VM exists, i.e., πa = ∅, a new
VM with the time slot required by Tk,l is rented from the
service provider and added to πa. The process is shown in
Algorithm 3.

4) VIRTUAL MACHINE SELECTION
A specific VM is selected from the available resource set πa
for the current task. In this paper, three strategies are proposed
for VM selection:

• EATF (earliest available time first): The VM with the
earliest available time in πa is selected.

• LRTIF (Longest remaining time interval first): Since
VMs are leased by time units (e.g., hours) in an
on-demand leasing manner, the VM with the longest
remaining available time interval slice is selected
from πa.

• RAND(RANDOM): A VM is randomly selected
from πa.

Algorithm 3 AVMSA (Available Virtual Machines
Searching Algorithm)
Input: Tk,l , Typek,l and VMpool
Output: πa
begin

πa← ∅ ;
if VMpool = ∅ then

Lease a VMTypek,l ,1 from the public cloud ;
Add VMTypek,l ,1 to VMpool ;

foreach VMp,q ∈ VMpool do
if (p = Typek,l) AND (ATp,q 6 Bk,l) then

Add VMp,q to πa ;

if πa = ∅ then
Lease a VMTypek,l ,1 from the public cloud ;
Add VMTypek,l ,1 to VMpool ;
Add VMTypek,l ,1 to πa ;

return πa.

E. SCHEDULING ADJUSTMENT
An initial scheduling solution is generated by task scheduling.
However, there are many idle time slots on VMs that can be
fully utilized by scheduling adjustments to reduce the total
rental cost. In this paper, a scheduling adjustment algorithm
is proposed that mainly consists of two parts: FTSM (frag-
mented time slot merging) and ITSF (idle time slot filling).
The scheduling adjustment algorithm is formally depicted
in Algorithm 4. It is not hard to determine that the SSA
algorithm’s time complexity is O (w× wk × a).
To illustrate the above process, examples are shown as fol-

lows. Figure 4 shows the FTSM process. The initial solution
is shown in Figure 4(a), where tasks Tk,1, Tk,2, Tk,3, Tk,4, Tk,5
are on VM3,2, VM3,1, VM1,1, VM2,1, and VM2,2, respectively.
The current rental cost is $ 2.975. By the FTSM process,
a new solution is obtained, as shown in Figure 4(b): Tasks
Tk,1 and Tk,2 are placed on VM3,1, Tk,3 is placed on VM1,1,
tasks Tk,4 and Tk,5 are placed onVM2,2. The rental cost is only
$ 2.72. Figure 5shows the ITSF process. The initial solution
is shown in Figure 5(a), where tasks Tk,1, Tk,2, Tk,3, Tk,4,
Tk,5 and Tk,6 are on VM3,2, VM3,1, VM2,1, VM2,1, VM1,1 and
VM1,1, respectively. The current rental cost is $ 2.295. Each
duration includes two parts: transmission time and processing
time. The gray rectangles indicate the processing times, and
the dashed rectangles denote the transmission times of the
considered tasks. By searching the idle slots between the
same VM’s two tasks, virtual machines VM1,1 and VM2,1
have idle slots. ITSF attempts to make full use of these idle
slots by adjusting. Tk,1 is moved to VM1,1 and Tk,2 is moved
to VM2,1. The total rental cost becomes $ 2.04.
SIVL obtains a set of VMs with an idle slot list List ,

as shown in Algorithm 5. si and fi refer to the start and finish
times of the ith task in List .
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Algorithm 4 SAA (Scheduling Adjustment Algorithm)
Input: G, VMpool
Output: Cost
begin

for k = 1 to w do /* FTSM (fragmented
time slot merging) */

for l = 1 to wk do
if fk,l 6= Fk then

Search available time slots;
Try to put tasks on the same type of
VMs together without exceeding Fk ;

List ← SIVL(); /* ITSF (idle time slot
filling) */
foreach VMp,q ∈ VMpool do

foreach VMp′,q′ ∈ List do
Construct the task list Lp,q from VMp,q ;
foreach Tk,l ∈ Lp,q do

Try to fill the idle time in VMp,q ;
if Tk,l can fill the idle time then

Remove Tk,l from Lp,q ;

Calculate Cost by Eqn. (1);
return Cost .

FIGURE 4. An example of FTSM.

V. PERFORMANCE EVALUATION
The proposed algorithm contains several variants for each
component. We first calibrate these components and select

FIGURE 5. An example of ITSF.

Algorithm 5 SIVL (Search Idle VM List)
Output: List
begin

List ← ∅ ;
foreach VMp,q ∈ VMpool do

Get task list Lp,q from VMp,q ;
for i = 1 to len(Lp,q) do

if si > fi−1 then
Remove VMp,q from VMpool;
Append VMp,q to List ;
break ;

return List .

the best combination for the considered problem. The cali-
brated algorithm is compared to existing highly related algo-
rithms for similar problems. All tested algorithms are coded
in Java and run on an Intel Core i5-3479 3.7 GHz with 8 GB
of RAM.

