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ABSTRACT To overcome the problems of wind power forecast for the current deterministic wind power
turbine output model cannot accurately describe the statistical characterization of wind turbine output, this
article proposes a novel wind power stochastic cloud model. There are three steps to build this model.
Firstly, it is necessary to analyze the power data and to filter out the disturbed data by utilizing the improved
Bin method and data fitting. Secondly, it is available to obtain respectively two groups of the expectation,
entropy and hyper entropy of the waist and upper data of stochastic cloud model by the known and unknown
membership of backward cloud generators. Finally, the wind-speed data can be transformed into a stochastic
cloud model, which is composed of X condition cloud generator and the positive cloud generator component.
In short, the comparative data of the wind power cloud droplets and the measured data of wind power show
that the line correlation coefficient of the wind power frequency of the proposed model reaches to 0.8868,
which could simulate the statistical characterization of wind turbine output effectively.

INDEX TERMS Backward cloud generator, stochastic cloud model, positive cloud generator, X condition
cloud generator, wind power forecast.

I. INTRODUCTION
Low carbon power production, high reliability of power
equipment operation, and economy power transmission are
the main directions of the future smart grid [1], [2]. Wind
power forecast model is the basis of smart grid researches
such as wind power simulation analysis, wind farm operat-
ing reliability evaluation, and system planning and dispatch-
ing operation decision of wind power integration [3], [4].
Currently, wind power can be directly forecasted by using his-
torical data of wind power, and also can be forecasted bywind
power model using forecasting wind speed [5], [6]. Accurate
wind power model can not only provides the evidence for the
safe and highly efficient operation of units, but also facilitates
the electric power dispatch department to make dispatching
plan [7]–[9]. Therefore, obtaining the forecasting wind-speed
is very significant to establish an accurate model.

In this article, the wind turbine output of field operation
is not strictly equal to the deterministic value obtained by
wind power model, and such a phenomenon that fluctuates
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randomly in a certain area is called the statistical charac-
terization of wind turbine output. The main reasons for this
phenomenon are as follows: the wind turbine is affected by
random factors, such as wind speed, air density, and wake
effect [10]; there is a lag when the wind turbine adjusts to
meet the wind according to the anemometer, which makes
an angle between captured wind speed and real wind speed;
the continuous dynamic conditions, abrasion, and aging situ-
ations of the power output would lead to the unstable power
output of the wind turbine. However, wind power models can
be roughly divided into fittingmodel [11], [12] and parameter
model [13]–[16], which are based on deterministic math-
ematical theory. Since the two models that are mentioned
above ignore the uncertainty of the statistical characteriza-
tion of wind turbine output, they can only characterize the
mean property of wind turbine output rather than accurately
illustrate the statistical characterization of the wind turbine.

In response to these problems, this article introduces the
cloud model theory [17]–[19] of uncertainty mathematics
theory [20]–[24]. Cloud model, a cognitive model that is
uncertain, based on probability theory researching qualita-
tive and quantitative conversion. Unlike classic quantitative
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correlations [25], fuzzy model [26] and gray model [27],
Cloud model can use cloud generator algorithm to implement
bi-directional transformation between qualitative concept and
quantitative data and establish the correlation between fuzzi-
ness and randomness [28]. Therefore, this article proposes a
novel wind power stochastic cloud model, and defines the
combined cloud model, which is described the statistical
characterization of the discrete points of the wind turbine
output power, as stochastic cloudmodel. There are four major
steps to build this model—dividing the operation data, filter-
ing out disturbed data, obtaining model parameters and mak-
ing a model. Among them, the fitting curve, the envelope and
the symmetrical envelope of the data maximum probability
density center disturb data to be filtered out rapidly, and then
obtain model parameters by using backward cloud genera-
tor, thus building a novel stochastic cloud model. Stochastic
cloud model describes the mean property of wind turbine
output power by parameter expectation and entropy. Besides,
it uses parameter hyper entropy to describe the uncertainty
of wind turbine output power under same wind speed. The
comparison results of the wind power frequency correlation
coefficient show that the proposedmodel takes full account of
the mean and uncertainty of wind turbine output power and
describes more accurately the statistical characterization of
the wind turbine output.

