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ABSTRACT In this paper, a novel Cauchy-Gaussian quantum-behaved bat algorithm (CGQBA) is applied to
solve the economic load dispatch (ELD) problem. The bat algorithm (BA) is an acknowledged metaheuristic
optimization algorithm owing to its performance. However, the classical BA presents some weaknesses, such
as premature convergence. To withstand the drawbacks of the BA, quantummechanics theories and Gaussian
and Cauchy operators are integrated into the standard BA to enhance its effectiveness. Since the economic
load dispatch is a nonlinear, complex and constrained optimization problem, its main objective is to reduce
the total generation cost while matching the equality and inequality constraints of the system. The validity
of the CGQBA is tested on six standard benchmark functions with different characteristics. The numerical
results indicate that the CGQBA is effective and superior to many other algorithms. Moreover, the CGQBA
is applied to solve the ELD problems on various test systems including 3,6,20, 40,110 and 160 implemented
generating units. The simulation results illustrate the strength of the CGQBA comparedwith other algorithms
recently reported in the literature.

INDEX TERMS Economic load dispatch, bat algorithm, Gaussian operator, Cauchy operator, quantum
behavior.

I. INTRODUCTION
Economic load dispatch (ELD) is one of the hot topics in
the field of power system optimization [1]. The aim of the
economic dispatch is to seek the most favorable allocation
of generation units that reduces costs while meeting all the
system’s inequality and equality constraints [2]. Due to the
excessive cost of power generation in fossil fuel power plants,
the optimality of economic dispatch is advantageous in terms
of saving money [3].

As an optimization problem, the economic dispatch (ED)
problem consists of an objective function and various con-
straints [4]. In previous years, several methods known as
conventional methods have been used to solve economic
dispatch problems, such as linear programming [5], nonlin-
ear programming [6], quadratic programming [7], dynamic
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programming [8], interior point programming [9], mixed
integer programming [10], the Lagrangian relaxation algo-
rithm [11], the decomposition technique [12], the branch-
and-bound method [13], the Newton-Raphson method [14],
Lambda iteration [15] and the gradient method [16]. How-
ever, these classical methods experience difficulty when
finding initial solutions and are prone to local optimal conver-
gence [17]. The cost functions of generators were previously
formulated as quadratic or piecewise quadratic functions
based on the assumption that the incremental cost curves
of the units are monotonically increasing piecewise-linear
functions [18]–[20]. The practical ED is nonconvex, non-
smooth and nondifferentiable due to the presence of sev-
eral constraints, such as prohibited operating zones, ramp
rates, multifuel options, valve-point effects and transmis-
sion losses [21]–[24]. Conventional optimization techniques
are not effective in solving the ED problem; therefore,
researchers have developed new optimization techniques

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3207

https://orcid.org/0000-0002-5819-4907
https://orcid.org/0000-0001-9524-9906
https://orcid.org/0000-0003-4036-3888
https://orcid.org/0000-0002-2401-7718


F. X. Rugema et al.: CGQBA Applied to Solve the ELD Problem

known as ‘‘metaheuristics’’, which provide better solutions
and overcome the demerits of conventional methods [25].
Moreover, they are applied to solve problems in many areas
of engineering [26], [27], as well as other real–world opti-
mization problems [28]–[30].

Various metaheuristic algorithms have been applied for
solving ED problems: ant colony optimization (ACO) [31],
grey wolf optimization (GWO) [32], the flower pollina-
tion algorithm (FPA) [33], the firefly algorithm (FA) [34],
the social spider algorithm (SPA) [21], the cuckoo search
algorithm (CSA) [3], the symbiotic organism search algo-
rithm (SOS) [35], the bat algorithm (BA) [36], the particle
swarm algorithm (PSO) [20], the imperialist competitive
algorithm (ICA) [37], ant lion optimization (ALO) [38],
the gravitational search algorithm (GSA) [39], the genetic
algorithm (GA) [40], teaching-learning based optimization
(TLBO) [41], the artificial bee colony algorithm (ABC) [42],
and the differential evolution algorithm (DE) [43].

Some of these metaheuristic algorithms possess limitations
when dealing with large complex systems in terms of finding
the global optimal solutions, preventing local optimal and
premature convergence [44]. To address these shortcomings,
two solutions have been proposed to improve the perfor-
mance of metaheuristics: modification and hybridization of
algorithms [45].

A study by Elsayed et al. [46] suggested a modified social
spider algorithm (MSSA) for solving the ELD problem,
where the random walk in the basic SSA has been substituted
by a chaotic sequence. An improved version of the adap-
tive differential evolution optimizer (ADE) has been applied
for solving the nonconvex ED problem [47]. This presented
algorithm shuns the problem of premature convergence and
ameliorates the convergence speed. An elitist cuckoo search
algorithm was examined in [48]. This variant of the CSA
is based on modifying some parameters of the basic CSA
(initialization), and it achieves remarkable success in solving
the ELD problem. A variant of the charged search system
(CSS) called the adaptive CSS (ACSS) was developed in [49],
and the modifications performed in this algorithm focused
on initialization and random walk. Consequently, the ACSS
shows supremacy over the CSS in solving the ELD problem.
A modified crow search algorithm (MCSA) was presented
in [50], and the MCSA differs from the original CSA in terms
of selecting the new crows and tuning the flight length. Phasor
particle swarm optimization (PPSO) has been suggested for
solving convex and nonconvex/nonsmooth ELD problems,
as found in [51]. PPSO is endowed with convergence abil-
ity and higher performance due to the substitution of the
control parameters of the basic PSO with phasor angles.
The author in [52] suggested the solution of large-scale
multifuel ED problems considering valve-point effects via
a dual-population adaptive differential evolution (DPADE).
In this study, a dual-population mechanism was used to
enhance the searching capability, and an adaptive technology
was utilized to elude the unsuitable parameters and to tune
two parameters of great importance. An emended salp swarm

