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ABSTRACT Hypopnea refers to the state in which insufficient alveolar ventilation during night sleep
decreases the respiratory airflow by more than 50% of the airflow. However, sleep apnea is a more serious
respiratory event, such as complete cessation of respiratory airflow for 10 seconds. The occurrence of
hypopnea is a precursor to the occurrence of apnea events and the two are closely connected. In this paper,
we propose a method based on the combination of discrete wavelet transform and approximate entropy
of EEG signals to detect sleep apnea and hypopnea events. For this purpose, first, data preprocessing is
performed on the EEG record data set obtained from Tianjin Chest Hospital, and then infinite impulse
response (IIR) Butterworth bandpass filter is used to decompose the data into delta, theta, alpha, beta and
gamma. Second, descriptive features are extracted based on sub-bands discrete wavelet transform such as
the approximate entropy of high-frequency coefficients. Third, the features are filtered based on Support
Vector Machine (SVM) recursive elimination. Finally, several machine learning algorithms including SVM,
K-Nearest Neighbor (KNN) and Random forest (RF) are employed to identify the occurrence of sleep
hypopnea-apnea events. The highest accuracy rate reached 94.33%, the sensitivity reached 93.10%, and
the specificity reached 95.07%. The obtained results validate that the proposed method is an effective and
practical diagnostic method to detect the occurrence of hypopnea-apnea events.

INDEX TERMS Sleep apnea hypopnea syndrome, discrete wavelet transform, approximate entropy,
machine learning classification model, support vector machine recursive elimination.

I. INTRODUCTION
Sleep disturbances can lead to insufficient sleep at night and
mental fatigue during the day, which can have a signifi-
cant negative impact on our lives. The two main challeng-
ing problems in sleep analysis are sleep stage scoring and
apnea-hypopnea detection [1]. Hypopnea refers to a 30%
drop in oronasal airflow and a 4% drop in blood oxygen
saturation for more than 10 seconds, or 50% drop in nose
and mouth airflow and 3% drop in blood oxygen saturation
for more than 10 s. However, sleep apnea syndrome (SAS)
is a sleep disorder in which breathing stops during nocturnal
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sleep, each time the airflow is stopped for more than 10 s
(including 10 s) or the average number of hypoventilations
per hour (breathing disorder index) exceeds 5 times. The three
types of sleep apnea are: Obstructive Sleep Apnea (OSA),
Central Sleep Apnea (CSA), andMixed Sleep Apnea (MSA).
The OSA is one of the most common, frequent and serious
sleep disorders. It causes complete obstruction of the upper
airway and relaxation of the throat muscles, thereby obstruct-
ing the flow of breathing during sleep [12]. The CSA refers
to the process in which the brain center stops sending signals
to the muscles that control breathing, causing the interrup-
tion of respiratory airflow. The MSA is obstructive apnea in
the first half and central apnea in the second half or vice
versa. The most common type of apnea in clinical practice
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FIGURE 1. Five different changes of brain waves in the event of OSA.

is obstructive apnea. In this paper, the three types of apneas
are allocated according to a reasonable proportion proposed
by the medical experts of respiratory diseases from Tianjin
Chest Hospital, the OSA is 60%, and the MSA and the CSA
are 30% and 10%, respectively. Since the characteristics of
hypopnea-apnea syndrome are different from other diseases,
the symptoms first appear during nighttime sleep, and also
promote the development of cardiopulmonary failure [2]–[4].
Therefore, it is particularly important to detect the presence
of hypopnea-apnea syndrome in time.

The electroencephalogram (EEG) signals are the sponta-
neous potential activities generated by brain nerve activity
and always present in the central nervous system. These sig-
nals are rich in brain activity information and are an important
means of brain research, physiological research, and clinical
brain disease diagnosis [5]. Moreover, recording the EEG
signals is a non-invasive method to measure the brain waves.
It is not only related to processing the functional informa-
tion and physiological mechanisms, but also can realize the
memory of multiple processes from simple state to com-
plex state. The EEG signal contains sleep-related information
and can provide relevant information for sleep disordered
breathing. Therefore, the EEG signal feature extraction and
intelligent methods for the corresponding waveband can be
used to treat sleep disordered breathing [6], [7]. The EEG
signals are widely used in sleep-related problems, and the
advantage is that only separated EEG signals are used and no
other auxiliary physiological signals are included [8]–[11].
When a hypopnea or apnea event occurs, the EEG signal will
show different characteristics in different frequency bands
without exception. The EEG signal can be divided into five
frequency sub-bands, that is, delta (0-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-32 Hz), and gamma (32-40 Hz).
Obviously, when a hypopnea or apnea event occurs, all five-
segmented band waves have changes. Take the frequently

occurring obstructive apnea as an example, the specific
changes that can be observed from the preprocessed data
time-domain waveforms are shown in Figure 1.

