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ABSTRACT In this paper, a novel Cauchy-Gaussian quantum-behaved bat algorithm (CGQBA) is applied to
solve the economic load dispatch (ELD) problem. The bat algorithm (BA) is an acknowledged metaheuristic
optimization algorithm owing to its performance. However, the classical BA presents some weaknesses, such
as premature convergence. To withstand the drawbacks of the BA, quantum mechanics theories and Gaussian
and Cauchy operators are integrated into the standard BA to enhance its effectiveness. Since the economic
load dispatch is a nonlinear, complex and constrained optimization problem, its main objective is to reduce
the total generation cost while matching the equality and inequality constraints of the system. The validity
of the CGQBA is tested on six standard benchmark functions with different characteristics. The numerical
results indicate that the CGQBA is effective and superior to many other algorithms. Moreover, the CGQBA
is applied to solve the ELD problems on various test systems including 3,6,20, 40,110 and 160 implemented
generating units. The simulation results illustrate the strength of the CGQBA compared with other algorithms
recently reported in the literature.

INDEX TERMS Economic load dispatch, bat algorithm, Gaussian operator, Cauchy operator, quantum

behavior.

I. INTRODUCTION

Economic load dispatch (ELD) is one of the hot topics in
the field of power system optimization [1]. The aim of the
economic dispatch is to seek the most favorable allocation
of generation units that reduces costs while meeting all the
system’s inequality and equality constraints [2]. Due to the
excessive cost of power generation in fossil fuel power plants,
the optimality of economic dispatch is advantageous in terms
of saving money [3].

As an optimization problem, the economic dispatch (ED)
problem consists of an objective function and various con-
straints [4]. In previous years, several methods known as
conventional methods have been used to solve economic
dispatch problems, such as linear programming [5], nonlin-
ear programming [6], quadratic programming [7], dynamic
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programming [8], interior point programming [9], mixed
integer programming [10], the Lagrangian relaxation algo-
rithm [11], the decomposition technique [12], the branch-
and-bound method [13], the Newton-Raphson method [14],
Lambda iteration [15] and the gradient method [16]. How-
ever, these classical methods experience difficulty when
finding initial solutions and are prone to local optimal conver-
gence [17]. The cost functions of generators were previously
formulated as quadratic or piecewise quadratic functions
based on the assumption that the incremental cost curves
of the units are monotonically increasing piecewise-linear
functions [18]-[20]. The practical ED is nonconvex, non-
smooth and nondifferentiable due to the presence of sev-
eral constraints, such as prohibited operating zones, ramp
rates, multifuel options, valve-point effects and transmis-
sion losses [21]-[24]. Conventional optimization techniques
are not effective in solving the ED problem; therefore,
researchers have developed new optimization techniques
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known as “‘metaheuristics”, which provide better solutions
and overcome the demerits of conventional methods [25].
Moreover, they are applied to solve problems in many areas
of engineering [26], [27], as well as other real-world opti-
mization problems [28]-[30].

Various metaheuristic algorithms have been applied for
solving ED problems: ant colony optimization (ACO) [31],
grey wolf optimization (GWO) [32], the flower pollina-
tion algorithm (FPA) [33], the firefly algorithm (FA) [34],
the social spider algorithm (SPA) [21], the cuckoo search
algorithm (CSA) [3], the symbiotic organism search algo-
rithm (SOS) [35], the bat algorithm (BA) [36], the particle
swarm algorithm (PSO) [20], the imperialist competitive
algorithm (ICA) [37], ant lion optimization (ALO) [38],
the gravitational search algorithm (GSA) [39], the genetic
algorithm (GA) [40], teaching-learning based optimization
(TLBO) [41], the artificial bee colony algorithm (ABC) [42],
and the differential evolution algorithm (DE) [43].

Some of these metaheuristic algorithms possess limitations
when dealing with large complex systems in terms of finding
the global optimal solutions, preventing local optimal and
premature convergence [44]. To address these shortcomings,
two solutions have been proposed to improve the perfor-
mance of metaheuristics: modification and hybridization of
algorithms [45].

A study by Elsayed et al. [46] suggested a modified social
spider algorithm (MSSA) for solving the ELD problem,
where the random walk in the basic SSA has been substituted
by a chaotic sequence. An improved version of the adap-
tive differential evolution optimizer (ADE) has been applied
for solving the nonconvex ED problem [47]. This presented
algorithm shuns the problem of premature convergence and
ameliorates the convergence speed. An elitist cuckoo search
algorithm was examined in [48]. This variant of the CSA
is based on modifying some parameters of the basic CSA
(initialization), and it achieves remarkable success in solving
the ELD problem. A variant of the charged search system
(CSS) called the adaptive CSS (ACSS) was developed in [49],
and the modifications performed in this algorithm focused
on initialization and random walk. Consequently, the ACSS
shows supremacy over the CSS in solving the ELD problem.
A modified crow search algorithm (MCSA) was presented
in [50], and the MCSA differs from the original CSA in terms
of selecting the new crows and tuning the flight length. Phasor
particle swarm optimization (PPSO) has been suggested for
solving convex and nonconvex/nonsmooth ELD problems,
as found in [51]. PPSO is endowed with convergence abil-
ity and higher performance due to the substitution of the
control parameters of the basic PSO with phasor angles.
The author in [52] suggested the solution of large-scale
multifuel ED problems considering valve-point effects via
a dual-population adaptive differential evolution (DPADE).
In this study, a dual-population mechanism was used to
enhance the searching capability, and an adaptive technology
was utilized to elude the unsuitable parameters and to tune
two parameters of great importance. An emended salp swarm
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algorithm (ESSA) for solving the economic emission power
dispatch (EED) problem was suggested in [53]. In this study,
the reproduction cycle of salp was integrated into the clas-
sical salp swarm algorithm (SSA) to prevent the algorithm
from being caught in the local minimum and guarantee the
diversity of the swarm. The balance between exploitation
and exploration is a feature achieved by the proposed ESSA.
The ESSA successfully handles single and multiobjective ED
problems and outperforms several methods reported in the
literature.

A continuous GRASP (greedy randomized adaptive search
procedure) algorithm has been hybridized with differential
evolution (DE) for solving ED problems [54]. The proposed
algorithm (C-GRASP-DE) is vested with the aptitude for
global searching and the ability to avoid local optimal stag-
nation. A hybrid grey wolf optimization (HGWO) was suc-
cessfully applied for solving the ED problem in [55]. This
HGWO combines the advantages of both GWO and the DE.
The crossover and mutation operators of the DE are integrated
into the classical GWO algorithm to enhance its efficiency in
handling ED problems. A robust hybrid optimization tech-
nique was designed for solving the ELD problem with wind
uncertainty in [56]. This approach exploits the merits of both
the genetic algorithm (GA) and adaptive simulated anneal-
ing (ASA). The diversity of the population is preserved by
utilizing the nonuniform mutation of the GA. Self-adaptive
mutation and crossover frameworks are incorporated along
with ASA with the aim of facilitating the selection of the
best parameters. Short computational times and convergences
rate are the most appealing characteristics of the proposed
method.

The hybridization of three metaheuristic algorithms, ant
colony optimization (ACO), artificial bee colony algo-
rithm (ABC) and harmonic search (HS), is presented in [44].
In this hybrid algorithm, each algorithm fills its own role.
The task of seeking the initial solution set is handled by the
ACO algorithm. The ABC algorithm checks and enhances
the solutions generated by the ACO algorithm, while the HS
algorithm removes the mediocre solutions from the solution
set and substitutes them with those of higher quality. The
authors in [57] combined the modified PSO (MPSO) and
genetic algorithm (MPSO-GA) to solve nonsmooth as well
as nonconvex ED problems. The initialization is performed
by the GA, and the results are conveyed to the MPSO. The
exploration of all search spaces is not necessary in MPSO-GA
since this work is assigned to the GA. The results reveal the
supremacy of the MPSO-GA over both the MPSO and the
GA. A hybrid optimization method that integrates PSO and
termite colony optimization (TCO), known as HPSTCO, has
been developed and applied for solving the dynamic eco-
nomic dispatch (DED) problem [58]. In this HPSTCO algo-
rithm, PSO iterations are tasked with global searching, while
TCO iterations are assigned to explore the vicinity of the
global solution. A study by [59] proposed the hybridization
of competitive algorithms (ICAs) and sequential quadratic
programming (SQP), known as HIC-SQP, for solving ELD
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problems with wind power. Although the ICA is a meta-
heuristic algorithm, it presents the disadvantage of being
caught into local optima as the number of imperialists rises.
The SQP has been employed to palliate this demerit, and the
role of the SQP is to adjust the results of the ICA to improve
its performance. A robust hybrid gravitational search algo-
rithm (RHGSA) for handling ED problems was addressed
in [60]. The efficiency of the classical GSA was improved
thanks to the piecewise linear chaotic map that enhances
the global search capability and the sequential quadratic
programming that boosts the speed of the local search. The
authors in [61] suggested a solution to the ED problem con-
sidering smooth cost function features by using a combina-
tion of lambda iteration and simulated annealing methods
(MHLSA). In the proposed approach, the demerits of the SA,
such as poor initialization and difficulty when performing
global searches, are alleviated by using lambda iterations.
Moreover, this method involves multiple searches to discover
the locality with the best-suited global optimal solutions.
The metropolis biogeography-based optimization-sequential
quadratic programming (MpBBO-SQP) algorithm has been
proposed to cope with the weakness of BBO [62]. A metropo-
lis criterion of the simulated annealing (SA) algorithm is
introduced in BBO to provide control over migrated indi-
viduals, thus improving the exploration quality. The solu-
tions generated by MpBBO are adjusted by SQP to increase
the performance of the MpBBO-SQP algorithm. 3, 13 and
40 generating units are used to test the validity of the proposed
algorithm.