algorithm (ESSA) for solving the economic emission power
dispatch (EED) problem was suggested in [53]. In this study,
the reproduction cycle of salp was integrated into the clas-
sical salp swarm algorithm (SSA) to prevent the algorithm
from being caught in the local minimum and guarantee the
diversity of the swarm. The balance between exploitation
and exploration is a feature achieved by the proposed ESSA.
The ESSA successfully handles single and multiobjective ED
problems and outperforms several methods reported in the
literature.

A continuous GRASP (greedy randomized adaptive search
procedure) algorithm has been hybridized with differential
evolution (DE) for solving ED problems [54]. The proposed
algorithm (C-GRASP-DE) is vested with the aptitude for
global searching and the ability to avoid local optimal stag-
nation. A hybrid grey wolf optimization (HGWO) was suc-
cessfully applied for solving the ED problem in [55]. This
HGWO combines the advantages of both GWO and the DE.
The crossover andmutation operators of theDE are integrated
into the classical GWO algorithm to enhance its efficiency in
handling ED problems. A robust hybrid optimization tech-
nique was designed for solving the ELD problem with wind
uncertainty in [56]. This approach exploits the merits of both
the genetic algorithm (GA) and adaptive simulated anneal-
ing (ASA). The diversity of the population is preserved by
utilizing the nonuniform mutation of the GA. Self-adaptive
mutation and crossover frameworks are incorporated along
with ASA with the aim of facilitating the selection of the
best parameters. Short computational times and convergences
rate are the most appealing characteristics of the proposed
method.

The hybridization of three metaheuristic algorithms, ant
colony optimization (ACO), artificial bee colony algo-
rithm (ABC) and harmonic search (HS), is presented in [44].
In this hybrid algorithm, each algorithm fills its own role.
The task of seeking the initial solution set is handled by the
ACO algorithm. The ABC algorithm checks and enhances
the solutions generated by the ACO algorithm, while the HS
algorithm removes the mediocre solutions from the solution
set and substitutes them with those of higher quality. The
authors in [57] combined the modified PSO (MPSO) and
genetic algorithm (MPSO-GA) to solve nonsmooth as well
as nonconvex ED problems. The initialization is performed
by the GA, and the results are conveyed to the MPSO. The
exploration of all search spaces is not necessary inMPSO-GA
since this work is assigned to the GA. The results reveal the
supremacy of the MPSO-GA over both the MPSO and the
GA. A hybrid optimization method that integrates PSO and
termite colony optimization (TCO), known as HPSTCO, has
been developed and applied for solving the dynamic eco-
nomic dispatch (DED) problem [58]. In this HPSTCO algo-
rithm, PSO iterations are tasked with global searching, while
TCO iterations are assigned to explore the vicinity of the
global solution. A study by [59] proposed the hybridization
of competitive algorithms (ICAs) and sequential quadratic
programming (SQP), known as HIC-SQP, for solving ELD
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problems with wind power. Although the ICA is a meta-
heuristic algorithm, it presents the disadvantage of being
caught into local optima as the number of imperialists rises.
The SQP has been employed to palliate this demerit, and the
role of the SQP is to adjust the results of the ICA to improve
its performance. A robust hybrid gravitational search algo-
rithm (RHGSA) for handling ED problems was addressed
in [60]. The efficiency of the classical GSA was improved
thanks to the piecewise linear chaotic map that enhances
the global search capability and the sequential quadratic
programming that boosts the speed of the local search. The
authors in [61] suggested a solution to the ED problem con-
sidering smooth cost function features by using a combina-
tion of lambda iteration and simulated annealing methods
(MHLSA). In the proposed approach, the demerits of the SA,
such as poor initialization and difficulty when performing
global searches, are alleviated by using lambda iterations.
Moreover, this method involves multiple searches to discover
the locality with the best-suited global optimal solutions.
The metropolis biogeography-based optimization-sequential
quadratic programming (MpBBO-SQP) algorithm has been
proposed to cope with the weakness of BBO [62]. Ametropo-
lis criterion of the simulated annealing (SA) algorithm is
introduced in BBO to provide control over migrated indi-
viduals, thus improving the exploration quality. The solu-
tions generated by MpBBO are adjusted by SQP to increase
the performance of the MpBBO-SQP algorithm. 3, 13 and
40 generating units are used to test the validity of the proposed
algorithm.