In this article, the changes of the five different sub-band
waves corresponding to the EEG signals are studied and But-
terworth filter method is used to extract the sub-bands. The
obtained different sub-bands are further subjected to discrete
wavelet transform and db3 mother wavelet and four-layer
decomposition are selected as the parameters of the trans-
formation. To study the detection of sleep apnea-hypopnea
events, we extract features from the first layer of detail coef-
ficient, the second layer of detail coefficient, the third layer
of detail coefficient and the fourth layer of detail coefficient
respectively. At the same time, the proposed method in this
article finds the approximate entropy of the detail coefficient
as characteristics of EEG signals during the apnea-hypopnea
events. Then amachine learning classificationmodel is estab-
lished and results are obtained on the test set as the final eval-
uation index of the feature. Our model achieves the best result
with accuracy 94.33%, sensitivity 93.10%, and specificity
95.07% and provides a detection method that uses the EEG
signals to automatically detect the hypopnea-apnea events
that occur during nighttime sleep.

II. RELATED WORK
Detecting sleep apnea-hypopnea events is a time-consuming
and laborious process. Many researchers have applied dif-
ferent physiological signals to the detection of sleep apnea
events such as ECG, SPO2, airflow signal and nasal pressure
signal. Based on single-lead ECG signal, a non-parametric
kernel density-based approach was used for OSA detection
and the results obtained were mean accuracy of 82.07%, with
mean sensitivity of 83.23% and mean specificity of 80.24%
[13]. Amethod for obstructive sleep apnea severity prediction
based on single channel ECG signal was proposed, the accu-
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racy of 79.45% for OSA severity classification with sensi-
tivity, specificity, and F-score was achieved [14]. Based on
the pulse oximetry signal at night, 16 features (time and
frequency statistics, frequency spectrum and nonlinear fea-
tures) were extracted and genetic algorithm (GA)method was
applied in the feature selection stage. Finally, they achieved
87.5% accuracy (90.6% sensitivity and 81.3% specificity)
in the test set [15]. In addition, ECG signals and periph-
eral blood oxygen signals were combined to detect sleep
apnea-hypopnea events and the achieved sensitivity, speci-
ficity, and accuracy all were around 82% [16]. In Payongkit
Lakhan et al., seventeen features (average of maximum and
minimum amplitudes from all airflow signal samples etc.)
have been extracted from airflow signal and then fed into
Deep Neural Networks to binary classify and the cutoff
indices at AHI= 5, 15 and 30. The result obtained were accu-
racy of 83.46%, 85.39% and 92.69% in each cutoff, respec-
tively [17]. Automatic real-time detection of sleep apnea and
hypopnea events based on nasal pressure signals has been
studied and a good performance has achieved regardless of
the severity of AHI, the sensitivity is 86.4%, and the posi-
tive predictive value for apnea and hypopnea is 84.5% [18].
The air flow, thoracic and abdominal respiratory movement
data have been partitioned and organized into Reasoning
Units (RU), which are used in signal segmentation and the
static features namely skewness, kurtosis, mean, geomean,
variance, and standard deviation are generated from the
wavelet packet coefficients, which aid the classification of
sleep apnea from normal patients using Partially Connected
Cooperative Parallel Particle Swarm Optimization-Support
Vector Machine algorithm producing an accuracy of 83.66%
[21]. The classification of sleep apnea using cross wavelet
transform of airflow and thoracic effort signals in combi-
nation of higher order statistics extractions obtained from
the Kernel based non-linear Principal Component Analysis
(KPCA) produced a sleep apnea classification system with
an accuracy value of 85% [22]. Since, EEG signals contain
a lot of important information, which reflects activities and
abnormal breathing, in this paper, a feature extraction based
on EEG signals is proposed to detect sleep apnea-hypopnea
events and achieve more accurate results.

III. MATERIALS AND METHODS
A. SUBJECTS
In order to verify the method proposed in this study, the EEG
signals from the PSG record of 30 apnea patients with differ-
ences in AHI collected in Tianjin Chest Hospital were taken
as the research subjects, and the EEG data of the two channels
C3-A2 and C4-A1 of the database was used. The sampling
frequency was 100 Hz per second and contained the truth
labels of apnea-hypopnea events. The time of each apnea-
hypopnea event was at least 10s. The detailed information
of 30 subjects are as follows: the number of patients with
severe apnea (AHI>30) accounted for 19 people, of which
15 were males between 34 and 73 years old and 4 were
females between 65 and 78 years old; the number of patients

TABLE 1. SA dataset specifications (Apnea constructed according to the
ratio of OSA: MSA: CSA = 6:3:1).

with moderate apnea (15<AHI<30) accounted for 7 people,
five males aged between 37 and 55 years old and two females
between 54 and 66 years old; the number of patients withmild
apnea (5<AHI<15) accounted for 4 people, three males aged
between 41 and 70 years old and one female was 54 years old.

Based on the existing subject data, we extracted from
30 subjects all existing epochs of apnea-hypopnea events.
Considering that the data we used did not include normal
people’s data, we extracted epochs without apnea-hypopneas
in 30 subjects as normal epochs. Considering sample balance
and independence from subjects, we constructed the training
and the test sets according to the ratio of 75:25 and ensured
that 25% of the test data has never been exposed to the
training model. The detailed data set information is shown
in Table 1.