An enhanced bat algorithm (EBA) for solving the ED
problem was presented in [63]. The modifications have been
conducted on the classical BA, which contains the inertia
weight, population distribution, pulse emission rate and loud-
ness. A modified 6 bat algorithm is presented in [64]. The
proposed approach transforms the Cartesian search space into
polar coordinates as a means for providing strong search
capacity. In this method, three modifications are introduced
into the BA: 1) Lévy flight and a genetic mutation opera-
tor are employed to increase the population diversity, and
2) the loudness parameters are tuned to accelerate the con-
vergence rate. Moreover, an adaptive strategy is adopted
to facilitate the selection of the best modification to avoid
local optima.

A combination of PSO and the BA has been proposed for
solving ED problems [65]. In this hybrid algorithm, the PSO
integrates the frequency behavior of the bat algorithm to
accelerate its velocity updates. The loudness of the bat algo-
rithm is utilized to address boundary constraint violations as
long as the solution improves. The authors in [66] suggested
the multiobjective chaotic bat algorithm (MOCBA) to handle
the EED problem. The chaotic map is introduced to modify
both the loudness and the pulse emission rate with the purpose
of preventing premature convergence. A Pareto optimal front
has been employed to facilitate the simultaneous minimiza-
tion of fuel and emission.
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Most of the abovementioned papers reveal that the balance
between exploration and exploitation is extremely important.
A novel algorithmic framework for solving economic load
dispatch problem is proposed in this paper. To the best of the
authors’ knowledge, the Cauchy-Gaussian quantum -behaved
bat algorithm has never been applied for solving the ELD
problem. The quantum theory is introduced into classical BA
to ameliorate the searching capability. Moreover, Gaussian
and Cauchy mutations are used to improve the population
diversity and to enable the algorithm to escape from local
optima. To validate the proposed algorithm, the CGQBA
is tested on six benchmark functions and applied to solve
ELD problems containing 3, 6, 20, 40, 110 and 160 gen-
erating units. The rest of the paper is organized as fol-
lows: Section II provides details about the formulation of the
ELD problem. Section III explains the Bat Algorithm (BA)
and the Cauchy-Gaussian quantum-behaved bat algorithm
(CGQBA). Section IV portrays various test systems and the
simulation results of the proposed algorithm in compari-
son with other well-known algorithms reported in the lit-
erature. Finally, in Section V, the conclusion of the paper
is drawn.

Il. ED PROBLEM FORMULATION
This section explains the practical formulation of the

ED problem with an objective function subject to con-
straints [49], [67], [68].

A. OBJECTIVE FUNCTIONS
The quadratic fuel cost function of the thermal units is mini-
mized according to the following expression:

L/ 8 Ng
min F =Y F(P) =) (aj+bPi+¢P}) (1)
PeRMs i s
where N, is the total number of generating units, Fj (Pj) is the
fuel cost of the j* generating unit (in $/hr), Pj is the power
generated by the j generating unit in MW, and aj, bj and ¢;
are the cost coefficients of the j generator.
For the case that takes the valve-point loading effect into
consideration, the objective function is expressed as follows:

min F
PeRMe

=

3oty sy (1)
2

where e; and f; are the constants for the valve-point effects of
generators.
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For the case where multiple fuel options are presented,
the fuel cost of the j™ generator is given by

Fj (P))
aijjz + bj1P + lep, fuel 1,P;nin < Pj < le
asz]z +bpP +cpP, fuel2,Pj < P; < Pp 3

ajkPj2 + bjkP + cik P, fuel k,Pj—y < Pj < P
Every generator with k fuel options contains k discrete
regions.

B. OPTIMIZATION CONSTRAINTS

The equality and inequality constraints of the ED problem
are the power-balance equality and power generation limits,
which are described by the following two equations:

Ng
Y Pi=Pp+P @)
J=1
P]I_nin < Pj < Pjgnax 5)

where Pj, Pp, Py, Pmm and Pmax are the generation of the

generator unit (in MW) the total power demand (in MW),
and the minimum and maximum power generation limits of
the /" generator, respectively. Py represents the line losses (in
MW), and its value is obtained using B coefficients, given by:

E g
PL=Y"Y PB;Pi+ Z BojPj + Boo (6)

j=1i=1

where P; and P; represent the power injection at the i and
jth buses, respectively, and Bj; indicates the loss coefficients,
which are frequently assumed to be constant under normal
operating conditions.

C. PRACTICAL OPERATING CONSTRAINTS OF
GENERATORS

1) POZs (PROHIBITED OPERATING ZONES)

Because of the operation of the steam valve or vibrations
in the shaft bearings, the operating zones are considered.
In practice, operations in such areas must be prevented to
attain the best fuel economy [69].The feasible operating
zones of unit j are formulated as follows:

min . /
Pj <P =< Pqu

Pied Py <P <P k=23 .mj=12.n
P, < Pj < P,
@)

where n;, P]l.k, P]’fk are the number of prohibited zones and the

lower and upper power outputs of the k™ prohibited zone of
the /™ generator, respectively.
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2) RAMP RATE LIMITS
The physical limitations of shutting down and starting up
generators restrict ramp rate limits, which are formulated by
the following two conditions:

Limitation of the increase in generation:

0
P = P i < URj ®)
Limitation of the decrease in generation:
0
P e Pj < DRj ©)]

where P](.), P;j, UR;, DR; are the previous and current power
outputs and the downramp and the upramp limits for the
th generator, respectively.

Combining (8) and (9) with (5) leads to the following
generation limits:

P<P <P (10)
in which
Pj = max (P}“i“, P - DR,-) (11)
and
P; = min (P;“a", P+ URj) (12)

Combining this with (2), the ED problem can be mathemati-
cally described as follows:

NX
min F = Fj (P,')
PeRNs i '
Ng
= Z (Clj + DP; + Cijz) + ‘éf,' sin (j (ijin — Pj))’
j=1
(13a)
NS
such that ZR,' =Pp+PL
j=1
in p0 /
max (P, PO — DR;) < P < P4
Pju,k—l <P <P w k=2,3,.n,j=12..n
P!, <P <min (P}“ﬁ*, P+ UR,-) (13b)

lll. THE BAT ALGORITHM

A. THE BASIC BAT ALGORITHM

The bat algorithm (BA) was designed by Yang in 2010 [70]

and was inspired by the echolocation behavior of microbats

while seeking prey, foraging, and avoiding obstacles [71].
The echolocation characteristics of microbats are modeled

via three rules as described in [71]:

1) Each microbat uses echolocation to approximate the
distances between prey and neighborhoods.

2) Flying is performed to look for prey and is done at
random with velocity V' at position X’ with a predeter-
mined frequency f™", varying wavelength A and loud-
ness A. Bats can spontaneously tune the wavelengths
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OPTIMIZATION TECHNIQUE ABBREVIATIONS
Artificial Algae Algorithm AAA[99]

Artificial Cooperative Search Algorithm ACS[92]

Adaptive Charged System Search ACSS[49]
Adaptive Differential Evolution with Multiple Mutation Strategies ADE-MMS[98]
Ameliorated Grey Wolf Optimization AGWO[107]

Bat Algorithm

Biogeography-Based Optimization

Biogeography-based Particle Swarm Optimization
Backtracking Search Algorithm

Chaotic Bat Algorithm

Cross-Entropy Method and Sequential Quadratic Programming
Conventional Genetic Algorithm with Multiplier Lagrange
Cauchy-Gaussian Quantum-Behaved Bat Algorithm
Coulomb’s and Franklin’s Laws Theory Algorithm Optimizer
Chaotic JAYA

Chaotic Krill Herd Algorithm

Continuous Quick Group Search Optimizer

Crow Search Algorithm

Cuckoo Search Algorithm

Competitive Swarm Optimizer

Differential Evolution Algorithm Biogeography-Based Optimization
Dual-Population Adaptive Differential Evolution