An enhanced bat algorithm (EBA) for solving the ED
problem was presented in [63]. The modifications have been
conducted on the classical BA, which contains the inertia
weight, population distribution, pulse emission rate and loud-
ness. A modified θ bat algorithm is presented in [64]. The
proposed approach transforms the Cartesian search space into
polar coordinates as a means for providing strong search
capacity. In this method, three modifications are introduced
into the BA: 1) Lévy flight and a genetic mutation opera-
tor are employed to increase the population diversity, and
2) the loudness parameters are tuned to accelerate the con-
vergence rate. Moreover, an adaptive strategy is adopted
to facilitate the selection of the best modification to avoid
local optima.

A combination of PSO and the BA has been proposed for
solving ED problems [65]. In this hybrid algorithm, the PSO
integrates the frequency behavior of the bat algorithm to
accelerate its velocity updates. The loudness of the bat algo-
rithm is utilized to address boundary constraint violations as
long as the solution improves. The authors in [66] suggested
the multiobjective chaotic bat algorithm (MOCBA) to handle
the EED problem. The chaotic map is introduced to modify
both the loudness and the pulse emission rate with the purpose
of preventing premature convergence. A Pareto optimal front
has been employed to facilitate the simultaneous minimiza-
tion of fuel and emission.

Most of the abovementioned papers reveal that the balance
between exploration and exploitation is extremely important.
A novel algorithmic framework for solving economic load
dispatch problem is proposed in this paper. To the best of the
authors’ knowledge, the Cauchy-Gaussian quantum -behaved
bat algorithm has never been applied for solving the ELD
problem. The quantum theory is introduced into classical BA
to ameliorate the searching capability. Moreover, Gaussian
and Cauchy mutations are used to improve the population
diversity and to enable the algorithm to escape from local
optima. To validate the proposed algorithm, the CGQBA
is tested on six benchmark functions and applied to solve
ELD problems containing 3, 6, 20, 40, 110 and 160 gen-
erating units. The rest of the paper is organized as fol-
lows: Section II provides details about the formulation of the
ELD problem. Section III explains the Bat Algorithm (BA)
and the Cauchy-Gaussian quantum-behaved bat algorithm
(CGQBA). Section IV portrays various test systems and the
simulation results of the proposed algorithm in compari-
son with other well-known algorithms reported in the lit-
erature. Finally, in Section V, the conclusion of the paper
is drawn.

II. ED PROBLEM FORMULATION
This section explains the practical formulation of the
ED problem with an objective function subject to con-
straints [49], [67], [68].

A. OBJECTIVE FUNCTIONS
The quadratic fuel cost function of the thermal units is mini-
mized according to the following expression:

min
P∈RNg

F =
Ng∑
j=1

Fj
(
Pj
)
=

Ng∑
j=1

(
aj + bjPj + cjP2j

)
(1)

whereNg is the total number of generating units, Fj
(
Pj
)
is the

fuel cost of the jth generating unit (in $/hr), Pj is the power
generated by the jth generating unit in MW, and aj, bj and cj
are the cost coefficients of the jth generator.
For the case that takes the valve-point loading effect into

consideration, the objective function is expressed as follows:

min
P∈RNg

F

=

Ng∑
j=1

Fj
(
Pj
)

=

Ng∑
j=1

(
aj + bjPj + cjP2j

)
+

∣∣∣ej sin (fj (Pmin
j − Pj

))∣∣∣
(2)

where ej and fj are the constants for the valve-point effects of
generators.
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For the case where multiple fuel options are presented,
the fuel cost of the jth generator is given by

Fj
(
Pj
)

=


aj1P2j + bj1P+ cj1P, fuel 1,Pmin

j ≤ Pj ≤ Pj1
aj2P2j + bj2P+ cj2P, fuel 2,Pj1 ≤ Pj ≤ Pj2
...

ajkP2j + bjkP+ cjkP, fuel k,Pjk−1 ≤ Pj ≤ Pmax
j

(3)

Every generator with k fuel options contains k discrete
regions.

B. OPTIMIZATION CONSTRAINTS
The equality and inequality constraints of the ED problem
are the power-balance equality and power generation limits,
which are described by the following two equations:

Ng∑
j=1

Pj = PD + PL (4)

Pmin
j ≤ Pj ≤ Pmax

j (5)

where Pj,PD,PL ,Pmin
j and Pmax

j are the generation of the
jth generator unit (in MW), the total power demand (in MW),
and the minimum and maximum power generation limits of
the jth generator, respectively. PL represents the line losses (in
MW), and its value is obtained using B coefficients, given by:

PL =
Ng∑
j=1

Ng∑
i=1

PjBjiPi +
Ng∑
j=1

B0jPj + B00 (6)

where Pi and Pj represent the power injection at the ith and
jth buses, respectively, and Bij indicates the loss coefficients,
which are frequently assumed to be constant under normal
operating conditions.

C. PRACTICAL OPERATING CONSTRAINTS OF
GENERATORS
1) POZs (PROHIBITED OPERATING ZONES)
Because of the operation of the steam valve or vibrations
in the shaft bearings, the operating zones are considered.
In practice, operations in such areas must be prevented to
attain the best fuel economy [69].The feasible operating
zones of unit j are formulated as follows:

Pj ∈


Pmin
j ≤ Pj ≤ Plj,1
Puj,k−1 ≤ Pj ≤ P

l
j,k

Puj,nj ≤ Pj ≤ P
max
j ,

k = 2, 3, ...nj, j = 1, 2, ...n

(7)

where nj,Pljk ,P
u
jk are the number of prohibited zones and the

lower and upper power outputs of the k th prohibited zone of
the jth generator, respectively.