The polysomnography data used in this study is the
previous archived data that erased the patient’s personal
biological information and will not cause any harm to the
patient’s interests. After reviewed by the ethics committee of
the author’s unit, it met the conditions of ethics exemption,
and the patient did not need to sign an informed consent form.

B. PROPOSED METHOD
The detailed steps of the proposed method are shown in
Figure 2. Firstly, the original EEG signal data is preprocessed,
and decomposed using different Butterworth filters to obtain
Delta, Theta, Alpha, Beta, and Gamma waves. Then, discrete
wavelet transform is performed on the five seeded EEG sig-
nals. Finally, the approximate entropy of the high-frequency
coefficients of different layers after each wavelet transform is
taken as the feature point of the final classifier.

C. RAW SIGNAL PREPROCESSING AND BAND-LIMITED
SIGNAL EXTRACTION
During nighttime sleep, the EEG signals will change sig-
nificantly as people enter different sleep stages. In order to
eliminate the obvious and fluctuating changes between the
different EEG data frames, the DC offset of an EEG frame is
eliminated by subtracting the mean value of that frame from
each sample value. After removing DC, frame amplitude nor-
malization is required to remove the undesirable fluctuation
in amplitude occurring in different EEG frames belonging to
the same class. For this purpose, after mean value subtrac-
tion, normalization of sample values is accomplished with
reference to the maximum and the minimize sample values of
that frame, which also called min-max normalization, that is,
each value of the input EEG data frame minus the minimum

VOLUME 9, 2021 643



Y. Wang et al.: Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals

FIGURE 2. Block diagram representing the major steps involved in the
proposed method.

value of the frame and the obtained value is divided by the
difference between the maximum and minimum values of the
frame.

The obtained preprocessed EEG data can be divided into:
Delta (0.25-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-

FIGURE 3. Decomposition step diagram of discrete wavelet transform.

16 Hz) and Gamma (16-40 Hz). In the proposed method, five
band-pass filters are used to extract the band limited EEG
signals, which are expected to preserve the local information
better than the full band signal.

D. FEATURE EXTRACTION
The proposed method uses the discrete wavelet trans-
form to perform time-frequency analysis on five different
band-limited signals obtained in the previous step. The dis-
crete wavelet transform of a numerical sequence x(t) in any
space L2(R) can be defined as:

Wx(j,k) =
∫

Rx(t)ψj,k(t) dt (1)

The wavelet prototype expression is defined as:

ψj,k(t) =
1
√

2j
ψ(

t
2j
− k) (2)

where ψ is a wavelet prototype. The wavelets are localized
in frequency (scale parameter j) and time (shift parameter k)
using the preprocessed signal through two complementary
filters (i.e. high and low frequency filters). The outputs from
the low and high pass filters are referred to as approxi-
mation (A1) and detail (D1) coefficients of the first level.
The A1 and D1 signals represent the approximate and the
detail values of the decomposition signal obtained for the
first time, respectively. The approximate value is a coefficient
generated by a large scaling factor and represents the low
frequency component of the signal. The detail value is a
coefficient generated by a small scaling factor and represents
the high frequency component of the signal. In the next
decomposition, the low-frequency component obtained last
time is always decomposed in the same step as the previous
decomposition step. By analogy, in this study, the db3 mother
wavelet and four-layer decomposition are used on the five dif-
ferent sub-bandwaves. The detailed decomposition process is
shown in Figure 3.

The five sub-band waves corresponding to 609 normal
epochs and 609 apnea-hypopnea epochs in the training set
perform db3 and four-layer decomposition discrete wavelet
transform using C3 channel. Next, 65 absolute values of
high frequency coefficients of the second layer of the
five-segmented wave of with and without apnea-hypopnea
events are randomly selected, which from all training samples
take the average value of the second layer of high frequency
coefficient. It is found that although the detail coefficient
of the gamma wave is not clearly distinguishable from the
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FIGURE 4. The second layer of absolute value of high frequency coefficients of the different five-segment belt EEG signals corresponding to normal
and apnea-hypopnea events (C3 channel).

scatter plot, similar changes also occurred in the third and
fourth layers. The detailed changes are shown in Figure 4.

Therefore, the proposed method in this article further
extracts the features of absolute values of high frequency
coefficients to represent the occurrence of apnea-hypopnea
events. The ApEn was developed by Pincus as a measure of
regularity to quantify the levels of complexity within a time
series [26]. It uses a non-negative number to represent the
complexity of a time series and reflects the possibility of new
information in the time series. The algorithm is defined as
follows:

1. Sequence {u(i)} into m-dimensional vector x(i):

x(i) = {u(i), u(i+ 1), ...u(i+m− 1)},

i = 1,2,...N−m+ 1

2. Calculate the distance between the vector x(i)
of each i value and the rest of the vectors
x(j), (i = 0,1,2,...N−m+ 1, j 6= i), distance is defined
as:

dij = max |u(i+ k)− u(j+ k)| , k = 0, 1, ...m− 1

3. For each value of i, the number of dij < r, (given
threshold r > 0) and the ratio of this number to the total
number of vectors N−m+ 1 are recorded as:

Cm
i (r) = {Number of dij < r}/(N−m+ 1),

i = 1 ∼ N−m+ 1

In the sense of similar tolerance r,
Cm
i (r) reflects the probability that the m-dimensional

patterns in the sequence are similar to each other.