Enhanced Bat Algorithm

Emended Salp Swarm Algorithm

Full Mixed-Integer Linear Programming
Genetic Algorithm

Genetic Algorithm and Ant colony algorithm for continuous domains

Genetic Algorithm with active power optimization method

Genetic Algorithm-Pattern Search and Sequential Quadratic Programming

Gaussian Quantum-Behaved Bat Algorithm

Group Search Optimizer

Grey Wolf Optimization

Hybrid Artificial Algae Algorithm

Honey Bee Mating Optimization

Hopfield Modeling

Improved Genetic Algorithm

Improved Genetic Algorithm with Multiplier Lagrange

Interactive Honey Bee Mating Optimization

Self-Adaptive Evolution Algorithm with Improved Mutation Strategy
Improved Orthogonal Design Particle Swarm Optimization Algorithm

Improved Orthogonal Design Particle Swarm Optimization Algorithm
Global

BA [63],[881,[97]

BBO[94],[102],[111]

BLPSO[96]
BSA[90],[94]
CBA[67]
CE-SQP[87]
CGA_MU[67]
CGQBA
CFA[114]
CIAYA[101]
CKH[18]
CQGSO[95]
CSAJ[50]
CSA[117]
CSO[105]
DE-BBO[111]
DPADE[98]
EBA[97]
ESSA[53]
FMILP[91]
GA[90]
GA-API[90]
GA-APO[90]
GA-PS-SQP[90]
GQBA
GSO[67]
GWO[32],[100]
HAAA[99]
HBMO[102]
HM[93]
IGA[100]
IGA_MU[67]
IHBMO[102]

IMSaDE[98]
I0ODPSO[110]

I0DPSO-G[110]

3211



IEEE Access

F. X. Rugema et al.: CGQBA Applied to Solve the ELD Problem

TABLE 1. (Continued.) List of abbreviations.
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Improved Orthogonal Design Particle Swarm Optimization Algorithm

Local

Krill Herd Algorithm

Lambda Iteration

Modified 6-Bat Algorithm

Modified Artificial Bee Colony Algorithm
Memory-Based Differential Evolution Algorithm
Modified Crow Search Algorithm

Modified Particle Swarm Optimization

Modified Sub-Gradient-Harmony Search algorithm
Modified Social Spider Algorithm

Non inferior Grey Wolf Optimization

New Particle Swarm Optimization

Natural Rank Harmony Search

Natural Tournament Harmony Search

Natural Proportional Harmony Search

Natural Global-worst Harmony Search

Genetic Algorithm with active power optimization based on the Newton’s

second order approach method

Oppositional-based Grey Wolf Optimization
Oppositional Invasive Weed Optimization

Opposition based Krill Herd Algorithm

Orthogonal Learning Competitive Swarm Optimizer
Oppositional Real Coded Chemical Reaction Optimization
Pseudo-inspired Chaotic Bat Algorithm

Phasor Particle Swarm Optimization algorithm

Pattern Search

Particle Swarm Optimization algorithm

Particle Swarm Optimization Local Random Search
Quantum-Behaved Bat Algorithm

Quasi-Oppositional Teaching Learning Based Optimization
Quantum Particle Swarm Optimization Method1

Quantum Particle Swarm Optimization
Real Coded Chemical Reaction Optimization

Simulated annealing based optimization
Self-Adaptive Differential Evolution Algorithm
Shuffled Differential Evolution

Semi Definite Programming
Species-based quantum particle swarm optimization

Salp Swarm Algorithm
Social Spider Algorithm

Teaching—Learning Based Optimization

IODPSO-L[110]

KHAJ[113]
A-Iteration[97]
M 0-BA[64]
MABC[102]
MBDE[98]
MCSA[50]
MPSO[100]
MSG-HS[90]
MSSAJ46]
NGWO[100]
NPSO[100]
NRHS[89]
NTHS[89]
NPHS[89]
NGHS[89]

NSOA[90]

OGWO[104]
OIWO[104]

OKHA[112]
OLCSO[105]
ORCCRO[111]
PI-CBA[106]
PPSO[51]
PS[90]
PSO[90]
PSO-LRS[101]
QBA
QOTLBO[32]
QPSO-M1[109]
QPSO[109]
RCCRO[116]
SA[50]
SADE[98]
SDE[32]
SDP[108]
SQPSO[103]
SSA[53]
SSA[21]
TLBO[32]
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TABLE 2. Benchmark functions data.

Benchmark Functions n Search Space Global Minimum

W=y (100(:(,*] e 4 —1)T 00 [3030F o
A= (= 10cos2,) +10) 0 [sn2s0f o
JASED (Z,. x/f 30 [-100,00]  -10316285
filx)=4x 215 +%xf X, —4x) +4x 2 [-58] 0
f,(3)=max, {x 1 <i <n) 0 [100100F o
Sle)= ﬁl'(x’ -1y _HL'CO{X’ :[:DOJH 0 60060 o

(or frequencies) of their emitted pulses and tune the rate
of pulse emission r; € [0, 1] based on the vicinity of
their objective.
3) The loudness is supposed to change from a large (pos-
itive) A° to the least constant value A™".
Each bat i possesses a position X’, a velocity V' and a fre-
quency f! in d— dimensional space, and these characteristics
should be updated iteratively towards the current best position
as follows:

fi zfmin +7r (fmax _fmin) (14)
ViG+1) = Vi) +fi (X" (t) — Xbest (t)) (15)
Xt+)=X' 0O +Vi@+1 (16)

where 1, f™ M and £7 are a uniformly distributed ran-
dom number in the range [0, 1]; the minimum tolerable fre-
quency, the maximum tolerable frequency, and the frequency
of the i bat, respectively. As given in [71], the current ED
problem assumes that the values of f™" and f™* are set
to 0 and 100, respectively. ¢ is the current iteration num-
ber, and X?¢" is the location (solution) that possesses the
best fitness in the current population. At initialization, V' is
assumed to be 0.

Each bat owns a new solution that can be generated locally
through a random walk as follows:

X (1) = XM 4 eAl (1) (17)

where ¢ is a random number uniformly drawn from [0, 1] and
A (¢) is the loudness.

Once the bat has discovered its prey, the loudness continues
to decline while the pulse rate emission continues to rise.
The loudness A’ and the pulse emission rate R are iteratively
updated as follows:

At +1) = ad (1) (18)
R (t+1) =R (0)[1 —exp(—y1)] (19)
where A’ (0) € [1, 2] and R (0) € [0, 1] are randomly gener-
ated within their respective limits. For the sake of simplicity,

we set = y = 0.9, as in [72]. The pseudocode of the bat
algorithm is written as follows [71]:

VOLUME 9, 2021

Initialize the bat population X’ (i = 1,2, ..., N) and V';
Define the pulse frequency f?, pulse rate R’ and
loudness A:

while (r < T) do

Generate new solutions by adjusting the frequency and
updating the velocities and  positions  using
equations (14)—(16);

if (rand > R') then

Select a solution among the best solutions randomly;
Generate a local solution around the selected best solution
using equation (17);

end if

if (rand < A" & &f (X') < f (X"*")) then

Accept the new solutions;

Increase R’ and reduce A’ using equations (18) and (19);
end if

Rank the bats and find the current X%5;

t=t+1;

end while

Output the best solution X2

B. QUANTUM-BEHAVED BAT ALGORITHM

The quantum-behaved bat algorithm (QBA) is inspired
by [73]-[75]. Some variants of the quantum-behaved bat
algorithm are addressed in [76]-[78]. In [76], the frequency
equation of the proposed algorithm includes the bats’ capa-
bility of self-adaptive compensation for Doppler effects in
echoes. Moreover, the algorithm formulates the bats’ habitat
selection as the selection between their quantum behaviors
and mechanical behaviors. In [77], the presented algorithm
possesses its own way of generating a new solution different
from that of the original BA. The position of each bat is
determined by both the current optimal solution and the mean
best position, and the incorporation of quantum-behaved bats
enables improvement of the population diversity and prevents
the bats from falling into local minima. The improved version
of [77] is addressed in [78].

In our paper, quantum theory is applied to the bat
algorithm, and then two mutation operators, Gaussian and
Cauchy, are incorporated. In the QBA, the bats possess quan-
tum behavior, and their positions are updated as follows:

Xi@t+1)
XPst @y + BIMPS (1) — X ()| In(1/u), k=05
xbet () — g (M (1) = X' ()| In (1 /u), k <0.5
(20)
where both u and k are random numbers in the range
[0,1] generated by the uniform distribution and g is the
contraction-expansion coefficient, which can be adjusted for

the sake of controlling the convergence speeds of the algo-
rithms. It is defined as

B=pBo+ T —1)-(B1—po)/T 2n

where By and B; are the initial and final values of 8,
respectively.
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TABLE 3. Comparison of various algorithm mean and standard deviation for benchmark functions [85].

