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ABSTRACT Metric learning has significantly improved machine learning applications such as face
re-identification and image classification using K-Nearest Neighbor (KNN) and Support Vector Machine
(SVM) classifiers. However, to the best of our knowledge, it has not been investigated yet, especially for
the multimodal biometric recognition problem in immigration, forensic and surveillance applications with
uncontrolled ear datasets. Therefore, it is interesting and very attractive to propose a novel framework for
multimodal biometric recognition based on Learning Distance Metric (LDM) via kernel SVM. This paper
considers metric learning for SVM by investigating a hybrid Learning Distance Metric and Directed Acyclic
Graph SVM (LDM-DAGSVM) model for multimodal biometric recognition, where LDM and DAGSVM
are two emerging techniques in dealing with classification problems. Different from existing multimodal
biometric recognition methods, the proposed approach aims to learn Mahalanobis distance metric via
kernel SVM to maximize the inter-class variations and minimize the intra-class variations, simultaneously.
Experimental results on the uncontrolled datasets such as AR face and AWE ear datasets show that
the proposed approach achieves competitive performance compared with models working on individual
modalities and overperforms the state-of-the-art multimodal methods. The proposed model achieves five-
fold classification accuracy around 99.85 % for the face and ear images.

INDEX TERMS Biometrics, multimodal biometrics, face and ear images, Mahalanobis distance, metric
learning, DAGSVM.

I. INTRODUCTION
Unimodal biometric authentication systems got more atten-
tion in the last decades for intelligent applications such
as Internet of Things (IoTs), Automated Teller Machine
(ATM), surveillance, immigration, and mobile applications.
However, some unimodal biometric authentication systems
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are potentially vulnerable to forgery, which means that the
biometric system can be cheated [1]. For example, finger-
print is the most popular biometric trait due to its perceived
uniqueness and persistence [2]. However, the Apple iPhone
Touch ID fingerprint reader might be cheated by using non-
authentication fingers [3]. Furthermore, the big challenging
issue for unimodal biometric recognition systems is to select
discriminative features to accomplish personal authentication
in the presence of large variations among biometric samples
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for the same person. Thus, one type of features is usually
neither efficient nor sufficient to predict the right subject,
especially for the collected images in various conditions such
as illumination, rotation, and occlusion conditions. There-
fore, most researchers pay more attention to multimodal bio-
metric recognition to increase identification performance and
to provide more security. To deal with multimodal biomet-
ric recognition, feature fusion has become a very important
research aspect [4]–[12], because fusing different types of
features provides complementary information. Most of the
recent human recognition works [10], [13–[17] utilized fea-
ture level fusion to overcome the challenges of constrained
resources, and to increase the system security and system per-
formance. The well-known traditional feature fusionmethods
involve serial and parallel fusions. Serial fusion can apply
by adding or concatenating two or more feature vectors to
a single feature vector; on the other hand, parallel fusion is
more difficult and hard in utilizing more than two features,
due parallel fusion provides a complex vector by collecting
a feature set as the imaginary component and another fea-
ture sets as the real component, which makes its application
limited.

Recently, recognition metrics have been considered as an
important research point for the development of multimodal
biometric recognition systems. To the best of our knowledge,
most of the previous works [4], [9], [10], [13], [15], [16]
have adopted traditional distance metrics and classifiers. Due
to the number of images per person that are usually limited
to 3∼5 images and with noises, traditional distance met-
rics and classifiers cannot achieve the performance desired.
Moreover, they are sensitive to noises. To deal with classi-
fication problems and achieve better generalization ability,
metric learning for SVM is considered. As the LDM and
the DAGSVM are two emerging techniques in dealing with
classification problems and can achieve better generalization
ability than the traditional distance metrics and classifiers,
the LDM-DAGSVM model for the multimodal biometric
recognition system is investigated.