4. Take the natural logarithm of Cm
i (r), then average all i,

and record it as φm(r):

φm(r) =
1

N − m+ 1

N−m+1∑
i=1

lnCm
i (r)

φm(r) indicates the average closeness of some vectors.
5. For m+1, repeat steps 1-4 to find Cm+1

i (r) and φm+1(r).
6. The approximate entropy is defined as:

ApEn(m, r,N ) = lim
N→∞

[φm(r)− φm+1(r)]

Usually, N is a finite value, so the approximate entropy
is expressed by the following formula:

ApEn(m, r,N ) = φm(r)− φm+1(r)

This article uses the approximate entropy of absolute
value of high frequency coefficient of a certain layer as a
feature point of apnea-hypopnea events. The length of the
comparison vector m is selected as 2, the measure of simi-
larity r selects 0.2 times the standard deviation of the orig-
inal sequence, and N represents the dimension of the input
sequence{u(i)}. Considering the effect of the inconsistency
of the points of different layers on the approximate entropy
result, the average value of entropy is obtained and the data of

TABLE 2. TP TN FP FN parameter meaning.
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TABLE 3. Recursive elimination feature filtering results.

different channels are compared with different layers to find
the best result.

E. FEATURE SELECTION
The SVM-RFE is a sequence backward selection algorithm
based on the maximum separation principle of SVM. The
algorithm uses all the features the first time and rejects con-
secutively the less relevant features by sorting the absolute
values of the entries wi [27]. The rule for removing the
features is to first pass the SVMmodel training samples, then
sort the score of each feature and remove the feature with the
lowest score. Next, the remaining features are used to train the
model again for the next iteration. Finally, the optimal feature
list is output in descending order of score. The ranking score
of feature A is defined as:

Ci = w2
i (3)

The working algorithm of SVM-RFE is as follows:
1. Input: training samples {(xi,yi)}

N
i=1, yi ∈ {+1,−1}.

2. Output: feature ranking set R.
3. Initialize the original feature set S = {1,2,. . . ,D}, and

feature ranking set R = [ ].
4. Repeat the following process until the original fea-

ture set S = [] and obtain the training samples with
candidate feature sets.

5. Use formula:

min
1
2

∑N

i=1

∑N

j=1
αiαjyiyj(xi · xj)−

∑N

i=1
αi

train the SVM classifier to get w.
6. Use the formula Ci = w2

i , k = 1, 2, . . . , |S| to calculate
the ranking criteria score.

7. Find the feature with the lowest ranking score:

P = argmin(minkCk)

8. Update the feature set R = [P,R].
9. Eliminate the feature with the lowest ranking criterion,

S = S(1:P− 1,P+ 1 : length(s)).
In order to ensure that the best detection result is found

when the feature difference is the most obvious, this study
uses the SVM-RFE feature screening method to screen the
features extracted from the C3, C4 and C3 and C4 channels.
The results of recursive elimination show that different fea-
tures extracted for different channels contribute differently
to the classification. In order to obtain satisfactory results,
the features that have small effect or have side effects should
be deleted and certain features within the allowable range of
the error should be filtered. However, it also appears that each

FIGURE 5. The best results obtained for each channel use SVM classifier.

TABLE 4. The statistical results of the classification results corresponding
to the high-frequency coefficients of different layers of each channel (Me
is Mean; Std is Standard deviation; Iqr is interquartile range).

feature extracted has a large contribution rate to the classifi-
cation result. The detailed results of recursive elimination are
shown in Table 3.

IV. RESULTS AND DISCUSSION
A. RESULTS
In order to verify the effectiveness of the model, in addition
to the accuracy rate, the indicators such as sensitivity, speci-
ficity, and recall rate calculated by the TP, TN, FP and
FN parameters are introduced. The parameters are described
in Table 2 and the calculation formulas are defined as:

accuracy =
TR+ TN

TP+ TN+ FP+ FN
(4)

sensitivity =
TP

TP+ FN
(5)

specificity =
TN

TN+ FP
(6)
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TABLE 5. Results of different classification models with different channels (Ens is Ensembles for Boosting).

In the process of building the model, 75% of the training
data is used to train the model and the test result of 25% of
the test data is used as the final model evaluation indicator.
All the classification work was done in MATLAB (R2016 a).
According to the feature sequence corresponding to the fea-
ture ranking list obtained through the recursive elimination
as the input to the classification model (the SVM model
first evaluates the classification results by default), different
channels corresponding to different layers are discussed and
the numbers and the ratios of all training and test sets are
strictly in accordance with the structure of Table 1.