Method 5 S S Js Ss S
GA Mean 338.5616 0.6509 97499145 —1.0298 7961 1.0038
Std. 361.497 0.3594 25949593 3.1314 x10°* 1.5063 6.7545x10%
PSO Mean 373582 20.7863 1.1979x10"* —1.0160 0.4123 0.2323
Std. 32,1436 5.94 2.1109x10%2 1.2786x10%2 025 0.4434
GSO Mean 49 8359 1.0179 5.7829 —1 031628 01078 3 0792x10°2
Std. 301771 0.9509 36813 0 3998 1x107? 3 08671072
FEP Mean  5.06 4 6x1012 5.7829x107 —1.03 0.3 1.6x102
Std. 5.87 1.2x102 1.6x102 4.9x10% 0.5 2.2x102
CEP Mean 617 89 5.0x10? —1.03 2 8.6x107
Std. 13.61 231 6.6x102 49x10% 1.2 012
FES Mean 3328 0.16 1.4x10 —1.0316 5.5x107 3.7x102
Std. 4313 0.33 5.3x10% 6.0x107 6.5x10 5.0x102
CES Mean 669 70.82 1.3x10" —1.0316 0.35 0.38
Std. 1445 21.49 8 5x10°F 6.0x107 042 0.77
RCGA-IMM  Mean 5.9087x10%  1.2622x10-*  2.9568x10-™ —1.0316284535 1.3619x10 1.3310x10-2
Std. 14870 x10%  7.6639x10-! 1.7137x10-13 1.5621x10-15 2.0693x 10 3.1219x10-3
BA Mean  90462737.63 2583475 3IR479_ 1266 -0.734473977 72.5943 361.3092
Std. 5380299535 52.0387 10344 4701 0.58963 TR4R1 91.109
OQBA Mean 22 8296 0 3.41 x10-4 -1.031628453 8.36 x 10718 0
Std. 0.30916 0 1.69 x10-20 9.6Tx10-10 4.85 x10-17 0
GOBA Mean 22 6054 0 9.94 x10-45 -1.031628453 1.58 x102 0
Std. 0.23954 0 487 x10-4 5.59 x10-10 980 x10-2* 0
CGOBA Mean 22,3385 0 5.76 x10-% -1.031628452 3.49 x10°% 0
Std. 26.336 0 2.95 x10-* 1.09 x10* 8.90 x10- 0

T is the maximum number of iterations, and ¢ is the current

iteration number.

system 1 with load demand of 850 MW.

TABLE 4. Optimal generations and cost obtained by the CGQBA for test

We adopt Bp = 1 and 81 = 0.5 as in [74].

Mbest (t)

— (Mbest,l (t) , Mbest,Z (t) el Mbest,d (t))

N

i=1
N

i=1

N
i,3 id
X P (l‘),...,]v'glp (1)
=

N

}VZ ", }VZP“@), %

i=1

(22)

where M%¢ is the mean best position and represents the
mean of all the best positions P’ (f) of the population,
P! (1) represents the current best position of the i bat.
N denotes the size of swarm, and d indicates the dimension
of the problem. The pseudocode of the quantum-behaved bat
algorithm is shown as follows:
Initialize the bat population Xi(i =1,2,...,N)and Vi
Define the pulse frequency f, pulse rate R’ and

loudness A’;
while (r < T) do

Generate new solutions by adjusting the frequency and

updating  the
equations (14)—(16);
if (rand < py)I/

velocities

and positions  using

Generate new solutions using equations (20)—(22);

End if
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Unit QBA GQBA CGQBA

1 300.280891  300.2668632 300.266887
2 399.985961 400 400

3 149.733148  149.7331368 149.733113
Total Power (MW) 850 850 850

Total Cost($/hr) 8234.07888  8234.071766  8234.071766

If (rand > RY)

Generate a local solution around the selected best solution
using equation (17);

end if

if (rand < A && f (X') < f (X"*")) then

Accept the new solutions;
Increase R' and reduce A’ using equations (18) and (19);

end if

Rank the bats and find the current X%5;

t=t+1;
end while

Output the best solution X2

C. THE CAUCHY-GAUSSIAN QUANTUM-BEHAVED BAT

ALGORITHM

Gaussian, Cauchy and exponential probability distributions
are more effective than uniform probability functions in terms
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TABLE 5. Best solution obtained for test 1.

Method Best cost($/h)
CGQBA 8234.07
GQBA 8234.07
QBA 8234.07
BA[63][88] 8234.07
NTHS[89] 8234.07
NPHS[89] 8234.07
NGHS[89] 8234.07
CE-SQP[87] 8234.07
BSA[90] 8234.07
GA-API[90] 8234.07
GA-PS-SQP[90] 8234.07
PS[90] 8234.1
GA[90] 8237.6

TABLE 6. Optimal generations and cost obtained by the CGQBA for test
system 2 with load demand of 283.4 MW.

Unit QBA GQBA CGQBA

1 199.59965 199.59965  199.59964
2 20 20.000005 20

3 23.531683 23.994822  24.14266
4 18.6866101 15277355  17.62494
5 18.9422879  20.296627  18.583482
6 13.5917104  15.011541  14.348708
Total power(MW) 294.3519 294.18 294.29945
Transmission loss(MW) 10.9519 10.78 10.89945
Total cost($/hr) 925.37763 92491811  924.90309

of generating random numbers to update the velocity equation
of the classical PSO [79]. Inspired by [80]-[82], in which two
or more mutation operators are combined, we find that the
incorporation of both Gaussian and Cauchy operators into the
quantum-behaved bat algorithm improves its performance
when applied to the ELD problem. The explanation of these
operators is given below:

First, the Gaussian mutation operator is applied to the
quantum bat algorithm. The one-dimensional Gaussian den-
sity function is given by the following equation [83], [84]:

|:_(X_£L)2i|
el (23)

For 4 = 0 and o = 1, the Gaussian distributed function is
given by equation (24) [83], [84]:

8 ()= o2

e[#} 24)

1
g(x)—m
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TABLE 7. Comparison of fuel costs and statistical results for 50 trial runs
for test 2.

Method Best Mean Worst Std.dev.
CGQBA 924903  924.903  926.923 0.7016
GQBA 924918 925341  927.05 0.659
QBA 925377 926466 928.11 1.0266
FMILP[91] 925.413 NA NA NA
BSA[90] 925.413 925.554  926.299 NA
ACS[92] 925472 925764 925984 NA
MSG-HS[90] 925.641 926.851  928.599 NA
PSO[90] 926.388  925.758  928.427 NA
NSOA[90] 984.94 NA 992.48 NA
GA-APO[90] 996.04 NA 1101.49 NA
GA[90] 996.04 NA 1117.13 NA

In this section, we follow the same line of study as in [79].
The generation of random numbers is achieved by using the
absolute value |-| of the Gaussian probability distribution with
zero mean and unit variance, i.e., |N(0, 1)|, and then mapping
to a truncated signal given by G = 0.33= |N(0, 1)|. The
combination of the QBA with the Gaussian mutation operator
is expressed by equation (25). Note that the parameter
of equation (20) has been substituted by G as indicated in
equation (25).

X @t+1
XSy + G- M () = X' ()| - In(1/w), k > 0.5
xXPet(ty — G- |MP" (1) = X' ()| -In(1/u) , k < 0.5
(25)

The pseudocode of the Gaussian quantum-behaved bat algo-

rithm is shown as follows:
Initialize the bat population Xi(i =1,2,...,N)and Vi
Define the pulse frequency f, pulse rate R’ and
loudness A:
while (r < T) do
Generate new solutions by adjusting the frequency and
updating the velocities and  positions  using
equations (14)—(16);
if (rand < p,)
Generate new solutions using equations (22) and (25);
End if
If (rand > R')
Generate a local solution around the selected best solution
using equation (17);
end if
if (rand < A" && f (X') < f (X"*")) then
Accept the new solutions;
Increase R and reduce A’ using equations (18) and (19);
end if
Rank the bats and find the current X%¢5*;
t=t+1;
end while
Output the best solution X2
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TABLE 8. Optimal generations and cost obtained by the CGQBA for test

system 3 with load demand of 2500 MW.

Unit QBA GQBA CGQBA

1 45520312 44242795 4559158

2 166.58391 178.23783  155.89431
3 112.56265 106.24014  106.35206
4 92.654954  87.490627  91.13474

5 106.60247  110.34924  106.13723
6 85.901151  80.291207  86.680916
7 92.681221  76.92847 93.696409
8 110.19963  106.012 106.93367
9 79.410645  83.172127  83.655249
10 96.392598  115.4067 119.55964
11 227.84151 255.69318  234.79775
12 2733376  257.5553 261.00972
13 152.31703  147.58458  150.6505

14 41901902  56.353802  42.436675
15 165.27139  153.06742  169.24732
16 37.020092  38.469137  38.02095

17 60.912431  60.205659  68.911584
18 82.746576  85.156793  88.216855
19 91.498451  87.871493  66.67797

20 54.155261 56.412857  58.134902
Total power(MW) 2585.1946  2584.9265  2584.0643
Transmission loss(MW) 85.1946 84.926513  84.066567
Total cost($/hr) 62456.389  62455.862  62455.413

TABLE 9. Comparison of fuel costs and statistical results for 50 trial runs

for test system 3.