II. FILTERING PRINCIPLE OF THE IMPROVED BIN
Taking maintenance and brownouts into account in the actual
operating of wind turbines, the available wind power data
exist so more interference data that cannot be filtered out
using the traditional method Bin. Based on the relevant liter-
ature [29], an improved Bin is constructed as follow Figure 1.

FIGURE 1. Filtering principle of the improved Bin.

As Figure 1 shown, the actual measuring data of the
wind power built respectively the power Bin interval and
wind-speed Bin interval, and the intersection of which formed
a rectangular area. For further analysis, the interval of power
is set as 0.05 MW, and the interval of wind speed is set as
0.5 m/s. The detailed procedures for obtaining the probability
density center of wind power is as follows:

1) Dividing the wind power value into N intervals. Firstly,
keeping the j-th Bin interval of power constant, and moving
the Bin interval of wind power from 0 m/s of preliminary

wind speed to the positive direction ofX-axis, making the step
to be 0.1 m/s. And calculating the frequency of power-data
points in the rectangular area.

2) Selecting the area which has the maximum frequency of
wind power points in step 1 and calculating the value of the
probability density center. The relevant equations are shown
in the following (1) and (2).

vm,j =
1
S

S∑
i=1

vi (1)

Pm,j =
1
S

S∑
i=1

Pi (2)

where, vm,j is the mean of wind speed in the j-th interval
of power Bin. Pm,j is the mean of power in the j-th interval
of power Bin. S is the summation of power point in the
rectangular area. vi is the value of wind speed, and Pi is the
value of power.

3) The probability density center of wind power can be got
by repeating step 1) and 2).

III. THE THEORY OF CLOUD MODEL
A. THE DEFINITION OF CLOUD MODEL
AssumingU is a quantitative theory field of numerical repre-
sentation, and C is a qualitative concept on U . If quantitative
value x ∈ U is a degree of certainty of qualitative concept C ,
that µ(x) ∈ [0, 1] is a random number with a stable tendency,
µ: U →[0,1], ∀x ∈ U , x → µ(x). The distribution of x
on theory fieldU is called cloud, namely C(X ), and X is a set
of quantitative value of x [28]. The cloud model describes the
randomness and fuzziness of concept by expectation, entropy
and hyper entropy.

B. INVERSE CLOUD GENERATOR
1) THE SITUATION OF KNOWN MEMBERSHIP GRADE
Among the wind power data, if membership grade of lumbar
data is known, that lumbar parameters of stochastic cloud
model could be calculated by the inverse cloud generator with
membership grade. Specific steps are as follows:

1) Using cftool toolbox of Matlab to make Gaussian of
maximum probability density center of lumbar data and get
the fitting expression y = a × exp{−[(x − b)/c]2}. The
corresponding parameters are (a, b, c).

2) Making the encompassed data probability of both enve-
lope expression y′ = a × exp{−[(x − b)/c′]2} and fitting
expression reach 98% of the upper data of fitting curve by
increasing the c value of fitting expression. Thus, c′ is the
one we requested and 1c = c′ − c.

3) After the two steps above, lumbar parameters of
stochastic cloud model would be: Exw = b, Enw = c,
Hew = ExU = c.

2) THE SITUATION OF UNKNOWN MEMBERSHIP GRADE
In the proposedmodel, the upper data fluctuates near the rated
power, power data is projected to the Y-axis, and membership
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grade of data is unknown. In this case, the upper data of
stochastic cloud model can be determined by the following
steps [28]:

1) When wind power is equal or belongs to 0.97Pr (Pr is
the rated power of wind turbine. 0.97Pr is the guaranteed
value of wind turbine), wind speed has reached rated value.
When the wind speed is higher than rated wind speed and
less than cut-out wind speed at the same time, and wind
power fluctuate near the rated power, the average power can
be calculated by (3).

ExU =
1
M

M∑
i=1

vi (3)

where, M is the amount of upper wind speed data; vi is the
wind-speed data of upper wind speed.