In order to eliminate the dimensional influence between
indicators, before entering the classification model, both the
training and the test data are separately normalized in the
same manner. The purpose of this is to avoid the test set
being affected by the training set and making the model’s
predictive ability inaccurate. The normalization approach is
also min-max normalization, which is same as the original
signal preprocessing method. The best results obtained for
each channel are shown in Figure 5 and the average value
and the standard error are shown in Table 4.

Different sub-bands corresponding to different channels
have different capabilities in detecting the apnea-hypopnea
events. When the C3-A2 and the C4-A1 channels are used
to detect the events at the same time, the approximate
entropy of the second layer of high-frequency coefficients
achieves the best results. In addition, when single channel
C3-A2 or C4-A1 acts alone, the approximate entropy of the
high-frequency coefficients of the second layer achieves the
best effect. However, in distinguishing between normal and
apnea-hypopnea events, the performance of each channel
is different. Such as there is a gap between the accuracy
of normal and apnea events that leads to a large range of
statistical indicators. Besides, only using SVM algorithm has
limitations. Therefore, other classificationmodels in machine
learning are selected for verification. The features of each
channel that achieves the best results are considered. The
detailed results are shown in Table 5.

Analysis of the above results can draw conclusions, that
is, after being screened by the SVM-RFE algorithm, when
the two channels C3-A2 and C4-A1 work together, the
approximate entropy of the corresponding second-layer high-
frequency coefficients has the best distinguishing effect. The
parameters selected by the KNNmodel are K is five, distance

TABLE 6. Results of different classification models with different
channels (the ratio is 5:5, Ens is Ensembles for Boosting, KNN: 4,
euclidean, nearest; RF: TreeBagger, nTree=30; Ens: AdaBoostM1,
100, tree).

TABLE 7. Results of different classification models with different
channels (the ratio is 8:2, Ens is Ensembles for Boosting, KNN: 5,
euclidean, nearest; RF: TreeBagger, nTree=10; Ens: AdaBoostM1,
120, tree).

is euclidean, rule is nearest. The parameters selected by the
Ens model are number of tree is 70, integration method is
AdaBoostM1. The parameters selected by the RF model are
Treebagger way and number of tree is ten. In order to verify
the influence of the training set and test set obtained by
different division ratios on the model evaluation index and
the reliability of the proposed algorithm. The approximate
entropy characteristics of the second-layer high-frequency
coefficients corresponding to the two channels of C3-A2 and
C4-A1 are used as the research object. Select 5:5 and 8:2
respectively which belong to the classic division ratio of the
hold-out method divide training set and test set. At the same
time, follow the OSA: MSA: CSA=6:3:1 ratio combination
to construct the apnea hypopnea data set. The detailed results
and model parameters of three models namely RF, KNN and
Ens are shown in Table 6 and Table 7.

The above is the judgment of sleep apnea hypopnea syn-
drome, which put together for testing without specific sep-
aration of patients of different degrees. Next, we test the
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TABLE 8. Classification results and statistical indicators of different
classifiers of sleep apnea hypopnea syndrome in mild patients.
(KNN:5,euclidean, nearest; RF:nTree=40, Treebagger; Ens:LogitBoost,
350, tree).

TABLE 9. Classification results and statistical indicators of different
classifiers of sleep apnea hypopnea syndrome in moderate patients.
(KNN:5, euclidean, nearest; RF:nTree=20, Treebagger; Ens:Bag, 85, tree).

TABLE 10. Classification results and statistical indicators of different
classifiers of sleep apnea hypopnea syndrome in severe patients. (KNN:4,
cityblock, nearest; RF:nTree=23, Treebagger; Ens:LogitBoost,
400, tree).

proposed method of detecting sleep apnea-hypopnea syn-
drome in this article for events of different degrees and tests
from mild, moderate, and severe patients. We selected four
patients with mild sleep apnea, including three males and one
female with AHI indexes of 9.7, 12.4, 8.2, and 7.1, respec-
tively. In the original data of these four patients, 150 normal
breathing events, 75 hypopnea events, 50 obstructive apneas,
12 central apneas and 8 mixed apneas were selected as the
training sample dataset and 50 normal events, 23 hypopnea
events, 25 obstructive apneas, and 1 central apnea as the test
sample dataset.

According to the results obtained above, it is concluded
that when the C3-A2 and the C4-A1 channels work together,
the corresponding second-layer high-frequency coefficient
discrimination results are the best. Therefore, we discussed
the discrimination result of the approximate entropy of
the corresponding second-layer high-frequency coefficients
when the two channels work together. The detailed test results
and the statistical indicators are shown in Table 8.