In addition, there is no reported work based on LDM for
SVM. Learning models have got much more attentions in
the last decades especially for machine learning applications
such as classification applications [18], [19], [20]–[ 23], face
recognition [24], [25], and human re-identification [26]. Met-
ric learning aims to learn a valid distance from the given
training data or a similarity function for a given problem.
However, most existing metric learning methods are based on
convex and non-convex optimization algorithms or multiple
kernel classification. In this paper, we investigate a kernel
classification model that can be used to improve the state-
of-the-art multimodal biometric recognition system based on
metric learning algorithms. In addition, multimodal biometric
recognition systems can be enhanced using metric learning
approaches, which utilize various known efficient classifiers
such as K-Nearest Neighbor (K-NN) and SVM. Therefore,
the main motivation of our proposed multimodal biometric
recognition system includes two aspects: face and ear images

representation, and classification. This paper exploits the
advantages of local features fusion to represent face and ear
images, by using Discriminant Correlation Analysis (DCA)
in feature fusion algorithm that enhances the efficiency and
effectivity [11], [15]. The proposed work presents kernel
DAGSVM to improve the SVM performance based on learn-
ing the Mahalanobis distance using Radial Basis Function
(RBF) for a multimodal biometric recognition system.

Hence, a multimodal biometric recognition system based
on LDM is investigated in this paper to achieve higher clas-
sification rates for face and ear images. The experiments are
performed on biometric applications of Annotated Web Ear
(AWE) dataset, Mathematical Analysis of Images (AMI) ear
dataset, and the Georgia Tech, Olivetti Research Laboratory
(ORL) face datasets, and AR face dataset. The experimental
results indicate that multimodal of individual modalities can
improve the overall performance of the human biometric
recognition system, even in the case of low-quality data. The
results also demonstrate that the proposed model performs
better than classical and traditional multimodal biometric
models. The adopted LDM-DAGSVM model is particularly
useful for two reasons. First, it achieves comparable classifi-
cation accuracies with those of the state-of-the-art methods,
and it clearly outperforms the other multimodal biometric
methods not explicitly geared towards LDM. In addition,
it provides the researchers in the multimodal biometric recog-
nition systems a convenient way for using various metric
learning algorithms via SVM. The major contributions of this
work are five-fold.

1. This paper presents a novel framework for multi-
biometric recognition through LDM and kernel SVM.
Few previous works have studied biometrics in the
context of metric learning, and to the best of our
knowledge, no prior works have attempted LDM for
multimodal biometric recognition.

2. To optimize the authentication process, we combine
LDM with DAGSVM, which are two emerging tech-
niques in dealing with classification problems. This
approach aims to maximize the inter-class varia-
tions and minimize the intra-class variations between
biometrics.

3. Furthermore, to improve KNN and SVM perfor-
mance, this work learn the Mahalanobis distance via
DAGSVM. It outperforms the previous works based on
SVM or KNN, such as learning Mahalanobis distance
through the KNN.

4. Discriminative and commonly-used standard features
such as Local Binary Patterns (LBPs) and Histogram of
Oriented Gradients (HOGs) for face and ear images are
used to represent each trait. Besides, DCA algorithm
is exploited to combine and reduce features vectors
dimension for face and ear images, separately.

5 We illustrate that multimodal biometric recognition can
be robust and efficiently implemented based on LDM
through a kernel classifier such as the SVM. Exper-
imental results show that the proposed multimodal
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biometric recognition model outperforms other state-
of-the-art methods.

In addition, this work indicates a new direction for multi-
modal biometric recognition problem by developing new sys-
tems using metric learning approaches with various known
active classifiers such as KNN and SVM. This paper is orga-
nized as follows. In Section II, we introduce a brief review
of the related work. In Section III, we present the proposed
model in detail. In Section IV, we evaluate and compare
the proposed model with other state-of-the-art methods on
three complicated datasets. Finally, the conclusion and future
works are presented in Section V.