The second order center distance of wind power:

c2 =
1

M − 1

M∑
i=1

(vi − ExU )2 (4)

The fourth order center distance of wind power:

c4 =
1

M − 1

M∑
i=1

(vi − ExU )4 (5)

2) Entropy and hyper entropy of upper data of stochastic
cloud model:

EnU =
4

√
9c22 − c4

6
(6)

HeU =

√
c2 −

√
9c2 − c4

6
(7)

3) THE CLOUD GENERATOR (CG) OF X CONDITION
Input: wind speed vw,i and the three Parameters of the

lumbar data of stochastic cloud model Exw,Enw and Hew.
Output: Under specified wind speed circumstances, wind

power value Pw,i(i = 1, . . . , nw).

FIGURE 2. X condition cloud generator.

At the upper of statistics cloud model, there is a significant
increasing relationship between wind speed and wind power
before reaching the rated wind speed. Besides, this increasing
relationship exists ambiguity. Thus, it is possible to obtain the
uncertain cloud droplets of wind-electric power by X condi-
tion cloud generator with the wind speed data. The specific
steps for determining cloud droplets of wind-electric power
are as follow [17]:

1) First, forming a normal random entropy by the entropy
and hyper entropy of the waist of the stochastic cloud model
E ′nw = N (Enw,H2

ew).
2) Secondly, obtaining droplets of wind-electric power in

the setting wind-speed(vw,i):

Pw,i = a× exp{−[(vw,i − Exw)/E ′nw]
2
} (8)

3) Repeating these two steps until all the desired droplets
of wind-electric power are produced.

4) POSITIVE CLOUD GENERATOR
Input: the expectation, entropy and hyper entropy of the

upper data of the stochastic cloud model.
Output: the output of wind power PU ,i (i = 1, . . . , nU ).

FIGURE 3. Positive cloud generator.

At the upper of statistics cloud model, wind speed has
reached the rated wind speed, and there is no significant
increasing or decreasing relationship between wind speed
and wind power. However, they fluctuate near the rated
power. In this case, we can generate the cloud droplets of
wind-electric power with the forward cloud generator. The
specific steps for determining cloud droplets of wind-electric
power are as follow [30]:

1) First, generate a normal random entropy from the waist
entropy (Enw) and hyper entropy (Hew) of statistics cloud
model E ′nU = N (EnU ,H2

eU ).
2) Secondly, generate clout droplets of wind-electric power

PU ,i = N (ExU ,E ′2eU ). The expectation is ExU and the stan-
dard deviation is E ′nU .

3) Repeating these two steps until all the desired cloud
droplets of wind-electric power are produced.

IV. THE MODELING PROCESS OF STATISITCS CLOUD
MODEL
A. MODELING PROCESS
Modeling the detailed circuit of stochastic cloud model from
the measured data of the wind power, as shown in Figure 4.

According to the processes in Figure 4, establishing the
stochastic cloud model of wind-electric power.

B. THE INTRODUCITON OF WIND FARM
To illustrate the process of the model building, we would
analyze the wind power with measured operational data.
Zhangjiakou Wind and Solar Power Energy Demonstration
Station Co. Ltd. owned 177 wind turbines and it is subsidiary
company XiaoDongLiang country Wind and Solar Power
Energy Demonstration Wind Farm possess 24 wind turbines,
with type of XuJi WT2000/86, and each wind turbine has
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FIGURE 4. Statistics cloud model of wind-electric power.

2MW capability. The parameter of the wind turbine at cut-in
speed is vin = 3.5m/s, rated wind speed is vn = 11m/s, and
cut-out speed is vout = 25m/s. With sampling interval of
10 minutes, the data analysis for the No.F001 wind turbine of
XiaoDongLiang Wind Farm from October to December can
make a distribution diagram of wind power that is shown
in Figure 5.

FIGURE 5. Distribution diagram of wind power.

By observing the Figure 5, the available wind power data
exists much interference data, which is caused by the mainte-
nance and brownouts in the actual operating of wind turbines.
So, it is necessary to divide data and filter out disturbed data
firstly.