Method Best Mean Worst Std. dev.
CGQBA 62455.41276  62455.4912  62469.123 1.65
GQBA 62455.86154  62455.8921  62471.521 1.73
QBA 62456.38915  62456.4211  62483.124 1.92
ADE-MMS[98]  62456.50744  62456.5921  62457.0609  0.132035
BLPSO[96] 62456.58 62456.64 62456.65 0.01
EBA[97] 62456.6182 NA NA NA
CBA[67] 62456.6328 62456.6348  62501.6714  0.3879
FMILP[91] 62,456.63 NA NA NA
CQGSO[95] 62456.6331 62456.6331  62456.6334 NA
CKH[18] 62456.6331 62456.788 62456.8755 NA
GSO[67] 62456.6332 62456.6336  62456.6353  NA
HM[93] 62456.6341 NA NA NA
A-Iteration[93] 62456.6391 NA NA NA
BSA[94] 62456.6925 62457.1517  62458.1272  NA
BBO[%4] 62456.7793 62456.7928  62456.7928  NA
BA[97] 62456.8042 NA NA NA

NA-not applicable/available

Second, the Cauchy mutation possesses the ability to escape
from local optima [83] and it is applied to enhance the
Gaussian quantum-behaved bat algorithm. The definition of
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TABLE 10. Optimal generations and cost obtained by the CGQBA for test

system 4 with load demand of 10500 MW.

Unit QBA GQBA CGQBA

1 96.37558191  108.9402578  38.29980995
2 113.9893614  74.05190127  36.12592729
3 67.89653399  60.03677682  113.6500676
4 94.41242906  129.9375219  187.2948846
5 47 96.69359336  95.13176808
6 120.4674729  139.2308751  105.4054629
7 184.802235 2949687324  260.8164129
8 209.800654 238.5052594  291.2094761
9 209.7977596  141.6799835  284.6188033
10 299.9709768  132.5661188  299.955829
11 168.729435 195.7018518  168.7961964
12 133.5908606  243.5966166  168.7907498
13 304.5150561  394.279371 498.67897
14 304.5194491  484.0380598  214.7993623
15 4782026592  214.7601696  304.5096857
16 484.0101884  484.6636678  483.9627022
17 499.9795361  491.6999031  498.9084971
18 489.2788263  446.2404689  489.2764528
19 550 549.9253604  331.7827427
20 549.970328 549.9131324  511.2844827
21 549.9249644  549.9392091  538.3680524
22 549.9441271  543.0820748  528.6901047
23 540.8997709  523.873145 544.5483429
24 549.8243003  523.4191503  548.1112351
25 549.969797 549.9749201  547.9145335
26 549.9224235  523.288375 523.2877928
27 19.80489767  10.0030528 39.82719294
28 17.33344993  25.85507792  34.38120645
29 10.00379861  13.89069239  14.7191821
30 96.97717404  76.12002789  56.43992168
31 190 159.8608411  188.7411189
32 159.2479548  189.9828386  150.7052761
33 190 189.9830997  189.7172242
34 94.33221055  127.0758906  198.5541676
35 90.00258885  90.30890927  172.222451
36 164.7961243  199.987053 165.0439102
37 100.620832 66.9926599 80.43178821
38 94.22494779  99.30141186  25.00096848
39 25 54.35237509  58.71532444
40 549.8612968  511.2795702  511.2818704

Total power (MW) 10500

Total cost ($/hr)

121409.9813

10500
121407.1246

10500
121406.89

the one-dimensional Cauchy density function is given by the
following equation [83], [84]:

1 1 X
F; (x) = 3 + = arctan (%)

X € [—o0, o0], and k > 0 is the scale factor.

(26)
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TABLE 11. Comparison of fuel costs and statistical results for 50 trial
runs for test system 4.

Method Best Mean Worst Std. dev.
PI-CBA[106] 121403.5812  121454.52 121497.25 NA
HAAA[99] 121403.7 121425.56 121428.9 5.246522
AGWO[107] 121404.3 121412.3 121446.7 7.504
CGQBA 121406.8912  121411.505 121422931 3.97777
GQBA 121407.1246  121420.554  121440.312 11.45843
AAA[99] 121407.8 121429.717  NA 11.54862
QBA 121409.9813 121423246  121438.145 9.060165
MCSA[50] 121412.14 121413.28 121414.324 0.8761
ESSA[53] 121412.5 121517 121450.6 31.0236
PPSO[51] 121412.52 121413.95 121412.59 0.0563
0-MBA[64] 121412.5355  121412.786 121412948 NA
SDP[108] 121412.5355 NA NA NA
FMILP[91] 121412.54 NA NA NA
OIWO[104] 121412.54 NA NA NA
CBA[67] 121412.5468  121418.983  121436.15 1.611
SSA[53] 121412.55 NA NA NA
SQPSO[103] 121412.57 121455.7 121709.558 49.8076
MABC[102] 121412.68 121431.576  1214493.19 18.16
THBMO [102] 121412.7533  121875.58 NA NA
CHK[18] 121412.7553  121412.849  121412.905 0.0758
CE-SQP[76] 121412.88 121423.65 NA NA
MSSA[58] 121413.46 121466.61 121521.73 28.6932
BA[97] 121,414.91 122,094.67 123,447.70 NA
IODPSO-G[110]  121414.93 121426.42 121416.54 17.75
BSA[94] 121415.6139  121474.882 121524958 NA
OLCSO [105] 121415.8153  121504.049  121460.778 21.7993
HBMO [102] 121416.03 122019.65 NA NA
IODPSO-L[110]  121420.98 121431.62 121424.62 18.69
SSA [53] 121426 121728.1 121500.5 71.91175
BBO[102] 121426.95 121508.03 121688.66 NA
QPSO-M1[109]  121435.59 121490.02 121536.1 29.65
CSO[105] 121467.2964  121760.917  121540.97 55.3805
QPSO [109] 121468 121670.19 122002.98 1352
NPSO[100] 121704.7391  122221.37 NA NA
CJAYA[101] 121799.88 122581.85 NA NA
NGWO[100] 121881.81 122787.77 NA NA
IGA[100] 121915.93 122811.41 NA NA
PSO-LRS[101] 122035.7946  122558.457 NA NA
MPSO[100] 122252.265 NA NA NA
GWOII[100] 122430.74 123314.39 NA NA
GWO[100] 122602.37 124796.61 NA NA
GWOI[100] 122678.91 125155.07 NA NA

Then, the Cauchy distributed function is defined by

equation (27):

Jo () =

1 k
T k?+x2

27)

The new candidates are generated by the following equation:
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xi,new

= x4 CA' (1)

(28)

TABLE 12. Optimal generations and cost obtained by the CGQBA for test
system 5 with load demand of 10500 MW.

Unit QBA GQBA CGQBA

1 114 113.99997 114

2 36 114 114

3 120 60.000018  119.99914
4 190 80.000001  189.98586
5 97 47.000024  96.99607
6 68 68.000006  105.45398
7 300 300 300

8 135 135 299.99996
9 300 300 290.98448
10 300 299.9999 300

11 243.5996  374.99999 94

12 318.3991 94.000015  94.000006
13 499.746 500 394.27773
14 500 484.03916  484.04147
15 500 500 484.09761
16 500 500 484.10492
17 500 489.27939  489.25943
18 489.27942 500 489.22382
19 550 549.99987  513.22255
20 550 550 549.99985
21 550 550 524.25615
22 550 550 550

23 550 534.9643 550

24 550 549.99977  523.31601
25 550 550 550

26 550 550 524.64734
27 10 10.000003  10.001824
28 12.463594 10 10.000531
29 10 10.000002  10.000016
30 47 97 87.84134
31 63.884561 190 190

32 190 190 189.99557
33 190 189.99996  189.99346
34 200 200 200

35 200 90 200

36 94.111945 200 164.85813
37 110 110 109.99996
38 25 110 110

39 110 109.99996 110

40 550 550 549.99955
Total power(MW) 11423484 11412.282  11362.557
Transmission loss(MW) 923.48423  912.28235  862.55671
Total cost($/hr) 136439.46  136298.9 136109.16

where C is a random number of Cauchy distributions in the
range [0,1]

The pseudocode of the Cauchy-Gaussian quantum-
behaved bat algorithm is shown as follows:
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TABLE 13. Comparison of fuel costs and statistical results for 50 trial
runs for test system 5.