II. RELATED WORK
Automated biometrics authentication refers to the automated
human recognition based on physiological or/and behavioral
characteristics. Biometric authentication task is known as
predicting whether two biometric traits belong to the same
person or not. Therefore, human biometrics authentication
has received more increasing attention recently in many intel-
ligent applications such as IoT, Mobile application, ATM,
and surveillance. Human biometric traits include physiolog-
ical traits like face, fingerprint, palm print, iris, and ear,
or/and behavioral traits such as gait, keystrokes, voice, and
signature. Face and ear recognitions have received a lot of
attention in the last decade as these two traits are proved
to be the promising biometric traits due to their uniqueness,
collectible, permanence and universality [2], [27]. However,
they have unique advantages and also have some limita-
tions [28], [29]. Face and ear images have many advantages
such as both face and ear traits are large and visible for
acquisition, that means they are passive, non-intrusive traits,
and can be collected within one sensor. However, face and
ear recognition systems have many challenges such as facial
expression, makeup, mask, rotation and occlusion from hair,
glasses, or rings. On the other side, the human ear images
have complementary information for face image. The human
ear has stable structure through expression and age, being
visible and large, that means it can be collected without user
cooperation; furthermore, human ears for identical twins and
triplets are different [30].

Chang et al. [28] presented a multimodal biometric recog-
nition system for human identification based on standard
Eigen-faces and Eigen-ears to represent face and ear images,
respectively. They adopted feature-level fusion based on
a simple concatenation that may trigger the dimension
problem. The authors in [9] have motivated the utiliza-
tion of Kernel Principal Component Analysis (KPCA) to
solve the dimension problem with a scanty accuracy around
94.5% [28]. Therefore, several attempts [10], [15], [31]–[34]
have presented multimodal biometric recognition systems
based on face and ear images with various level fusion
to improve the recognition accuracy and the system per-
formance. To overcome the above-mentioned limitations,
the authors of [34] and [31] have exploited 3D ear images
and sparse representation for classification, respectively.

Mahoor et al. [34] have fused 3D ear and 2D face images
to build a multimodal biometric recognition system. Active
shape model and Gabor filter were used for extracting land-
marks from face images. Then, to get the 3D shape ear
images, they exploited the Shape-From-Shading (SFS) algo-
rithm. More recently, 3D shape ear images have also been
used in [35] by using block-wise statistics to improve ear
recognition system. However, the computation complexity
of 3D ear recognition system is still expensive and high
costs [36], [37], which limits its use for real-time applica-
tions. We can conclude that all previous researches have
proved that the multimodal biometric authentication pro-
vides increased system security, recognition accuracy, and
compensates for the limited resources of unimodal biomet-
ric recognition systems [15], [28], [32], [38]. Multimodal
biometric recognition systems are guaranteed from forgery
and theft and can achieve higher security level than those
of unimodal biometric recognition systems those can be
cheated. It has been well proved that multimodal biometrics
recognition systems can override the respective limitations
of unimodal system. It is interesting to exploit these advan-
tages of multimodal biometric recognition systems to develop
robust, efficient, and effective multimodal human recognition
systems.

The main goal of metric learning is to learn a valid distance
from a similarity function of a given problem or from the
training data. There are a lot of existing metric learning
approaches based on non-convex and convex optimization
techniques or multi-kernel classification. However, Maha-
lanobis distance is considered as the most used distance in
metric learning research. Mahalanobis distance MA between
two samples xi, and xj is known as the squared distance
under Euclidean distance over the new mapping space,
MA