C. DATA DIVIDING
Dividing the wind power data into two parts and the dividing
principle is as follow:

1) Taking the wind-electric powers in the interval of
[0.05Pr , 0.97Pr ] as waist data;

2) Taking the wind-electric powers in the interval of more
than 0.97Pr as upper data.

After the proposed division of both above, two parts of
power data are obtained as following Figure 6.

FIGURE 6. Division of power data.

According to the Figure 6 (a), there are huge amounts
of disturbance data existed in waist data. And according to
the Figure 6 (b), wind turbine power fluctuates around the
rated power when the wind speed is equal to the rated wind
speed. As the boundary wind speed of both two parts of power
data is 11.4m/s, that the rated wind speed is corrected to
vn = 11.4m/s, while the cut-out speed is still vout = 25m/s.
According to the Figure 6 (a), there are huge amounts

of disturbance data existed in waist data. And according to
the Figure 6 (b), wind turbine power fluctuates around the
rated power when the wind speed is equal to the rated wind
speed. As the boundary wind speed of both two parts of power
data is 11.4m/s, that the rated wind speed is corrected to
vn = 11.4m/s, while the cut-out speed is still vout = 25m/s.

D. THE FILTERING OF DISTURBED DATA
Before filtering the disturbed data in the waist, we use
improved Bin method to find out the maximum probability of
density center. The fitting curve of the maximum probability
density center is shown in Figure 7 (a).

FIGURE 7. The filtering of disturbed data.
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Using cftool toolbox in MATLAB to make Gaussian of
the point of maximum probability density center in the waist
and obtaining the parameters of fitting expression. ‘‘Fitting
curve’’ is shown in Table 1.

TABLE 1. Fitting parameters.

Wind-electric power fluctuates randomly around the fitting
curve in the same wind speed. Obtaining the envelope of the
wind power fitting curve by increasing fitting parameter c
and getting the symmetric envelope of the fitting curve of
wind-electric power by reducing the same amount of fitting
parameter c to filter the disturbed data, which is shown in
Figure 7 (b).

E. THE CALCULATION OF MODEL PARAMETERS
1) THE PARAMETERS CALCULATION OF THE X CONDITION
CLOUD GENERATOR THAT DESCRIBE THE WAIST OF
STOCHASTIC CLOUD MODEL
As what is shown in Figure 7 (b), the membership grade of
the waist data of stochastic cloud model has been known,
so it is possible to obtain the corresponding parameters by
the solution procedures. The results are shown in Table 2.

TABLE 2. The waist parameters of stochastic cloud model.

2) THE PARAMETERS CALCULATION OF THE POSITIVE
CLOUD GENERATOR THAT DESCRIBES THE UPPER
PART OF THE STOCHASTIC CLOUD MODEL
The membership grade of the upper data of stochastic cloud
model is unclear, and the wind-electric power value fluctuates
randomly around the average power. By using the solution
procedure, we can obtain the corresponding parameters. The
results are shown in Table 3.

TABLE 3. The upper parameters of stochastic cloud model.

F. STOCHASTIC CLOUD MODEL
The stochastic cloud model of wind-electric power can be
built by using the braking situations of wind turbines, X con-
dition cloud generator and the upper positive cloud generator

component. Then, establishing the stochastic cloud model
according to the corrected rated wind speed and cut-out
speed, which is shown in Figure 8.

FIGURE 8. The combination chart of stochastic cloud model.

According to Figure 8, we generate the cloud droplets of
wind-electric power by X condition cloud generator when the
wind speed is less than the corrected rated speed; we generate
the cloud droplets of wind-electric power by positive cloud
generator when the wind speed is greater than rated speed and
less than cut-out speed. The wind turbines that in the braked
status do not work, and the wind-electric power is zero when
the wind speed is greater than cut-out speed.

G. THE ANALYSIS AND DICUSSIONS OF RESULTS
To compare with the proposed model, we built respectively a
wind-electric power parameter model based on the original
parameters of the wind turbine and a wind-electric power
fitting model based on the measured data of wind-electric
power. The parameter solution of parameter model is
achieved by formulas in reference [19], and the fitting model
parameter is obtained by fitting of the maximum probability
density center. The parameters are given in Table 4.