We selected seven patients with moderate sleep apnea and
also discussed the detection results of different classifiers
corresponding to the approximate entropy of the second-layer
high-frequency coefficients of C3-A2 and C4-A1 channels.
The seven patients include five males and two females
with AHI indexes of 18.3, 19.8, 20.9, 26.7, 21.7, 27.3,
and 16.7 respectively. In the original data of these seven
patients, 375 normal breathing events, 175 hypopnea events,
100 obstructive apneas, 80 central apneas and 20 mixed
apneas were selected as the training sample dataset and
125 normal events, 74 hypopnea events, 30 obstructive
apneas, 2 central apnea and 17 mixed apneas as the test
sample dataset. The detailed classification results and the
statistical indicators are shown in Table 9.

Similarly, the data of 8 severe patients were selected,
including five males and three females with AHI indexes
of 49.3, 68.9, 66.6, 45.3, 50.9, 68.9, 39.1 and 59.3 respec-
tively. In the original data of these eight patients, 600 nor-
mal breathing events, 200 hypopnea events, 200 obstructive
apneas, 100 central apneas and 100 mixed apneas were
selected as the training sample dataset and 200 normal events,
50 hypopnea events, 50 obstructive apneas, 50 central apnea
and 50 mixed apneas as the test sample dataset. The approxi-
mate entropy of the high-frequency coefficients of the second
layer of the two channels C3-A2 and C4-A1 is discussed and
the detailed classification results and the statistical indicators
are shown in Table 10.

B. CONCLUSION
Many studies have applied EEG signals to detect sleep apnea.
After denoising and wavelet smoothing preprocessing of the
EEG signal that is undergoing sleep apnea, each EEG signal
frame of 30 seconds is divided into 10 seconds sub-frames
and delta band power ratio is extracted as a feature from
these sub-frames. These extracted features are used as input to
classifiers and accuracies of 84.07% and 84.83% are achieved
when KNN and SVM are used, respectively [19]. The entropy
is extracted from the multi-band EEG signal as a feature and
the Geometric Separability Index (GSI) method is used to
score and analyze the features. Based on the KNN algorithm
for sleep apnea classification, the accuracy is 87.64% [20].
Discrete wavelet transform and Hilbert transform are com-
bined to extract features of EEG signals that occur in sleep
apnea, the selected 30 features were used in the automatic
classification of normal breathing and obstructive (OSA) and
central (CSA) apnea by a feedforward neural network, The
classifier returned the accuracy of 73.9% for the training and
77.3% for the testing set [23]. The given EEG signal test
frame is divided into overlapping subframes. Each sub-frame
is preprocessed and spectral characteristics are extracted from
each pre-processed sub-frame. The statistical features are
extracted from the temporal pattern of Beta band energy
and used in K nearest neighborhood classifier. The results
obtained are accuracy of 82.28%, specificity of 77.72% and
sensitivity of 90.58% [24]. Based on the Empirical Mode
Decomposition of wavelet reconstructed delta wave of EEG
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signal, begins with wavelet transforming an EEG frame and
reconstructing the low frequency delta wave from the approx-
imate coefficients, EMD is performed on the reconstructed
delta wave to generate intrinsic mode functions. The mean
rate of variation and the variance in the first five IMFs of the
reconstructed delta wave are extracted as features from each
frame. The SVM classifier returned accuracy, sensitivity and
specificity rate of 80.43%, 85.59% and 77.87%, respectively
[25].

In this paper, we perform discrete wavelet transform based
on different sub-band signals of preprocessed EEG signals
that are occurring apnea-hypopnea events. The obtained
approximate entropy of the high-frequency coefficients of
different layers is used as a feature to detect normal breath-
ing and sleep apnea-hypopnea events. The highest clas-
sification results are accuracy, sensitivity and specificity
rate of 94.33%, 93.10% and 95.07%, respectively, which
are higher results compared with the methods used in the
previous studies. In addition, the method proposed in this
paper has certain clinical significance in the diagnosis of
apnea-hypopnea patients.

REFERENCES
[1] T. Schluter and S. Conrad, ‘‘An approach for automatic sleep stage scoring

and apnea-hypopnea detection,’’ in Proc. IEEE Int. Conf. Data Mining,
Dec. 2010, pp. 1–5.

[2] N. Carroll and M. A. Branthwaite, ‘‘Control of nocturnal hypoventilation
by nasal intermittent positive pressure ventilation,’’ Thorax, vol. 43, no. 5,
pp. 349–353, 1988.

[3] C. Guilleminault, G. Kurland, R. Winkle, and L. E. Miles, ‘‘Severe
kyphoscoliosis, breathing, and sleep,’’ Chest, vol. 79, no. 6, pp. 626–630,
1981.

[4] J. Catterall, N. Douglas, C. Calverley, C. Shapiro, V. Brezinova, and
H. Brash, ‘‘Transient hypoxemia during sleep in chronic obstructive pul-
monary disease is not a sleep apnea syndrome,’’ am rev respir dis, vol. 128,
no. 1, pp. 24–29, 1983.

[5] T. H. Bullock and R. B. Cowles, ‘‘How do brains work?’’ Science, vol. 115,
no. 2994, pp. 541–543, 1982.