(
xi, xj

)
= (xi − xj)TA(xi − xj), where A = LTL,

and A is a semi-positive definite. SVM is popular classifier
utilizing Mahalanobis distance and it has two main com-
posing methods: one-versus-one (1-v-1) and one-versus-rest
(1-v-r) classification methods. The 1-v-1 SVM is known as
the binary classification. However, for many applications,
the multi-class classification with SVM is needed. Hence,
some of the multi-class classification methods have been
presented in [39]–[42]. The DAGSVM is considered as one
of multi-class SVM classification method. It works as 1-v-1
method in the training phase and adopts a root binaryDirected
Acyclic Graph (DAG) in the testing phase [39], [43], [44].
Nevertheless, the 1-v-r SVM classifier take more time for
the learning process and scale linearly with respect to the
number of classes. In addition, some of them are sensitive to
solving some applications, especially when the data feature
dimension is high, or the size of the training data is large.
Therefore, for non-linear SVMs those separate the data points
by using a non-linear decision boundary, several kernel tricks
have been proposed such as Polynomial, Quadratic, and RBF
kernels. Among them, the RBF is the most popular one used
for many applications and it achieves a good classification
performance.
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In our work, feature-level fusion, which demonstratesmore
details and information, is adopted. It leads to better recogni-
tion performance. The LBP [45] and HOG [46] features are
used to represent the face and ear images. The LBP is known
as a powerful texture descriptor for improving system per-
formance and recognition accuracy when used together with
HOG features [47].Moreover, the proposedmodel is based on
learning distancemetric and kernel SVM, which can be easily
integrated in a multimodal biometric recognition system to
increase the system performance. However, selecting and
weighting features are also always big challenging issues in
biometrics applications. Selecting a discriminative features
may be quite challenging, when the feature vectors x ∈zp are
in a space of high dimension p. Hence, it is required to find
good discriminant features with lower dimension to represent
face and ear images. The DCA algorithm for this purpose
in [16]. It was investigated to combine discriminative local
features and reduce the dimensionality of the Mahalanobis
data matrixM before learning the distance metric.

III. THE PROPOSED LEANING FRAMEWORK: LEARNING
MAHALANOBIS DISTANCE VIA DAGSVM
The proposed framework has depends on LBP and HOG
features for face and ear images representation. To select
discriminative features with lower dimension for each image,
DCA is exploited as a dimension reduction technique, and a
feature fusion method that incorporates the class association
into correlation analysis to reflect the class structure informa-
tion is utilized. After the DCA is conducted on the whole face,
ear, or multimodal datasets,N−1 correlation components are
left where N refers to the number of subjects in each dataset.
Algorithm 1 explains the summary of the DCA feature fusion
algorithm, and for more details, see [16].

A hybrid LDM-DAGSVM model has been developed to
investigate enough and robust multimodal biometric recog-
nition based on face and ear images. Mahalanobis distance
metric learning aims to search with a square matrix generated
from the training set. The SVM has a better generalization
ability than traditional classifiers such as the KNN using
Euclidean distance. In the following Subsections, we will
introduce each part of the proposed model.

A. SUPPORT VECTOR MACHINE (SVM)
Original SVM is designed for 2-class classification aiming
at finding a hyper-plane to separate classes and maximize
the margin; the margin refers to the distance between the
hyper-plane and the closest points of both classes. Beside
previous issues, minimization of the structural risk is adopted
for SVM, referring to that a misclassification may not appear,
when using the SVM classifier. Therefore, the SVM owns
a better generalization ability than the traditional classifiers.
Assume that the training dataset T = {Xi,Yi} , i = 1 . . . ., n,
where Xi ∈ Rn is ith input feature vector with output Yi ∈
{0, 1}, which is the corresponding class label for Xi. There-
fore, the classification mapping is implemented considered as

Algorithm 1 DCA Local Feature Fusion Algorithm
Input: LBP(X1), HOG (X2)
Output: Y.
1 Select the class center X̄i =

1
ni

∑ni
j=1 x

i
j and the data

center X̄ = 1
n

∑c
i=1 niX̄i, n =

∑c
i=1 ni.

2 Calculate the covariance matrix C = 8T8,
where 8 =

(√
n1
(
X̄1 − X̄

)
, . . . ,
√
nc
(
X̄c − X̄

))
∈

Rd×c.
3 Compute the Singular Value Decomposition (SVD) of

C = U3UT ,3 = Diag (λ1, λ2, . . . , λc) , (λ1
≥ λ2, . . . ,≥ λc); whereas λi is the ith eigenvalue
of C.