Method Best Mean Worst Std.de
CGQBA 136109.164 136117.79  136128.43  6.819
GQBA 136298.896  136307.58  136320.13 8.312
HAAA[99] 136433.5 136436.6 136443.4 3.342
AAA[99] 136437.2 136446.07  136464.1 4.584
QBA 136439.461 136449.74  136462.46 8.274
OGWO[69] 136440.62 136442.26 13644598 0.1
GWOI32] 136446.85 136463.96  136492.07 0.098
MCSA[50] 136448.63 136448.72  136448.95 1.101
CSA[50] 136452.487  136453.36  136453.7 2.347
OIWO[104] 136452.677  136452.68 136452.68 NA
OKHA[112] 136575.968  136576.15 136576.64 NA
KHA-IV[113] 136670.37 13667.229  136671.86 NA
ORCCRO[111]  136855.19 NA NA NA
DE/BBO[111] 136950.77 NA NA NA
BBO[111] 137026.82 NA NA NA
QOTLBO[32] 137329.86 NA NA NA
ACS[92] 137,413.73 NA NA NA
TLBO[32] 137814.17 NA NA NA
SDE [32] 138157.46 NA NA NA
Initialize the bat population XiG@ = 1,2,...,N)
and V',

Define the pulse frequency f, pulse rate R’ and
loudness A:

while (r < T) do

Generate new solutions by adjusting the frequency and
updating the velocities and  positions  using
equations (14)—(16);

if (rand < py,)

Generate new solutions using equations (22) and (25);
End if

If (rand > RY)

Generate a local solution around the selected best solution
using equation (28);

end ifx

if (rand < A’ && f (X') < f (Xb¢)) then

Accept the new solutions;
Increase R’ and reduce A’
and (19);

end if

Rank the bats and find the current X%¢5';
t=t+1;

end while

Output the best solution X

The flowchart of the Cauchy-Gaussian quantum-behaved bat
algorithm is given in Fig. 1.

using equations (18)
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Initialize the population of bats X'(i=1,2,...,n),the velocity V', the frequency
f*and the loudness A"

Calculate the fitness value of the initial population
€

T
Yes
‘ Generate new solutions using Equations (22) and (25) ‘
N
Lt
No ///////*\\7—71\\
== Rand>R' —
Yes

| Generate a local solution around the selected best solution |

— Rand<A&&RX)<AX)
Yes

Accept the new solution

Increase R' and Reduce A' using Equations (18 ) and (19)

wle
L)

4
Rank the bats and find the current best X™,
=t

No

e No
<:iWH criteria met? ——

Yes
‘ Output the best solution X" ‘

End

FIGURE 1. The Flowchart of CGQBA.

D. IMPLEMENTATION OF CGQBA TO SOLVE ED
PROBLEM
Step 1: Initialize the population of bats which are bat position
X' and velocity. In this case, X’ corresponds to the power
(P') generated by the i generator whereas n is defined as the
number of generators. The value of X' is randomly generated
within the clearly defined boundaries [Pmi“, Pma"], and the
initial value of V' is set to zero.

Step 2: Initialize frequencies f’, pulse rates R’ and the
loudness A’ for each bat.

Step 3: Fix the maximum number of iterations

Step 4: Calculate the fitness values of all the bats utilizing
the objective function in Equation (1)

Step 5: Generate the new solution by using Equation (22)
and (25)

Step 6: Generate local solution in the vicinity of the best
solution using Equation (28)

Step 7: Update both R’ and A’ using Equation (18) and (19),
respectively.

Step 8: Verify if all the constraints are respected

Step 9: Repeat steps 1 to 8 until the maximum iteration is
achieved.
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TABLE 14. Optimal generations and cost obtained by the CGQBA for test system 6 with load demand of 15000 MW.

Unit BA QBA GQBA CGQBA Unit BA QBA GQBA  CGQBA Unit BA QBA GQBA CGQBA
1 12 2.4 24 12 38 70 70 20 70 75 90 90 90 30
2 2.4 2.4 2.4 2.4 39 100 25 25 25 76 12 12 12 50
3 2.4 2.4 12 2.4 40 120 20 120 120 77 450 450 450 160
4 24 12 24 12 41 180 40 40 180 78 150 150 150 600
5 24 24 12 24 42 50 220 50 220 79 50 200 200 200
6 4 4 4 4 43 440 440 440 440 80 120 20 120 120
7 4 20 20 20 44 560 560 560 560 81 10 10 10 10
8 4 4 4 20 45 150 660 660 660 82 12 12 40 40
9 4 4 4 4 46 700 700 700 700 83 80 80 20 80
10 15.2 76 76 15.2 47 5.4 5.4 5.4 5.4 84 50 200 200 200
11 15.2 76 15.2 76 48 5.4 5.4 5.4 5.4 85 325 325 325 80
12 15.2 76 76 76 49 52 52 8.4 8.4 86 440 440 440 440
13 15.2 15.2 76 76 50 52 8.4 8.4 8.4 87 35 35 35 10
14 100 100 25 25 51 52 52 52 8.4 88 20 20 55 20
15 99.947 25 100 25 52 12 12 12 12 89 20 100 20 20
16 25 100 25 25 53 60 12 12 12 90 220 220 84.992 40
17 155 155 155 155 54 12 12 12 12 91 30 30 140 30
18 155 54.3 155 155 55 12 12 12 12 92 40 40 40 40
19 54.3 155 54.3 155 56 96 25.2 252 25.2 93 440 440 440 440
20 155 155 155 155 57 252 252 252 25.2 94 500 500 500 500
21 197 68.9 68.9 68.9 58 100 100 35 100 95 600 600 600 600
22 68.9 68.9 68.9 68.9 59 35 35 35 35 96 700 700 700 700
23 68.9 68.9 68.9 197 60 45 45 120 45 97 3.6 15 3.6 3.6
24 350 350 350 350 61 120 45 120 45 98 15 3.6 15 3.6
25 400 400 400 400 62 67.1 45 120 45 99 4.4 22 4.4 22
26 400 400 400 400 63 185 185 185 54.3 100 44 4.4 22 4.4
27 500 140 500 500 64 185 185 185 54.3 101 60 60 60 10
28 500 500 500 140 65 543 185 185 185 102 80 41.6 80 80
29 200 50 200 50 66 185 185 54.3 185 103 20.7736 20 20 20
30 25 100 25 100 67 70 70 70 197 104 120 20 20 20
31 10 10 10 50 68 70 70 70 134.2 105 40 40 40 40
32 5 5 5 5 69 70 70 70 70 106 40 40 40 40
33 80 80 80 80 70 360 360 360 360 107 50 50 50 50
34 250 250 250 250 71 400 400 400 400 108 30 30 30 30
35 360 360 360 360 72 400 400 400 400 109 40 40 40 40
36 400 130 130 400 73 60 300 60 60 110 20 20 20 20
37 10 10 40 40 74 250 250 188.31 250

Total power(MW) 15000 15000 15000 15000
Total cost($/hr) 198048 197975.9 197961.454 197853.82

IV. RESULTS AND DISCUSSION

The performance of the GQBA is tested on seven different test
systems, including 3-, 6-, 20-, 40-, 110- and 160-unit systems.
The comparison between the achieved results for the pro-
posed algorithm after 50 independent trial runs and the results
of the recently published algorithms for each test system
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are reported in their respective Tables. The abbreviations
of those algorithms are alphabetically ordered in Table 1.
The number of bats is set to 20 for each of the test systems,
and the maximum number of iterations is 1000. For the sake
of simplifying the comparison, the best fuel costs among the
results are organized in ascending order. MATLAB is used
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TABLE 15. Comparison of fuel costs and statistical results for 50 trial
runs for test system 6.

Method Best Mean Worst gs,
CGQBA 136109.164 136117.79 136128.431 6.8188
GQBA 136298.896  136307.58  136320.128 8.3119
HAAA[99] 136433.5 136436.6 1364434 3.3419
AAA[99] 136437.2 136446.07 136464.1 4.584
QBA 136439.461  136449.74 136462.461 8.2744
OGWO[69] 136440.62 136442.26 13644598 0.1003
GWOI32] 136446.85 136463.96  136492.07 0.098
MCSA[50] 136448.63 136448.72 136448949  1.1005
CSA[50] 136452.487  136453.36  136453.696  2.3465
OIWO[104] 136452.677  136452.68 136452.677 NA
OKHA[112] 136575.968  136576.15  136576.64 NA
KHA-IV[113] 136670.37 13667.229  136671.865 NA
ORCCRO[111]  136855.19 NA NA NA
DE/BBO[111] 136950.77 NA NA NA
BBOJ[111] 137026.82 NA NA NA
QOTLBO[32] 137329.86 NA NA NA
ACS[92] 137,413.73 NA NA NA
TLBO[32] 137814.17 NA NA NA
SDE [32] 138157.46 NA NA NA

to implement the programs on a personal computer with a
2.16 GHz processor and 4 GB RAM running on Windows 10.

A. BENCHMARK FUNCTION VALIDATION

Six benchmark functions are studied in this section to inves-
tigate the performance of the proposed CGQBA. Data for the
benchmark functions are taken from [85] and are described
in Table 2. The proposed CGQBA is applied to the afore-
mentioned benchmark functions, and the mean and standard
deviation of the results are provided in Table 3. Benchmark
function data.