To evaluate the proposed algorithm, WorkflowSim sim-
ulates resource provisioning and Spark task scheduling in
cloud environments. Based on the platform, VM configura-
tions are similar to Amazon EC2.1 In the experiment, three
different types of VMs were considered. The configuration
information and price of each VM type are set according to
the Amazon instances, as shown in Table 4. The bandwidth
inside the data center is assumed to be 100 Mbps.

1https://aws.amazon.com/ec2
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FIGURE 6. Mean plots of parameters for STSDD with 95% Tukey HSD intervals.

TABLE 4. Virtual machine specifications.

The multifactor analysis of variance (ANOVA) technique
is used to analyze the results. All algorithms are evaluated
by relative percentage deviation (RPD). Let C∗max be the
best solution found so far. The relative percentage devia-
tion (RPD) is used to measure the performance of the pro-
posed method, which is defined by:

RPD =
Cmax − C∗max

C∗max
× 100%. (24)

C denotes the rental cost of an instance, and C∗ is the min-
imum rental cost among all the compared algorithms on the
instance.

A. PARAMETER AND COMPONENT CALIBRATION
The number of jobs in a Spark workflow instance takes the
value from {30, 40, 50, 60}. The number of stages in a job
is uniformly distributed in [20, 30], and the number of tasks
in a stage is uniformly distributed in [100, 150]. The total
input data of a stage is divided into multiple blocks. Each
block is randomly assigned to a task. The size of each block is
128 MB. The data volume of each task is the number of data
blocks assigned to it. The number of data blocks uniformly
distributed in [2, 20] for data skew considerations. To verify
the different effects on the algorithm under different dead-
lines. Deadlines are set in the longest scheduling time (LST)
and the shortest scheduling time (SST) defined in Eqn. (25).

In this paper, β takes the value from {0.2, 0.4, 0.6, 0.8, 1} and
five deadline levels are defined as D1, D2, D3, D4 and D5,
respectively.

D = (1+ β)× SST (25)

There are 4×5 = 20 instance combinations, and 10 instances
are generated for each combination. Therefore, 20×10 = 200
instances are generated in total.

In the STSDD framework, UB ∈ {0.5, 1, 1.5, 2} and
LB ∈ {−2,−1, 0.5, 0} are adopted. Four stage priorities
(HSF, LSRF, LDF, and RAND) are adopted. There are four
component candidates (STF, LTF, SLTF, and RAND) for
VM type selection and three-component candidates (EATF,
LRTIF, and RAND) for VM instance selection. Therefore,
there are 4 × 4 × 4 × 4 × 3 = 768 tests for each workflow
instance, and the total number of tests is 200 × 768 =
153, 600.

Experimental results are analyzed by themultifactor analy-
sis of variance (ANOVA) statistical technique. The threemain
hypotheses (normality, homoscedasticity, and independence
of the residuals) are checked from the residuals of the experi-
ments. All three hypotheses are acceptable from the analysis.
The p-values are less than 0.05, which means that all the
factors studied significantly affect the RPD response variable
at the 95% confidence level.

The mean plots of the components and the parameters with
95.0% Tukey honest significant difference (HSD) intervals
are shown in Figures 6 and 7. From Figure 6, it can be
observed that RPD is the minimum at UB = 1.5. A smaller
UB means that a smaller number of tasks have been clas-
sified as small tasks. With the decreasing number of tasks
with lower price VMs, the rental cost might increase. It
can be observed that RPD is minimum with LB = −0.5,
i.e., the minimum total rental cost can be obtained. Figure 7
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FIGURE 7. Mean plots of components for STSDD with 95% Tukey HSD intervals.

illustrates that RPDs of LSRF are statistically significantly
lower than those of HSF, LDF, and RAND among the four
components of stage sequencing strategies. The reason lies
in those stages with larger skew rates that are always more
effective for cost optimization. Among the four VM type
selection methods, it can be observed that RPDs of SLTF
are statistically significantly lower than those of STF, LTF,
and RAND. Because SLTF considers both task skewness and
data size, VM types can be selected more accurately. STF
considers only task skewness, while LTF considers only the
data size to be processed.

Among the three rules for VM instance selection, it can be
observed that RPDs of LRTIF are statistically significantly
lower than those of EATF and RAND. LRTIF selects VM by
making full use of the time slot of each leased VM. EATF
greedily selects the earliest available without considering
the leased time slots, which wastes the rented time slots.
Therefore, STSDD takes UB = 1.5, LB = −0.5, LSRF,
SLTF, and LRTIF in the following comparisons.