4 Define the transformation matrix P = 8Ur3
−

1
2

r×r ,
where r is the first largest non-zero eigenvalue andUr
is the corresponding eigenvector.

5 Project X1 and X2 to Z1 = PTX1 and Z2 = PTX2.
6 Compute the between-set covariance matrix of the

transformed feature set Sb = Z1ZT2 .
7 Compute the SVD of Sb; Sb = V6VT .
8 Define the transformation matrix T: T = V6−

1
2 .

9 Transforme Z1 and Z2 to X′1 = TTZ1 and X′2 = TTZ2.
10 Combine data as Y = X

′

1 + X
′

2.

in Eq. (1).

Yi = WT xi + b, (1)

where xi results from mapping of Xi according to V : Rn →
Rm. This feature mapping that maps the input feature to a high
dimensional space, nonlinearly [39].W ∈ Rm, and b is a bias
term.

The optimization problem of SVM for separating classes
is represented by the following Eq. (2) where ρ maximizes
the geometric margin for the two classes.

Max
W ,bρ s.t

Yi(WT xi + b)
‖W‖

≥ ρ, for all i = 1 . . . , n. (2)

Eq. (2) is equivalent to Eq. (3), and we can form it as
follows.

Min
W ,b
‖W‖2

2
s.t Yi

(
WT xi + b

)
≥ 1, for all i = 1 . . . , n. (3)

where ‖W‖ is the norm of the normal vector weights of the
hyper-plane. To obtain the constrained optimization problem,
the primal Lagrange form is given as in Eq. (4).

L (W , b, α) =
‖W‖2

2
−

∑n

i=1
αi

[
Yi
(
WTV (X i)+ b

)
− 1

]
, (4)

where αi ≥ 0 are Lagrange multipliers, and V represents the
mapping. Therefore, the decision function rule for classifica-
tion for a testing set xi is formed as in Eq. (5).

D (xi) = sign(WT
0 xi + b0)

= sign
∑n

i=1
[αiYiK (x, xi)+ b0], (5)
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FIGURE 1. Decision diagram of DAGSVM for 4 classes labeled 1, 2,
3 and 4.

in which K (x, x i) is the kernel function [39] that represents
any function satisfied Mercer’s conditions [48]. In this work,
the most common kernel function, called Gaussian RBF ker-
nel, is adopted for the SVM classifier as follows in Eq. (6).

K (x, xi) = e
−

(
‖x−xi‖

2

2σ2

)
, (6)

where σ is a standard deviation of the Gaussian distribution.

B. DIRECTED ACYCLIC GRAPH SUPPORT VECTOR
MACHINE (DAGSVM)
In the graph theory, DAG is defined as a graph with
directed edges and without cycle’s connection among ver-
tices; directed edges mean that the edges go only one
way from a vertex to another vertex. The DAGSVM [49]
and DAGKNN are adopted in a root binary decision DAG
learning structure in [39], [43], [44]. However, DAGSVM
has shown great success compared to DAGKNN, espe-
cially with RBF kernel functions. The training model of
DAGSVM [49] is the same as the 1-v-1 model that can be
solved by n(n−1)/2 binary SVM classifiers. On the other
hand, for the testing model, DAGSVM uses a rooted binary
DAG that has n(n−1)/2 internal nodes organized in a dia-
mond shape and n leaves labeled by classes as shown in
Figure 1.

Figure 1 illustrates a decision diagram of DAGSVM for a
4-class data. Suppose X is a test sample. The classification
operation is applied by starting from the root node, and each
node works as a binary SVM classifier for classes of Xi and
Xj. Then, we go to either left edge or right edge depending
on the SVM output value. Finally, we go through a path,
and reach a leaf node that indicates the predicted output
class. There exist many advantages for using DAGSVMs, it is
analyzed that it can be established for better generalization;
and the DAGSVM testing time is less than 1-v-1 SVM, since
each node is trainined only with the labeled classes of the
node, as shown in Fig.1 at the left side for each diamond
node.