2) RAMP RATE LIMITS
The physical limitations of shutting down and starting up
generators restrict ramp rate limits, which are formulated by
the following two conditions:

Limitation of the increase in generation:

Pj − P0j ≤ URj (8)

Limitation of the decrease in generation:

P0j − Pj ≤ DRj (9)

where P0j ,Pj,URj,DRj are the previous and current power
outputs and the downramp and the upramp limits for the
jth generator, respectively.
Combining (8) and (9) with (5) leads to the following

generation limits:

Pj ≤ Pj ≤ Pj (10)

in which

Pj = max
(
Pmin
j ,P0j − DRj

)
(11)

and

Pj = min
(
Pmax
j ,P0j + URj

)
(12)

Combining this with (2), the ED problem can be mathemati-
cally described as follows:

min
P∈RNg

F =
Ng∑
j=1

Fj
(
Pj
)

=

Ng∑
j=1

(
aj + bPj + cjP2j

)
+

∣∣∣ej sin (fj (Pmin
j − Pj

))∣∣∣
(13a)

such that
Ng∑
j=1

Pj = PD + PL

max
(
Pmin
j ,P0j − DRj

)
≤ Pj ≤ Plj,1

Puj,k−1 ≤ Pj ≤ P
l
j,k , k = 2, 3, ...nj, j = 1, 2, ...n

Puj,nj ≤ Pj ≤ min
(
Pmax
j ,P0j + URj

)
(13b)

III. THE BAT ALGORITHM
A. THE BASIC BAT ALGORITHM
The bat algorithm (BA) was designed by Yang in 2010 [70]
and was inspired by the echolocation behavior of microbats
while seeking prey, foraging, and avoiding obstacles [71].

The echolocation characteristics of microbats are modeled
via three rules as described in [71]:

1) Each microbat uses echolocation to approximate the
distances between prey and neighborhoods.

2) Flying is performed to look for prey and is done at
random with velocity V i at position X i with a predeter-
mined frequency f min, varying wavelength λ and loud-
ness A0. Bats can spontaneously tune the wavelengths
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TABLE 1. List of abbreviations.
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TABLE 1. (Continued.) List of abbreviations.
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TABLE 2. Benchmark functions data.

(or frequencies) of their emitted pulses and tune the rate
of pulse emission r1 ∈ [0, 1] based on the vicinity of
their objective.

3) The loudness is supposed to change from a large (pos-
itive) A0 to the least constant value Amin.

Each bat i possesses a position X i, a velocity V i and a fre-
quency f i in d− dimensional space, and these characteristics
should be updated iteratively towards the current best position
as follows:

f i = f min
+ r1

(
f max
− f min

)
(14)

V i (t + 1) = V i (t)+ f i
(
X i (t)− Xbest (t)

)
(15)

X i (t + 1) = X i (t)+ V i (t + 1) (16)

where r1, f min, f max and f i are a uniformly distributed ran-
dom number in the range [0, 1] ; the minimum tolerable fre-
quency, the maximum tolerable frequency, and the frequency
of the ith bat, respectively. As given in [71], the current ED
problem assumes that the values of f min and f max are set
to 0 and 100, respectively. t is the current iteration num-
ber, and Xbest is the location (solution) that possesses the
best fitness in the current population. At initialization, V i is
assumed to be 0.

Each bat owns a new solution that can be generated locally
through a random walk as follows:

X i,new (t) = Xold + εAi (t) (17)

where ε is a random number uniformly drawn from [0, 1] and
Ai (t) is the loudness.
Once the bat has discovered its prey, the loudness continues

to decline while the pulse rate emission continues to rise.
The loudness Ai and the pulse emission rate Ri are iteratively
updated as follows:

Ai (t + 1) = αAi (t) (18)

Ri (t + 1) = Ri (0)
[
1− exp (−γ t)

]
(19)

where Ai (0) ∈ [1, 2] and Ri (0) ∈ [0, 1] are randomly gener-
ated within their respective limits. For the sake of simplicity,
we set α = γ = 0.9, as in [72]. The pseudocode of the bat
algorithm is written as follows [71]:

Initialize the bat population X i (i = 1, 2, . . . ,N ) and V i;
Define the pulse frequency f i, pulse rate Ri and
loudness Ai;
while (t < T ) do
Generate new solutions by adjusting the frequency and
updating the velocities and positions using
equations (14)–(16);
if (rand > Ri) then
Select a solution among the best solutions randomly;
Generate a local solution around the selected best solution
using equation (17);
end if
if (rand < Ai & &f

(
X i
)
< f

(
Xbest

)
) then

Accept the new solutions;
Increase Ri and reduce Ai using equations (18) and (19);
end if
Rank the bats and find the current Xbest ;
t = t + 1;
end while
Output the best solution Xbest

B. QUANTUM-BEHAVED BAT ALGORITHM
The quantum-behaved bat algorithm (QBA) is inspired
by [73]–[75]. Some variants of the quantum-behaved bat
algorithm are addressed in [76]–[78]. In [76], the frequency
equation of the proposed algorithm includes the bats’ capa-
bility of self-adaptive compensation for Doppler effects in
echoes. Moreover, the algorithm formulates the bats’ habitat
selection as the selection between their quantum behaviors
and mechanical behaviors. In [77], the presented algorithm
possesses its own way of generating a new solution different
from that of the original BA. The position of each bat is
determined by both the current optimal solution and the mean
best position, and the incorporation of quantum-behaved bats
enables improvement of the population diversity and prevents
the bats from falling into local minima. The improved version
of [77] is addressed in [78].