B. TEST SYSTEM 1

This system consists of three generators with a load demand
of 850 MW. In this system, the constraints and valve-point
load effects are taken into account, whereas the transmission
losses are neglected. The system data are taken from [86].
Optimal generations and costs obtained by the QBA, GQBA
and CGQBA for Test System 1 are presented in Table 4.
As shown in Table 4, both the GQBA and CGQBA suc-
cessfully achieve the best solution for the system, which is
$8234.071766/hr.

A comparison of the statistical results of the QBA and
GQBA. The CGQBA and the algorithms available in the
literature, the CE-SQP [87], BA [63], [88], NRHS, NTHS,
NPHS, NGHS [89], BSA, GA-API, GA-PS-SQP, PS, and
GA [90], are provided in Table 5. Since the system size is
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small, the results show that a large number of algorithms
converge to the same optimal solution.

The convergence characteristics of the PSO, BA, QBA,
GQBA and CGQBA algorithms are illustrated in Fig. 2. The
figure reveals that the CGQBA performs better than other
methods because it converges to the optimal solution in early
iterations.
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FIGURE 2. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 1.

C. TEST SYSTEM 2

This system comprises six generating units supplying a load
demand of 283.4 MW. Transmission losses are included.
The data are taken from [20]. Table 6 provides the optimal
generations and costs obtained. The best fuel cost and the
corresponding transmission loss achieved by the CGQBA are
$924.90309 /hr and 10.8994507 MW, respectively.

Table 7 presents a comparison of the statistical results of
the GQBA, QBA and the other reported algorithms (the BSA,
MSG-HS, PSO, NSOA, GA-APO, GA [90], FMILP [91] and
ACS [92]). It is shown that the proposed CGQBA yields
the best fuel cost compared to those obtained by these
algorithms.

Fig. 3 shows the convergence behavior of the generation
cost versus the iteration number for the PSO, BA, QBA,
GQBA and CGQBA algorithms. It is seen in Fig. 3 that both
the GQBA and CGQBA obtain better convergence quality
when compared to other methods, but the CGQBA achieves
the more optimal solution than that of the GQBA.

D. TEST SYSTEM 3

This system consists of twenty generators with a load demand
of 2500 MW. Transmission losses are considered in this
system. The data are taken from [93]. As shown in Table 8,
the best fuel cost and the corresponding transmission loss
obtained by the CGQBA are $62455.413/hr and 84.066567
MW, respectively.
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TABLE 16. Optimal generations and cost obtained by the CGQBA for test system 7 with load demand of 43200 MW.

Unit QBA GQBA CGQBA Unit QBA GQBA  CGQBA Unit QBA GQBA  CGQBA
1 227.0933  233.81598  216.5964 55 274414 273851 309.152 109  410.594 396.436 409.1712
2 195.9504  195.63533 1982955 56 246.252  248.846 251378 110  272.675 254262 324.5515
3 282.1459  285.62708  284.7251 57 287.776  280.595 281.515 111 219.921 225.726 220475

4 230.5025 243.1311 251.5097 58 239.239  241.753  240.72 112 205.74 218.888  206.6354
5 280.0996  257.28591  297.7732 59 419.206  403.438 412.143 113 266.662  272.763  287.208

6 226.9591  247.84226  227.4371 60 336.036  291.233 287.867 114  226.607 249.305 241.0079
7 269.144 271.50048  281.6746 61 225392 226.686 233.38 115 277.139  307.724 307.0386
8 237.1294 24139337  228.6532 62 210.34 212.082 201.943 116 242325 236.906 233.7432
9 408.3086  388.16335  402.7713 63 298915  259.421 292388 117  311.863  285.117 291.4959
10 287.9162  268.1595 312.1391 64 231.47 236.519 235541 118 242.604 248.22 233.3913
11 222.8895 235.68783  237.7522 65 295457  290.801 224.775 119  412.165 391.064 419.5338
12 197.1797  214.87292  190.078 66 232226  238.421 248.043 120 316.936  269.688 273.2213
13 276.0141 292.40361  305.8601 67 268.592  287.789 310961 121  215.587 228.631 223.4569
14 229.962 237.35957  234.4421 68 240453 243737 243396 122 196.579  210.002  196.6607
15 278.5164  272.01704  250.9043 69 405.538  391.796 412768 123 254317 312267 297.0651
16 237.2567  246.32485  221.4511 70 309.807 289.466 290.177 124 223918 246.071 251.1424
17 300.9728  264.77794  302.0016 71 228.565 235396 215507 125  301.106 260.671  241.1329
18 232.2865 248.78486  237.9486 72 205.382  201.969 211.581 126  227.679 250.653 248.1056
19 392.212 387.02355  401.2882 73 286.349  281.244 292.84 127 279.824  279.069 301.3867
20 312.1737  296.72638  326.5094 74 245256 239.996 245952 128  233.759  238.162 233.5128
21 226.6501  231.77791 2319214 75 310456 275725  251.897 129  420.084 412934  404.0258
22 197.063 211.4354 218.5696 76 233.795 244834 241226 130 296415 264.57 299.8126
23 292.0757 280.06253  274.754 71 284.113 262265 242.646 131 225468 237.173  228.3763
24 237.4966  250.44281  221.6351 78 235465  256.772 234.033 132 214.568  217.126  204.9498
25 270.2077  278.02622 2314776 79 420.615  387.347 407.473 133 304.402  289.697 292.1551
26 239.0637  247.02845 2423073 80 295.774  301.053 332.835 134 243486 236.133 2533197
27 315.8967  273.79491  282.1908 81 227.375 233288 219.002 135  286.398  297.03 297.2293
28 228.6293  253.16721  234.6506 82 209.531 204549 206.572 136  242.853 247.032 251.1881
29 409.4493  408.74665  410.2228 83 293.338  296.93 307.039 137 263.238  289.323  264.5257
30 299.7111 29496737  288.6169 84 235.589  248.64 233378 138  239.815  246.224  246.582

31 238.4905 22431581  224.8278 85 276.704  275.855 320.139 139  431.825 400.332 437.3552
32 202.5605 216.78405  181.2199 86 242,191  233.194 238296 140  318.332  283.437 254.2257
33 301.0306  293.39699  290.3968 87 291.338  311.037 283.008 141 228312 236.552 220.1992
34 243.4042 248.88884  238.9507 88 239.895 246349  241.16 142 196.444  211.144 194.6555
35 312.1566 24221789 3063575 89 415.556  388.766 398.357 143  286.516  263.691 317.5469
36 235.2102  246.50897 2333766 90 278.199  296.815 321416 144 232511 245.693 2457314
37 287.3945 281.27257  244.8311 91 228.81 230.231 228852 145  292.133  292.798  258.2503
38 235.6049  240.20485  240.083 92 200.404 217919 196.351 146  240.159 246.009 236.6494
39 391.1708  406.5467 399.198 93 278.972  309.635 275.114 147  258.739  280.041  286.9398
40 290.1982  292.80229  265.0282 94 239.499  258.588 241.157 148  219.256 245911 236.2101
41 224.4584  230.6574 229.5243 95 295.343 280274 274845 149  400.718 383.469 405.3713
42 196.8461 211.09853  210.0145 96 237914  245.153 23848 150  256.386 315 288.918

43 257.7563  240.65049  235.7187 97 266.824  284.199 305.748 151  225.591 236.067 221.5838
44 234.4088  241.2455 238.4017 98 238.721  240.37 228.46 152 196919 21341 216.2399
45 260.8812  291.46462 3022315 99 405.117 404213 423269 153 310978  285.294  263.0905
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TABLE 16. (Continued.) Optimal generations and cost obtained by the CGQBA for test system 7 with load demand of 43200 MW.