[6] H. Abdullah, N. C. Maddage, and I. D. Cosic Cvetkovic, ‘‘Cross-
correlation of eeg frequency bands and heart rate variability for sleep
apnoea classification,’’ Med. Biol. Eng. Comput., vol. 48, no. 12,
pp. 1261–1269, 2010.

[7] M. Cabrero-Canosa, ‘‘An intelligent system for the detection and inter-
pretation of sleep apneas,’’ Expert Syst Appl., vol. 24, no. 4, pp. 335–349,
2003.

[8] J. Zhou, X.-M. Wu, and W.-J. Zeng, ‘‘Automatic detection of sleep
apnea based on EEG detrended fluctuation analysis and support vec-
tor machine,’’ J. Clin. Monitor. comput., vol. 29, no. 6, pp. 767–772,
2015.

[9] S. Taran, V. Bajaj, and D. Sharma, ‘‘Robust Hermite decomposition algo-
rithm for classification of sleep apnea eeg signals,’’ Electron. Letters.,
vol. 53, no. 17, pp. 1182–1184, 2017.

[10] R. Lin, R. G. Lee, C. L. Tseng, H. K. Zhou, C. F. Chao, and J. A. Jiang,
‘‘A new approach for identifying sleep apnea syndrome using wavelet
transform and neural networks,’’Biomed. Eng., vol. 18, no. 3, pp. 138–143,
2006.

[11] R. Lin, M.-F. Yeh, R.-G. Lee, and C.-L. Tseng, ‘‘Sleep apnea syndrome
recognition using the GreyART network,’’ in Proc. Int. Conf. Electric Inf.
Control Eng., Apr. 2011, pp. 1–8.

[12] V. Vimala, K. Ramar, and M. Ettappan, ‘‘An intelligent sleep apnea classi-
fication system based on eeg signals,’’ J. Med. Syst., vol. 43, no. 2, p. 36,
Feb. 2019.

[13] L. Chen, X. Zhang, and H. Wang, ‘‘An obstructive sleep apnea detec-
tion approach using kernel density classification based on single-
lead electrocardiogram,’’ J. Med. Syst., vol. 39, no. 5, pp. 1–11,
2015.

[14] N. Banluesombatkul, T. Rakthanmanon, and T. Wilaiprasitporn, ‘‘Sin-
gle channel ECG for obstructive sleep apnea severity detection using a
deep learning approach,’’ in Proc. IEEE Region Conf., Jeju, South Korea,
Oct. 2018, pp. 2011–2016, doi: 10.1109/TENCON.2018.8650429.

[15] D. álvarez, R. Hornero, J. V. Marcos, and F. del Campo, ‘‘Feature selection
from nocturnal oximetry using genetic algorithms to assist in obstructive
sleep apnoea diagnosis,’’ Med. Eng. Phys., vol. 34, no. 8, pp. 1049–1057,
2012.

[16] B. Xie, ‘‘Real-time sleep apnea detection by classifier combination,’’
IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 469–477,
May 2012.

[17] P. Lakhan, A. Ditthapron, N. Banluesombatkul, and T. Wilaiprasitporn,
‘‘Deep neural networks with weighted averaged overnight airflow features
for sleep apnea-hypopnea severity classification,’’ in Proc. IEEE Region
Conf., Jeju, South Korea, Oct. 2018, pp. 0441–0445, doi: 10.1109/TEN-
CON.2018.8650491.

[18] L. Hyoki, P. Jonguk, and L. Hojoong, ‘‘New rule-based algorithm for real-
time detecting sleep apnea and hypopnea events using a nasal pressure
signal,’’ J. Med. Syst., vol. 40, no. 12, p. 282, 2016

[19] C. Shahnaz, A. T. Minhaz, and S. T. Ahamed, ‘‘Sub-frame based
apnea detection exploiting delta band power ratio extracted from
EEG signals,’’ in Proc. IEEE Region Conf. (TENCON), Nov. 2016,
pp. 190–193.

[20] S. Saha, A. Bhattacharjee, M. A. A. Ansary, and S. A. Fattah, ‘‘An
approach for automatic sleep apnea detection based on entropy of multi-
band EEG signal,’’ in Proc. IEEE Region Conf. (TENCON), Nov. 2016,
pp. 420–423.

[21] Y. Maali and A. Al-Jumaily, ‘‘A novel partially connected cooperative
parallel PSO-SVM algorithm: Study based on sleep apnea detection,’’ in
Proc. IEEE Congr. Evol. Comput., Brisbane, QLD, Australia, Jun. 2012,
pp. 1–8, doi: 10.1109/CEC.2012.6256138.

[22] B. L. Koley and D. Dey, ‘‘Classification of sleep apnea using cross wavelet
transform,’’ in Proc. IEEE 1st Int. Conf. Condition Assessment Techn.
Electr. Syst. (CATCON), Dec. 2013, pp. 275–280.

[23] M. A. Prucnal and A. G. Polak, ‘‘Analysis of features extracted from eeg
epochs by discrete wavelet decomposition and Hilbert transform for sleep
apnea detection,’’ in Proc. IEEE Eng. Med. Biol. Soc. Conf., Jul. 2018,
pp. 287–290.