B. ALGORITHM COMPARISON
To further evaluate the proposed algorithm’s performance,
five scientific workflow applications, CyberShake, Mon-
tage, Genome, SIPHT, and LIGO, are used. The application
instances and task configurations are identical to those of
parameter& component calibration. In total, 5× 4× 5× 3×
10 = 3, 000 tests are conducted.
The proposed STSDD is compared to two classical algo-

rithms, IC-PCP [11] and CEDA [12]. IC-PCP is a work-
flow scheduling algorithm that optimizes rental costs under
deadline constraints. The algorithm is adapted for Spark task
scheduling by finding parts of the critical path and scheduling
all critical path tasks to the least expensive VMs. CEDA is a

workflow scheduling algorithm for optimizing the total exe-
cution time and the rental cost under the deadline constraint.
The task with the highest priority is assigned to the least
expensive VM meeting the deadline.

To fairly conduct comparisons, the two instance parameters
(deadline level and job number) are considered in the five sci-
entific workflow instances: CyberShake, Montage, Genome,
SIPHT, and LIGO. ANOVAwas also used to analyze the per-
formance. Interactions between each parameter and the com-
pared algorithms on different scientific workflow instances
with 95% Tukey HSD intervals are shown in Figures 8-12.
The interaction plots of the compared algorithms on Cyber-

Shake workflows with different deadline levels and job num-
bers with 95% Tukey HSD confidence level intervals are
shown in Figure 8. Figure 8 illustrates that STSDD outper-
forms the other two algorithms for minimizing the rental
cost in the Spark application for all deadline levels. With
the increase in the deadline level, the three algorithms’ RPD
values have a downward trend because a higher deadline
level implies more tasks choose lower unit price VMs and
the rental cost decreases. With the increase in job number,
the RPD values of the three algorithms increase because
more processing tasks require more VMs and the rental cost
increases.

Figure 9 illustrates that STSDD outperforms the other two
algorithms for Montage Spark applications. RPDs of IC-PCP
and CEDA increase with the slight increase in the job number
of workflows. The three algorithms have similar changes in
the deadline level.

Figure 10 illustrates that STSDD outperforms the other
two algorithms for minimizing the rental cost in genome
Spark applications. When the deadline level is lower, STSDD
is more effective in cost optimization than the two algo-
rithms because STSDD preferentially schedules tasks with

VOLUME 9, 2021 2801



H. Gu et al.: Scheduling Spark Tasks With Data Skew and Deadline Constraints

FIGURE 8. Interaction plots of the compared algorithms and instance parameters on CyberShake applications with 95.0% Tukey HSD
confidence level intervals.

FIGURE 9. Interaction plots of the compared algorithms and instance parameters on Montage applications with 95.0% Tukey HSD
confidence level intervals.

FIGURE 10. Interaction plots of the compared algorithms and instance parameters on Genome applications with 95.0% Tukey HSD
confidence level intervals.

data skew and adjusts schedules to further reduce the rental
cost.

Figure 11 illustrates that STSDDoutperforms the other two
algorithms for minimizing the rental cost in SIPHT Spark
applications. RPDs of IC-PCP and CEDA increase with the
increase in job number of workflows. When the deadline

level is lower, STSDD is more effective for cost optimization
than the other two compared algorithms because STSDD
gives tasks with data skew higher priorities than the other
two. In addition, STSDD reduces the rental cost by schedul-
ing adjustments. RPDs of STSDD change slightly with the
increase in the job number of workflows.
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FIGURE 11. Interaction plots of the compared algorithms and instance parameters on SIPHT applications with 95.0% Tukey HSD
confidence level intervals.

FIGURE 12. Interaction plots of the compared algorithms and instance parameters on LIGO applications with 95.0% Tukey HSD
confidence level intervals.

Figure 12 illustrates that STSDD outperforms the other
two algorithms for minimizing the rental cost in LIGO Spark
applications. The RPDs of the three algorithms decrease
with an increasing deadline level and an increase with an
increasing job number. The reason is similar to the above
cases. Slightly different from the SIPHT examples, STSDD
optimizes the rental cost more effectively than the other two
algorithms when the deadline level is higher. Since the two
compared algorithms calculate critical paths using estimation
methods, it may appear that the estimated critical path is no
longer a critical path after actual execution.

VI. CONCLUSION
In this paper, the Spark task scheduling problem is consid-
ered to minimize Spark jobs’ rental cost with skewed data
while meeting the deadline in a public cloud with hetero-
geneous nodes. A modified architecture is constructed, and
a heuristic algorithm is proposed in terms of the unique
characteristics of the problem under study. Parameters and
components of the proposal are calibrated using the ANOVA
technique over many random instances. Two modified classi-
cal algorithms for similar problems are employed to evaluate
the performance of the proposed STSDD algorithm over
standard scientific workflow instances. Experimental results

indicate that the proposed algorithm outperforms the com-
pared algorithms with different deadline levels and job num-
bers because STSDD considers data skew in stage sequenc-
ing and task scheduling and improves solutions using the
scheduling adjustment.

In the future, scheduling problems with more practical
characteristics (e.g., affinity) are promising topics.
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