46 228.2023  246.90082  235.0699 100 279.788  289.698 281924 154  240.646 234.265 235.5983
47 278.8206  266.45183  301.2073 101 237.677 232469 229336 155 248.105 289.577 300.1288
48 243.6625 249.16848  241.0797 102 209.102 209986 192.28 156 245818 243.671 246.9543
49 419.7121  405.67279  414.1948 103 281.095 260.167 287.194 157  307.999 289.942 288.7732
50 320.4 309.10795  308.6949 104 231.558  237.493  230.856 158  239.115 243.056 248.0565
51 219.6904 231.22114  221.0311 105 265294  262.654 290.264 159 414291 397477 417.7958
52 2104332 206.37627 193.1934 106 238.294 245829 227.676 160  311.462 279.136 311.1688
53 289.7025 271.74649  261.8134 107 285.576  283.312 260.486
54 232.3848  240.44574  243.017 108 230.894 241.386 248.021
Total power(MW) 43200 43200 43200
Total cost($/hr) 10002 9996.14  9994.324
TABLE 17. Comparison of fuel costs and statistical results for 50 trial 990 : : : : : : : :
runs for test system 7.
—P50
980+ BA
Method Best Mean Worst Std. dev. —QBA
— G-0BA
ADE-MMS[98]  9764.9754 9905.535 10250.09  140.2813 ol CG-CBA L
ACSS [49] 9979.8281  9983.098 9985.697  1.1472 z
DPADE[52] 9982.5603  9982.676 9982.865  0.0654 ? ga0 | |
CGQBA 9994.3235  9998.234 10026 2.14 é
PI-CBA[106] 9995.805 10029.08 10069.74 % 950 - ]
GQBA 9996.1387  9997.289 9999.124  0.888992 %
o
CSA[117] 9996.639 9996.639 10014.02  4.9268 940 b i
QBA 10001.991  10002.88 10004.98  0.892378
CBA[67] 10002.86 10006.33 10045.23  3.2106 930 }L_ B
ORCCRO[111] 10004.2 10004.21 10004.45 NA =
920 1 1 | 1 1 1 1 1 1
DE/BBOJ[111] 10007.05 10007.06 10010.26 NA 0 10020 300 a0 500 &0 700 e S0 om0
BBOJ[111] 10008.71 10009.16 10010.59 NA Iteration
RCCRO[116] 10009.518  10009.52 10009.58  NA FIGURE 3. Convergence characteristic of the PSO, BA, QBA, GQBA and
IGA_MUJ67] 10042.474 10042.47 NA NA CGQBA for the test system 2.
MBDEJ[98] 10082.877  10401.58 10811.46  223.9989
IMSaDE[98] 10129224 1034521 10569 6 121.4946 effects. The transmission losses are neglected. The system
CGA_MU[67] 10143724 1014372 NA NA data are t'aken from [86]. As shown in Table 10, the optimal
cost obtained by the CGQBA is $121406.8912/hr.
SADE [98] 10147.443  10281.39 10481.4 80.6311

The CGQBA yields the lowest cost in comparison
with those of the other methods (the CKH [18], GSO,
CBA [67], FMILP [91], A-Iteration, HM [93], BSA,
BBO [94], CQGSO [95], BLPSO [96] BA, EBA [97] and
ADE-MMS [98]), as seen in Table 9.

The convergence characteristics of the PSO, BA, QBA,
GQBA and CGQBA for Test System 3 are illustrated in Fig. 4.
It is shown that the CGQBA obtains the best convergence
property compared to the other methods as it converges to
the optimal solution earlier.

E. TEST SYSTEM 4

This system comprises forty generators supplying a demand
of 10500 MW and incorporating the valve-point loading

3222

Table 11 provides the comparison between the results
obtained by the CGQBA and those obtained by the other
methods (the CHK [18], SSA [21], MSSA [46], CSA,
MCSA [50], PPSO [51], SSA, ESSA [53], 6-MBA [64],
CBA [67], CE-SQP [87], BA [97], FMILP [91], BSA [94],
AAA, HAAA [99], IGA, MPSO, GWO, GWOI, GWOII,
NGWO, NPSO [100], CJAYA, PSO-LRS [101], BBO,
HBMO, IHBMO, MABC [102], SQPSO [103], OIWO [104],
CSO, OLCSO [105], PI-CBA [106], AGWO [107],
SDP [108],QPSO, QPSO-M1 [109], IODPSO-G, and
IODPSO-L [110]).

The statistical results reveal that the CGQBA can compete
with many optimization methods; only the PI-CBA, HAAA
and AGWO perform better than the CGQBA. Fig. 5 depicts
the convergence characteristics of the PSO, BA, QBA, GQBA
and CGQBA.
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FIGURE 4. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 3.
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FIGURE 5. Convergence characteristics of the PSO, BA, QBA, GQBA and
CGQBA for the test system 4.

From Fig. 5, the CGQBA performs better than the GQBA
in early iterations in terms of convergence, but the GQBA
becomes superior as the number of iterations increases. How-
ever, the optimal solution is finally achieved by the CGBA.

F. TEST SYSTEM 5

A system with 40 generating units meeting a load demand
of 10500 MW is considered. This system incorporates the
valve-point loading effects, and the transmission loss is con-
sidered. The data are given in [146] and [152].

Table 12 presents the results obtained by the proposed
QBA, GQBA and CGQBA. The best fuel cost and the cor-
responding transmission loss achieved by the CGQBA are
$136109.16/hr and 862.55671 MW, respectively. In com-
parison with the other reported methods available in the
literature, the GWO, QOTLBO, TLBO, SDE [32], CSA,
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FIGURE 6. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 5.

MCSA [50], OGWO [69], ACS [92], AAA, HAAA [99],
OIWO [104], BBO, DE/BBO, ORCCRO [111], OKHA [112]
and KHA-IV [113], the CGQBA provides a better perfor-
mance, as shown in Table 13.

Fig. 6 shows the convergence behavior of the PSO, BA,
QBA, GQBA and CGQBA for Test System 5. As depicted
in Fig. 6, the CBGQBA exhibits strong convergence in
the beginning when compared to the other algorithms. The
GQBA becomes better in later iterations, but finally, the opti-
mal solution is achieved by the CGQBA.

G. TEST SYSTEM 6

This test system consists of 110 generating units with
quadratic cost behavior. The load demand is 15000 MW,
and valve-point loading effects are taken into consideration.
The system data are taken from [104]. Table 14 provides the
results achieved by the QBA, GQBA and CGQBA. The best
fuel cost obtained by the CGQBA is $197853.82/hr.

The compared algorithms for Test System 6 include
the CSA, MCSA, SA, SAB, SAF [50], OIWO [104],
CSO, OLCSO [105], AGWO [107], BBO, DE/BBO,
ORCCRO [111] and CFA [114], as indicated in Table 15.

From the results obtained in Table 15, it is shown that the
CGQBA performs better than the algorithms in recently cited
works. The convergence characteristics of the PSO, QBA,
GQBA and CGQBA are illustrated in Fig. 7. It is revealed
that the CGQBA avoids being trapped into local optima and
achieves the optimal solution at the end.

H. TEST SYSTEM 7

This test system comprises 160 generating units meeting a
load demand of 43200 MW, and it is obtained by duplicating
the 10-unit system 16 times.
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FIGURE 7. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 6.
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FIGURE 8. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 7.

The system contains multiple fuel options and incor-
porates valve-point loading effects. The data are adopted
from [115]. The presentation of the optimal values and
costs achieved by the QBA, GQBA and CGQBA are pro-
vided in Table 16. The best fuel cost obtained by the
CGQBA is $9994.3235/hr.Table 17 shows the compar-
ison of statistical results of the CGQBA and the other
recently reported algorithms (the ACSS [49], DPADE [52],
CBA, CGA_MU, IGA_MU [67], ADE-MMS, SADE,
MBDE, IMSaDE [98], PI-CBA [106], BBO, DE/BBO,
ORCCRO [111], RCCRO [116] and CSA [117]).

According to the results, the CGQBA provides satisfactory
results even if there are some algorithms that perform better
than it. The most eminent algorithms that outperform the
CGQBA are the ACSS, DPADE, and ADE-MMS.

3224

Fig. 8 depicts the relevant convergence characteristics of
the generation cost versus the number of iterations for the best
solutions found by the PSO, BA, QBA, GQBA and CGQBA
for Test System 7. It is shown in Fig. 8 that there is an alter-
nating pattern in terms of which algorithm is best based on
convergence between the QBA, GQBA and CGQBA. In early
iterations, the QBA and CGQBA are better than the GQBA.
In the following iterations, the GQBA becomes better than the
QBA and CGQBA. The superiority of the CGQBA over the
QBA and GQBA is proven in late iterations as it converges to
the optimal solution.

V. CONCLUSION

In this paper, a proposed Cauchy-Gaussian quantum-behaved
bat algorithm is successfully applied for solving the ELD
problem. Quantum mechanics theories and the Gaussian
and Cauchy operators are integrated into the classical bat
algorithm to improve its performance. First, the bat algo-
rithm guarantees quantum behavior by incorporating quan-
tum mechanics theories. Second, the Gaussian and Cauchy
probability distributions are applied to the QBA in place of
a uniform distribution to avoid the premature convergence
that persists in the QBA and to balance exploitation and
exploration.

To demonstrate the feasibility of the proposed method,
we compare the GQBA, QBA and the other optimization
methods reported in the literature based on the different
test systems possessing 3, 6, 20, 40, 110 and 160 units,
as illustrated in the Tables. According to the results, it can
be seen that the CGQBA outperforms or can compete with
many methods recently reported in the literature. More-
over, the CGQBA is proven to tackle small-, medium- and
large-scale problems.

For future research, we will try using the combination
of two or more operators and varying them in the pur-
suit of the most effective optimization algorithm. Moreover,
we will study some of the more complex problems: dynamic
economic/emission dispatch (DEED), combined heat and
power (CHP), combined heat and power economic dispatch
(CHPED), combined heat and power economic emission
dispatch (CHPEED) and combined cooling, heating and
power (CCHP) in the presence of renewable energy (photo-
voltaic and wind energy).
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