[24] F. Ahmed, P. Paromita, A. Bhattacharjee, S. Saha, S. Azad, and S. A. Fattah,
‘‘Detection of sleep apnea using sub-frame based temporal variation of
energy in beta band in EEG,’’ in Proc. IEEE Int. WIE Conf. Electr. Comput.
Eng. (WIECON-ECE), Dec. 2016, pp. 258–261.

[25] C. Shahnaz and A. T. Minhaz, ‘‘Sleep apnea frame detection based on
empirical mode decomposition of delta wave extracted from wavelet
of EEG signals,’’ in Proc. IEEE Int. WIE Conf. Electr. Comput. Eng.
(WIECON-ECE), Dec. 2016, pp. 233–236.

[26] S. M. Pincus and W. M. Huang, ‘‘Approximate entropy: Statistical prop-
erties and applications,’’ Commun. Stats, vol. 21, no. 11, pp. 3061–3077,
1992.

[27] A. R. Hidalgo-Muñoz, M. M. López, A. Galvao-Carmona, A. T. Pereira,
I. M. Santos, M. Vázquez-Marrufo, and A. M. Tomé, ‘‘EEG study on
affective valence elicited by novel and familiar pictures using ERD/ERS
and SVM-RFE,’’ Med. Biol. Eng. Comput., vol. 52, no. 2, pp. 149–158,
2014.

YAO WANG was born in 1988. She received
the bachelor’s degree in biomedical engineering
from the Department of Biological Sciences and
Engineering, South China University of Technol-
ogy, in 2011, and the Ph.D. degree in biomedi-
cal engineering from the Department of Medicine,
Tsinghua University, in 2016. Since 2016, she
has been with Tiangong University, as a Lecturer.
Her main research interests include auditory signal
processing and detection, brain–computer inter-

face research based on auditory signals, and auditory and cognitive engi-
neering research.

VOLUME 9, 2021 649

http://dx.doi.org/10.1109/TENCON.2018.8650429
http://dx.doi.org/10.1109/TENCON.2018.8650491
http://dx.doi.org/10.1109/TENCON.2018.8650491
http://dx.doi.org/10.1109/CEC.2012.6256138


Y. Wang et al.: Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals

SIYU JI was born in 1997. She received the bach-
elor’s degree in communication engineering from
the Heilongjiang University of Science and Tech-
nology, in 2019. She is currently pursuing the
master’s degree in electronic and communication
engineering with Tiangong University. Her current
research interests include EEG signal processing
and sleep apnea detection.

TIANSHUN YANG was born in 1996. He received
the bachelor’s degree in electronic information and
engineering from theAnhui University of Technol-
ogy, in 2019. He is currently pursuing the mas-
ter’s degree in information and communication
engineering with Tiangong University. His current
research interest includes automatic apnea detec-
tion.

XIAOHONG WANG was born in 1994. She
received the bachelor’s degree in communica-
tion engineering from the Shijiazhuang College,
in 2018. She is currently pursuing the master’s
degree with the Tianjin University of Technology.
Her current research interest includes automatic
apnea detection.

HUIQUAN WANG was born in 1985. He
received the bachelor’s and Ph.D. degrees in
biomedical engineering from the School of Pre-
cision Instruments and Optoelectronics Engineer-
ing, Tianjin University, the bachelor’s degree in
international finance from Nankai University, and
the Ph.D. degree in instrument science and tech-
nology from Tianjin University. From 2011 to
2013, he was a Public Visiting Scholars study
with Johns Hopkins University. He is currently

the Director of the Department of Biomedical Engineering and the Mas-
ter Instructor of Tiangong University. His main research interests include
wearable medical testing equipment and intervention methods, near-infrared
spectroscopy and big data mining algorithms, and multi-modal imaging
technology.

XIAOYUN ZHAO was born in 1979. He received
the bachelor’s and master’s degrees from the Med-
ical College, Nankai University, Tianjin, China,
in 2004, and the M.D. degree in respiratory
medicine from Tianjin Medical University, Tian-
jin, China, in 2016. From 2004 to 2009, he was a
Resident Physician with the Tianjin Chest Hospi-
tal. Since 2009, he has been an Attending Physi-
cian with the Department of Respiratory, Critical
Care and Sleep Medicine (PCCSM), Tianjin Chest

Hospital, and he has been the Vice Director and Chief Doctor of the RICU
and Sleep Center, since 2013. He is the author of more than 40 articles and
ten inventions. His research interests include central regulation mechanism
of breathing, intermittent swing of pleural pressure during obstruction of
airway, and comprehensive complications of sleep breathing disorders. He is
also a Scientist and Tutor of graduate school in biomedical engineering from
Department of Tianjin University, Tiangong University, and Tianjin Medical
University, Tianjin, China. He is a member of American Thorax Society
(ATS), China Sleep ResearchAssociation (CSRA), and several other medical
and bioengineering associations.

650 VOLUME 9, 2021