In our paper, quantum theory is applied to the bat
algorithm, and then two mutation operators, Gaussian and
Cauchy, are incorporated. In the QBA, the bats possess quan-
tum behavior, and their positions are updated as follows:

X i (t + 1)

=

Xbest (t)+ β
∣∣∣Mbest (t)− X i (t)

∣∣∣ ln (1/u) , k ≥ 0.5

Xbest (t)− β
∣∣∣Mbest (t)− X i (t)

∣∣∣ ln (1/u) , k < 0.5

(20)

where both u and k are random numbers in the range
[0,1] generated by the uniform distribution and β is the
contraction-expansion coefficient, which can be adjusted for
the sake of controlling the convergence speeds of the algo-
rithms. It is defined as

β = β0 + (T − t) · (β1 − β0)
/
T (21)

where β0 and β1 are the initial and final values of β,
respectively.

VOLUME 9, 2021 3213



F. X. Rugema et al.: CGQBA Applied to Solve the ELD Problem

TABLE 3. Comparison of various algorithm mean and standard deviation for benchmark functions [85].

T is the maximum number of iterations, and t is the current
iteration number.

We adopt β0 = 1 and β1 = 0.5 as in [74].

Mbest (t)

=

(
Mbest,1 (t) ,Mbest,2 (t) , . . . ,Mbest,d (t)

)
=

(
1
N

N∑
i=1

Pi,1 (t) ,
1
N

N∑
i=1

Pi,2 (t) ,
1
N

×

N∑
i=1

Pi,3 (t) , . . . ,
1
N

N∑
i=1

Pi,d (t)

)
(22)

where Mbest is the mean best position and represents the
mean of all the best positions Pi (t) of the population,
Pi (t) represents the current best position of the ith bat.
N denotes the size of swarm, and d indicates the dimension
of the problem. The pseudocode of the quantum-behaved bat
algorithm is shown as follows:

Initialize the bat population X i(i = 1, 2, . . . ,N ) and V i;
Define the pulse frequency f i, pulse rate Ri and
loudness Ai;
while (t < T ) do
Generate new solutions by adjusting the frequency and
updating the velocities and positions using
equations (14)–(16);
if (rand < pm)//
Generate new solutions using equations (20)–(22);
End if

TABLE 4. Optimal generations and cost obtained by the CGQBA for test
system 1 with load demand of 850 MW.

If (rand > Ri)
Generate a local solution around the selected best solution
using equation (17);
end if
if (rand < Ai && f

(
X i
)
< f

(
Xbest

)
) then

Accept the new solutions;
Increase Ri and reduce Ai using equations (18) and (19);
end if
Rank the bats and find the current Xbest ;
t = t + 1;
end while
Output the best solution Xbest

C. THE CAUCHY-GAUSSIAN QUANTUM-BEHAVED BAT
ALGORITHM
Gaussian, Cauchy and exponential probability distributions
are more effective than uniform probability functions in terms
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TABLE 5. Best solution obtained for test 1.

TABLE 6. Optimal generations and cost obtained by the CGQBA for test
system 2 with load demand of 283.4 MW.

of generating randomnumbers to update the velocity equation
of the classical PSO [79]. Inspired by [80]–[82], in which two
or more mutation operators are combined, we find that the
incorporation of both Gaussian and Cauchy operators into the
quantum–behaved bat algorithm improves its performance
when applied to the ELD problem. The explanation of these
operators is given below:

First, the Gaussian mutation operator is applied to the
quantum bat algorithm. The one-dimensional Gaussian den-
sity function is given by the following equation [83], [84]:

g (x) =
1

σ
√
2π

e

[
−(x−µ)2

2σ2

]
(23)

For µ = 0 and σ = 1, the Gaussian distributed function is
given by equation (24) [83], [84]:

g (x) =
1
√
2π

e

[
−(x)2

2

]
(24)

TABLE 7. Comparison of fuel costs and statistical results for 50 trial runs
for test 2.

In this section, we follow the same line of study as in [79].
The generation of random numbers is achieved by using the
absolute value |·| of the Gaussian probability distributionwith
zero mean and unit variance, i.e., |N(0, 1)|, and then mapping
to a truncated signal given by G = 0.33= |N(0, 1)|. The
combination of the QBAwith the Gaussian mutation operator
is expressed by equation (25). Note that the parameter β
of equation (20) has been substituted by G as indicated in
equation (25).