TABLE 4. The parameters of power curve model.

Mapping the parameter model and fitting model of
wind-electric power according to the data given in Table 4,
which is shown in Figure 9.

Transforming the measured data of wind speed into
stochastic cloud model to generate the cloud droplets of
wind-electric power and then comparing it with the measured
data of wind-electric power. The result is shown in Figure 10.
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FIGURE 9. The wind-electric power model.

FIGURE 10. The scatter diagram of power.

As is shown in Figure 10, the cloud droplets of wind-
electric power generated by stochastic cloud model and the
discrete points of measured wind-electric power have similar
statistical characterization.

According to the measured wind speed, the generated fre-
quency distributions of wind-electric power of three models
are described respectively in Figure 11.

FIGURE 11. The distribution of power frequency.

The frequency distribution of wind-electric power rep-
resents the distribution character of wind turbine output.

And correlation degree of power represents the similarity
degree of the frequency distribution characteristic of the
wind-electric power. To effectively contrast the differ-
ence of model frequency distributions of the wind-electric
power, we respectively calculate the linear correlation coef-
ficients [27] of the frequency distribution of wind-electric
power from the three models and compare them with the
measured data, which is shown in Table 5.

TABLE 5. Correlation of frequency distribution.

By observing Figure 11 and Table 5, there is a significant
difference between the parameter model and measured data
of the frequency distribution of wind-electric power, and
the linear frequency correlation coefficients are respectively
0.7208 and 0.7318. On the other hand, the frequency distri-
bution of wind-electric power generated by stochastic cloud
model is similar to the measured data of frequency distribu-
tion of wind-electric power. The maximum linear correlation
coefficients of stochastic cloud model reach to 0.8868 when
compared with that of parameter model and fitting model,
which has better efficiency. Thus, the stochastic cloud model
turns out to be a more effective way to illustrate the overall
operating characteristics of the wind turbine.

Assuming that there is no power limitation, maintaining
or wake flow of the 24 wind turbines of Xiaodong Liang
Wind Farm, and the value of wind speed is the same. In this
case, applying the same wind speed sequence to three models
respectively and generating sequences of wind-electric power
respectively, which are shown as follow Figure 12.

FIGURE 12. The power of wind farm.

As is shown in Figure 12, the parameter model and
fitting model of wind-electric power value exist certainty,
while stochastic cloud model has uncertainty. The fluctua-
tion range of wind-electric power is indicated by a gradient
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rectangular, and the parameter model and fitting model of
wind-electric power are approximately equal. Meanwhile,
the fittingmodel of wind-electric power goes through the cen-
ter of the gradient rectangular of the stochastic cloud model.
The darker the color of gradient rectangular of stochastic
cloud model, the more likely to appear the corresponding
value ofwind-electric power.With the increase of the distance
away from the rectangular center, the color fades gradually,
which, indicate that the corresponding value of wind-electric
power is less likely to appear, and this value is defined as the
center to be a downward trend.

V. CONCLUSION
By the cloud model theory, this article details the processes
for establishing a stochastic cloud model of wind-electric
power. Besides, a Matlab program has been written to verify
the validity of this model. Compared with other models,
the maximum linear correlation coefficients of stochastic
cloud model can reach to 0.8868 and has better efficiency.
The calculation draws follow conclusions:

1) The stochastic cloud model solved the uncertainty of
wind-electric power and takes full account of the uncertainty
of wind turbine output characterization. So we can describe
the overall operating characteristics of wind turbine more
accurately.

2) The proposed model can provide a more accurate model
for the output of wind farm, and which is located in a power
band. It is possible to provide a reference for the system
dispatching in the future.

3) The hyper entropy of this model characterizes the uncer-
tainty of wind power in the same wind speed, and which is
correlated with the characteristics of local wind speed and
the control system operation of the wind turbine. Therefore,
the hyper entropy can be applied to illustrate the operation
stability of the wind turbine.
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