C. MAHALANOBIS DISTANCE VIA SVM
For simplicity, this work considers learning Mahalanobis
distance via SVM by using DAGSVM and RBF kernel func-
tions. For n given training samples, the Mahalanobis distance
MA between xi and xj is defined as in Eq. (7) [50].

MA
(
xi, xj

)
=

√(
xi − xj

)T A (xi − xj),
s.t. A = LTL, (7)

where xi, xj ∈ Rd and A is a positive semi-definite
matrix [50]. Furthermore, L ∈Rd×d , and if A = Id×d , then
Eq. (7) produces the Euclidean distance metric.

To transfer theMahalanobis distance for learning the SVM,
Eq. (7) should be integrated to the kernel function in Eq. (6).
Then, calculate the result of mapping for the kernel function
that is considered in Eq. (8).

KL
(
xi,xj

)
= Kij = e−(xi−xj)

TLTL(xi−xj),

s.t.L = Id×d
/
σ and L0 =

I
d
, (8)

where I is the identity matrix, and σ is the standard deviation
of the Gaussian distribution.

Finally, the training data is divided into a training set T
and a validation set V. The SVM parameters are trained on
T, and the outcome of the SVM is evaluated on the validation
set V. Therefore, the objective of L is to maximize the inter-
class variations andminimize the intra-class variations, which
refers tominimize the classification error εV for the validation
set V.

L = argmin
{

1
|V|

∑
(x,y)∈V

[D (x) = y]
}
,

s.t. [D (x) = y] ∈ {0, 1}, (9)

where [D(x) =y] = 1 if and only if D (x) = y. According
to SVM classifier decision of Eq. (5) that relies on α and.
The parameters α and b are re-trained for every intermediate
setting of L. Since the sign (.) function in Eq. (5) is non-
continuous, performing the minimization to find L is then
non-trivial, and it can be performed on a smooth loss function
ϕv(L) as follows:

ϕv (L) =
1
|V|

∑
(x,y)∈V

sa [yD (x)] ,

s.t. sa (z) = 1/
(1+ eaz), (10)

where sa (z) is the sigmoid function, and a is a parameter
that adjusts the steepness of the learning curve. For example,
if a� 0, the function ϕV will be identical to εV. Since ϕV is
a continuous and differentiable function. So, we can compute
the derivative ofϕV to L. To derivative Eq. (5) and find ∂D/∂L
that relies on α,K , and b, we should apply the chain rule as:

∂D
∂L
=
∂D
∂α

∂α

∂L
+
∂D
∂K

∂K
∂L
+
∂D
∂b

∂b
∂L
, (11)

where ∂D
∂α
, ∂D
∂K ,

∂K
∂L , and ∂D

∂b are straight-forward, therefore,
we can compute ∂b

∂L . and ∂α
∂L that can be derived from the
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matrix inverse rule as follows:
∂ (α, b)
∂Lij

= −H−1
∂H
∂Lij

[α, b]T ,

s.t. [α, b]T = H−1[1 . . . 1, 0]T (12)

where H =
(
K̄ y
yT 0

)
and K̄ij=yiyjK (xi,xj). Based on pre-

vious issues, our evaluations are restricted to the binary
classification case, and we convert multi-class classifica-
tion problems to binary ones. Additionally, we apply the
cross-validation technique for each binary SVM classifier
to prevent the overfitting of classification. Furthermore,
the implementation of the proposed model depends on a
modification of the SVM software LIBSVM [51].