X i (t + 1)

=

Xbest (t)+ G ·
∣∣∣Mbest (t)− X i (t)

∣∣∣ · ln (1/u) , k ≥ 0.5

Xbest (t)− G ·
∣∣∣Mbest (t)− X i (t)

∣∣∣ · ln (1/u) , k < 0.5

(25)

The pseudocode of the Gaussian quantum-behaved bat algo-
rithm is shown as follows:

Initialize the bat population X i(i = 1, 2, . . . ,N ) and V i;
Define the pulse frequency f i, pulse rate Ri and
loudness Ai;
while (t < T ) do
Generate new solutions by adjusting the frequency and
updating the velocities and positions using
equations (14)–(16);
if (rand < pm)
Generate new solutions using equations (22) and (25);
End if
If (rand > Ri)
Generate a local solution around the selected best solution
using equation (17);
end if
if (rand < Ai && f

(
X i
)
< f

(
Xbest

)
) then

Accept the new solutions;
Increase Ri and reduce Ai using equations (18) and (19);
end if
Rank the bats and find the current Xbest ;
t = t + 1;
end while
Output the best solution Xbest
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TABLE 8. Optimal generations and cost obtained by the CGQBA for test
system 3 with load demand of 2500 MW.

TABLE 9. Comparison of fuel costs and statistical results for 50 trial runs
for test system 3.

Second, the Cauchy mutation possesses the ability to escape
from local optima [83] and it is applied to enhance the
Gaussian quantum-behaved bat algorithm. The definition of

TABLE 10. Optimal generations and cost obtained by the CGQBA for test
system 4 with load demand of 10500 MW.

the one-dimensional Cauchy density function is given by the
following equation [83], [84]:

Ft (x) =
1
2
+

1
π
arctan

(x
k

)
(26)

x ∈ [−∞,∞], and k > 0 is the scale factor.
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TABLE 11. Comparison of fuel costs and statistical results for 50 trial
runs for test system 4.

Then, the Cauchy distributed function is defined by
equation (27):

ft (x) =
1
π

k
k2 + x2

(27)

The new candidates are generated by the following equation:

x i,new = xold + CAi (t) (28)

TABLE 12. Optimal generations and cost obtained by the CGQBA for test
system 5 with load demand of 10500 MW.

where C is a random number of Cauchy distributions in the
range [0,1]

The pseudocode of the Cauchy-Gaussian quantum-
behaved bat algorithm is shown as follows:
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TABLE 13. Comparison of fuel costs and statistical results for 50 trial
runs for test system 5.

Initialize the bat population X i(i = 1, 2, . . . ,N )
and V i;
Define the pulse frequency f i, pulse rate Ri and
loudness Ai;
while (t < T ) do
Generate new solutions by adjusting the frequency and
updating the velocities and positions using
equations (14)–(16);
if (rand < pm)
Generate new solutions using equations (22) and (25);
End if
If (rand > Ri)
Generate a local solution around the selected best solution
using equation (28);
end ifx
if (rand < Ai && f

(
X i
)
< f

(
Xbest

)
) then

Accept the new solutions;
Increase Ri and reduce Ai using equations (18)
and (19);
end if
Rank the bats and find the current Xbest ;
t = t + 1;
end while
Output the best solution Xbest

The flowchart of the Cauchy-Gaussian quantum-behaved bat
algorithm is given in Fig. 1.

FIGURE 1. The Flowchart of CGQBA.

D. IMPLEMENTATION OF CGQBA TO SOLVE ED
PROBLEM
Step 1: Initialize the population of bats which are bat position
X i and velocity. In this case, X i corresponds to the power(
Pi
)
generated by the ith generator whereas n is defined as the

number of generators. The value of X i is randomly generated
within the clearly defined boundaries

[
Pmin,Pmax

]
, and the

initial value of V i is set to zero.
Step 2: Initialize frequencies f i, pulse rates Ri and the

loudness Ai for each bat.
Step 3: Fix the maximum number of iterations
Step 4: Calculate the fitness values of all the bats utilizing

the objective function in Equation (1)
Step 5: Generate the new solution by using Equation (22)

and (25)
Step 6: Generate local solution in the vicinity of the best

solution using Equation (28)
Step 7: Update bothRi andAi using Equation (18) and (19),

respectively.
Step 8: Verify if all the constraints are respected
Step 9: Repeat steps 1 to 8 until the maximum iteration is

achieved.
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TABLE 14. Optimal generations and cost obtained by the CGQBA for test system 6 with load demand of 15000 MW.

IV. RESULTS AND DISCUSSION
The performance of theGQBA is tested on seven different test
systems, including 3-, 6-, 20-, 40-, 110- and 160-unit systems.
The comparison between the achieved results for the pro-
posed algorithm after 50 independent trial runs and the results
of the recently published algorithms for each test system

are reported in their respective Tables. The abbreviations
of those algorithms are alphabetically ordered in Table 1.
The number of bats is set to 20 for each of the test systems,
and the maximum number of iterations is 1000. For the sake
of simplifying the comparison, the best fuel costs among the
results are organized in ascending order. MATLAB is used
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TABLE 15. Comparison of fuel costs and statistical results for 50 trial
runs for test system 6.

to implement the programs on a personal computer with a
2.16 GHz processor and 4 GBRAM running onWindows 10.

A. BENCHMARK FUNCTION VALIDATION
Six benchmark functions are studied in this section to inves-
tigate the performance of the proposed CGQBA. Data for the
benchmark functions are taken from [85] and are described
in Table 2. The proposed CGQBA is applied to the afore-
mentioned benchmark functions, and the mean and standard
deviation of the results are provided in Table 3. Benchmark
function data.

B. TEST SYSTEM 1
This system consists of three generators with a load demand
of 850 MW. In this system, the constraints and valve-point
load effects are taken into account, whereas the transmission
losses are neglected. The system data are taken from [86].
Optimal generations and costs obtained by the QBA, GQBA
and CGQBA for Test System 1 are presented in Table 4.
As shown in Table 4, both the GQBA and CGQBA suc-
cessfully achieve the best solution for the system, which is
$8234.071766/hr.

A comparison of the statistical results of the QBA and
GQBA. The CGQBA and the algorithms available in the
literature, the CE-SQP [87], BA [63], [88], NRHS, NTHS,
NPHS, NGHS [89], BSA, GA-API, GA-PS-SQP, PS, and
GA [90], are provided in Table 5. Since the system size is

small, the results show that a large number of algorithms
converge to the same optimal solution.

The convergence characteristics of the PSO, BA, QBA,
GQBA and CGQBA algorithms are illustrated in Fig. 2. The
figure reveals that the CGQBA performs better than other
methods because it converges to the optimal solution in early
iterations.

FIGURE 2. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 1.

C. TEST SYSTEM 2
This system comprises six generating units supplying a load
demand of 283.4 MW. Transmission losses are included.
The data are taken from [20]. Table 6 provides the optimal
generations and costs obtained. The best fuel cost and the
corresponding transmission loss achieved by the CGQBA are
$924.90309 /hr and 10.8994507 MW, respectively.
Table 7 presents a comparison of the statistical results of

the GQBA, QBA and the other reported algorithms (the BSA,
MSG-HS, PSO, NSOA, GA-APO, GA [90], FMILP [91] and
ACS [92]). It is shown that the proposed CGQBA yields
the best fuel cost compared to those obtained by these
algorithms.

Fig. 3 shows the convergence behavior of the generation
cost versus the iteration number for the PSO, BA, QBA,
GQBA and CGQBA algorithms. It is seen in Fig. 3 that both
the GQBA and CGQBA obtain better convergence quality
when compared to other methods, but the CGQBA achieves
the more optimal solution than that of the GQBA.

D. TEST SYSTEM 3
This system consists of twenty generators with a load demand
of 2500 MW. Transmission losses are considered in this
system. The data are taken from [93]. As shown in Table 8,
the best fuel cost and the corresponding transmission loss
obtained by the CGQBA are $62455.413/hr and 84.066567
MW, respectively.
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TABLE 16. Optimal generations and cost obtained by the CGQBA for test system 7 with load demand of 43200 MW.
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TABLE 16. (Continued.) Optimal generations and cost obtained by the CGQBA for test system 7 with load demand of 43200 MW.

TABLE 17. Comparison of fuel costs and statistical results for 50 trial
runs for test system 7.

The CGQBA yields the lowest cost in comparison
with those of the other methods (the CKH [18], GSO,
CBA [67], FMILP [91], λ-Iteration, HM [93], BSA,
BBO [94], CQGSO [95], BLPSO [96] BA, EBA [97] and
ADE-MMS [98]), as seen in Table 9.
The convergence characteristics of the PSO, BA, QBA,

GQBAandCGQBA for Test System 3 are illustrated inFig. 4.
It is shown that the CGQBA obtains the best convergence
property compared to the other methods as it converges to
the optimal solution earlier.

E. TEST SYSTEM 4
This system comprises forty generators supplying a demand
of 10500 MW and incorporating the valve-point loading

FIGURE 3. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 2.

effects. The transmission losses are neglected. The system
data are taken from [86]. As shown in Table 10, the optimal
cost obtained by the CGQBA is $121406.8912/hr.

Table 11 provides the comparison between the results
obtained by the CGQBA and those obtained by the other
methods (the CHK [18], SSA [21], MSSA [46], CSA,
MCSA [50], PPSO [51], SSA, ESSA [53], θ-MBA [64],
CBA [67], CE-SQP [87], BA [97], FMILP [91], BSA [94],
AAA, HAAA [99], IGA, MPSO, GWO, GWOI, GWOII,
NGWO, NPSO [100], CJAYA, PSO-LRS [101], BBO,
HBMO, IHBMO,MABC [102], SQPSO [103], OIWO [104],
CSO, OLCSO [105], PI-CBA [106], AGWO [107],
SDP [108],QPSO, QPSO-M1 [109], IODPSO-G, and
IODPSO-L [110]).

The statistical results reveal that the CGQBA can compete
with many optimization methods; only the PI-CBA, HAAA
and AGWO perform better than the CGQBA. Fig. 5 depicts
the convergence characteristics of the PSO, BA, QBA,GQBA
and CGQBA.
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FIGURE 4. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 3.

FIGURE 5. Convergence characteristics of the PSO, BA, QBA, GQBA and
CGQBA for the test system 4.

From Fig. 5, the CGQBA performs better than the GQBA
in early iterations in terms of convergence, but the GQBA
becomes superior as the number of iterations increases. How-
ever, the optimal solution is finally achieved by the CGBA.