IV. DATABASES AND EXPERIMENTAL RESULTS
To evaluate the feasibility, and effectiveness of the pro-
posed framework, extensive experiments are conducted on
public and available face and ear datasets, and their fusion
constructed as a multimodal dataset. For all experiments,
facial images are cropped beside the ear images. In addition,
the face and ear images are converted to gray-scale images
and resized into 100 × 100 pixels. Moreover, fusion of LBP
and HOG descriptors is adopted to represent face and ear
images. The proposed framework depends on uniform LBP
with a radius of 2 pixels, a neighborhood size of 8 and a block
size of 8 × 8 without block overlapping. On the other side,
for the HOG descriptor, we adopt a cell of size 8 × 8 pixels,
and a block size of 16 × 16 pixels with 8 pixels overlapping.
Furthermore, the DCA is exploited as a feature level fusion
algorithm that performs an effective feature fusion process
based on maximizing the pairwise correlation across the two
feature vectors. Therefore, the proposed model exploits the
DCA algorithm advantages for feature fusion to avoid the
limitations of using face or ear images, separately.

This section includes dataset description, performance
evaluation metrics, and experimental results of unimodal face
and ear recognition. Finally, the proposed efficient multi-
modal biometric recognition based on face and ear images
is implemented by LDM with kernel SVM.

A. DATASET DESCRIPTION
Different biometric traits are adopted to perform our exper-
iments. Ear datasets include two available and challenging
ones: AWE and AMI. On the other hand, Georgia, ORL and
the challenging AR face datasets are adopted to represent
face datasets. Moreover, virtual multimodal biometric traits
are constructed by fusing ear with face datasets, such virtual
multimodal datasets called MD1 to MD6. In the following
points, we describe each dataset, separately.
• Mathematical Analysis of Images (AMI) ear dataset.
AMI dataset [52] has been collected from 100 persons,
and each person has 7 images, totally 700 images. AMI
ear images are collected from teachers, students, and
staff at Universidad de Las Palmas de Gran Canaria
(ULPGC), Spain. All persons are in the age range

of 19 to 65 years, and ear images are taken in an
indoor environment, of which the resolution is 492 ×
702 pixels.

• Annotated Web Ear (AWE) dataset [53]. It includes
1,000 images of 100 subjects; each subject has
10 images. All images are collected from the Internet
with various degrees of variability and illumination, and
with different image scales and rotations. Hence, AWE
ear dataset is considered as one of the most challenging
ear datasets.

• Olivetti Research Laboratory (ORL) face dataset [54].
ORL dataset includes 400 images, 10 face images for
40 individual subjects. Face images are acquired from
Cambridge employees and students. This dataset is
collected with no restrictions imposed on expression.
In addition, most of the person images are captured
at different times with different lighting conditions.
All images have the same resolution of 92× 112 pixels,
and some subject face images have glasses.

• Georgia Tech (GT) faces dataset [55]. To provide more
face images for training, Georgia Tech face dataset is
used, which contains 750 images for 50 subjects, and
every subject has 15 color images. Face images are
collected with different scales and orientations. Further-
more, most of the face images are taken in two or three
different sessions that refer to variations in different
illumination conditions, appearances, and facial expres-
sions (open or closed eyes, smiling or not smiling). The
average size of the face images is 150 × 150 pixels.

• AR faces dataset [56, 57]. As more complicated face
images, AR dataset has over 3000 RGB images with
an average size 768 × 576 pixels for 126 subjects,
74 subjects are men and the rest are women. Every-
one has participated in two sessions separated with two
weeks and without restrictions on hair style, make-up,
accessories, and scarves. Each subject also has at least
26 images including face images under different con-
ditions such as face expressions, illumination and pose
variations, accessories and partial occlusion like scarves,
sunglasses, hairs, and beards. Therefore, AR face dataset
is considered as a challenging face dataset. All images
are cropped to 128 × 128 pixels.

Figure 2 illustrates sample face images cropped and
the original ear images for each dataset. In addition,
Table 1 explains the number of images and number of subjects
for all datasets (face, ear, and virtual multimodal biometric
datasets), which are used in our experiments. Multimodal
datasets will be described later with more details.