F. TEST SYSTEM 5
A system with 40 generating units meeting a load demand
of 10500 MW is considered. This system incorporates the
valve-point loading effects, and the transmission loss is con-
sidered. The data are given in [146] and [152].

Table 12 presents the results obtained by the proposed
QBA, GQBA and CGQBA. The best fuel cost and the cor-
responding transmission loss achieved by the CGQBA are
$136109.16/hr and 862.55671 MW, respectively. In com-
parison with the other reported methods available in the
literature, the GWO, QOTLBO, TLBO, SDE [32], CSA,

FIGURE 6. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 5.

MCSA [50], OGWO [69], ACS [92], AAA, HAAA [99],
OIWO [104], BBO, DE/BBO, ORCCRO [111], OKHA [112]
and KHA-IV [113], the CGQBA provides a better perfor-
mance, as shown in Table 13.

Fig. 6 shows the convergence behavior of the PSO, BA,
QBA, GQBA and CGQBA for Test System 5. As depicted
in Fig. 6, the CBGQBA exhibits strong convergence in
the beginning when compared to the other algorithms. The
GQBA becomes better in later iterations, but finally, the opti-
mal solution is achieved by the CGQBA.

G. TEST SYSTEM 6
This test system consists of 110 generating units with
quadratic cost behavior. The load demand is 15000 MW,
and valve-point loading effects are taken into consideration.
The system data are taken from [104]. Table 14 provides the
results achieved by the QBA, GQBA and CGQBA. The best
fuel cost obtained by the CGQBA is $197853.82/hr.
The compared algorithms for Test System 6 include

the CSA, MCSA, SA, SAB, SAF [50], OIWO [104],
CSO, OLCSO [105], AGWO [107], BBO, DE/BBO,
ORCCRO [111] and CFA [114], as indicated in Table 15.

From the results obtained in Table 15, it is shown that the
CGQBA performs better than the algorithms in recently cited
works. The convergence characteristics of the PSO, QBA,
GQBA and CGQBA are illustrated in Fig. 7. It is revealed
that the CGQBA avoids being trapped into local optima and
achieves the optimal solution at the end.

H. TEST SYSTEM 7
This test system comprises 160 generating units meeting a
load demand of 43200 MW, and it is obtained by duplicating
the 10-unit system 16 times.
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FIGURE 7. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 6.

FIGURE 8. Convergence characteristic of the PSO, BA, QBA, GQBA and
CGQBA for the test system 7.

The system contains multiple fuel options and incor-
porates valve-point loading effects. The data are adopted
from [115]. The presentation of the optimal values and
costs achieved by the QBA, GQBA and CGQBA are pro-
vided in Table 16. The best fuel cost obtained by the
CGQBA is $9994.3235/hr.Table 17 shows the compar-
ison of statistical results of the CGQBA and the other
recently reported algorithms (the ACSS [49], DPADE [52],
CBA, CGA_MU, IGA_MU [67], ADE-MMS, SADE,
MBDE, IMSaDE [98], PI-CBA [106], BBO, DE/BBO,
ORCCRO [111], RCCRO [116] and CSA [117]).

According to the results, the CGQBA provides satisfactory
results even if there are some algorithms that perform better
than it. The most eminent algorithms that outperform the
CGQBA are the ACSS, DPADE, and ADE-MMS.

Fig. 8 depicts the relevant convergence characteristics of
the generation cost versus the number of iterations for the best
solutions found by the PSO, BA, QBA, GQBA and CGQBA
for Test System 7. It is shown in Fig. 8 that there is an alter-
nating pattern in terms of which algorithm is best based on
convergence between the QBA, GQBA and CGQBA. In early
iterations, the QBA and CGQBA are better than the GQBA.
In the following iterations, the GQBAbecomes better than the
QBA and CGQBA. The superiority of the CGQBA over the
QBA and GQBA is proven in late iterations as it converges to
the optimal solution.

V. CONCLUSION
In this paper, a proposed Cauchy-Gaussian quantum-behaved
bat algorithm is successfully applied for solving the ELD
problem. Quantum mechanics theories and the Gaussian
and Cauchy operators are integrated into the classical bat
algorithm to improve its performance. First, the bat algo-
rithm guarantees quantum behavior by incorporating quan-
tum mechanics theories. Second, the Gaussian and Cauchy
probability distributions are applied to the QBA in place of
a uniform distribution to avoid the premature convergence
that persists in the QBA and to balance exploitation and
exploration.

To demonstrate the feasibility of the proposed method,
we compare the GQBA, QBA and the other optimization
methods reported in the literature based on the different
test systems possessing 3, 6, 20, 40, 110 and 160 units,
as illustrated in the Tables. According to the results, it can
be seen that the CGQBA outperforms or can compete with
many methods recently reported in the literature. More-
over, the CGQBA is proven to tackle small-, medium- and
large-scale problems.

For future research, we will try using the combination
of two or more operators and varying them in the pur-
suit of the most effective optimization algorithm. Moreover,
we will study some of the more complex problems: dynamic
economic/emission dispatch (DEED), combined heat and
power (CHP), combined heat and power economic dispatch
(CHPED), combined heat and power economic emission
dispatch (CHPEED) and combined cooling, heating and
power (CCHP) in the presence of renewable energy (photo-
voltaic and wind energy).
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