B. EXPERIMENTAL SETTINGS AND EVALUATION METRICS
Combined LBP and HOG features are adopted as standard
local features to represent face and ear images. Moreover,
LDM via kernel SVM is investigated for ear classification
based on an RBF-SVM classifier. In order to validate the
proposed model, every dataset is divided randomly into two
disjoint groups, one for training and another for testing. The
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FIGURE 2. Sample images for ear and face databases.

TABLE 1. Face, ear and multimodal datasets.

5 fold cross-validation is adopted. The performance metrics
are computed as the average Rank-1 recognition rates and
standard deviations over all 5 folds for each experiment.
In order to decrease the splitting influence of the training and
testing data sets and to evaluate SVM training efficiency, all
experiments are repeated for 10 times with randomly chosen
training and testing data. The final recognition rate result is
the average Rank-1 recognition accuracy of the 10 random
experiments. The standard deviation is presented to assess the
robustness for each face and ear datasets, and their fusion.
Furthermore, to validate the proposed model performance,
all experiments depend on two widely computed metrics:
system accuracy (the average Rank-1 recognition rate) and
the Receiver Operating Characteristic (ROC) curve. Model
accuracy that represents the overall model performance on
all available subjects can be formulated with Eq. (13), i.e.,
accuracy is the ratio of the number of correctly classified

subjects divided by the test dataset size.

Accuracy (Acc) = (TP+ TN )/
(TP+ FP+ TN + FN ) (13)

where TP and FP refer to the true positive subjects and
the false positive subjects, respectively. In addition, TN and
FN mean the true negative and the false negative matched
subjects. The proposed model adopts kernel RBF for SVM
classifier to calculate the system accuracy that refers to the
recognition rate. Besides, the proposed method depends on
the ROC curve to evaluate and compare the model perfor-
mance for each biometric trait and their fusion.

C. EFFICIENCY AND ROBUSTNESS OF
DAGSVM TRAINING MODEL
This section explains the training efficiency of the DAGSVM
model for our proposed approach improving learning Maha-
lanobis distance metric via kernel DAGSVM. In this subsec-
tion, we provide the proposed biometric model performance
through 10 random repeated tests. Figure 3 shows the model
accuracy variation during different repeating tests for AWE
and AMI ear datasets. As shown in Figure 3, we can observe
that the proposed model can achieve high performance within
several repetitions times for the unimodal ear recognition.
It gives around 95.50 % and 96.50 % on AWE and AMI ear
datasets, respectively. The model performance on the AMI
ear images is better than that on AWE images collected from
the web as an unconstrained dataset.

Furthermore, for face recognition, the proposed model is
evaluated on three standard and public face datasets (ORL,
Georgia Tech and AR face databases) with 10 random
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FIGURE 3. Model performance on AWE and AMI ear datasets through
10 repetitions.

FIGURE 4. Model performance on ORL, Georgia Tech, and AR face
datasets through 10 repetitions.

repetitions. The results prove the efficiency and robustness
of DAGSVM training model as shown in Figure 4 for ORL,
Georgia Tech and AR face datasets. Figures 3 and 4 prove the
stability of the proposed model which achieves good results
with several repetitions for unimodal face recognition system.
Gratifyingly, the proposed face recognition model gives an
accuracy around 99.00 %, 98.50 %, and 99.70 % for ORL,
Georgia Tech, and AR face datasets, respectively. These
results for unimodal ear and face recognition through several
random repetitions reveal that the proposed model is stable
more efficient than other classification models. Later, we will
present the classifier performance through 10 repetitions for
the proposed multimodal biometric recognition.

D. PERFORMANCE COMPARISON WITH OTHER MODELS
Shu et al. [58] and Kar et al. [59] and others [60]–[62]
presented different models for face recognition. However,
the performance of these models is not satisfactory as
shown in Table 2 as in [58], [59], [62]. We can notice that
Tables 2 and 3 obviously explain the proposedmodel achieves
better performance than that of some recent state-of-the-art
face and ear recognition models.

Moreover, the proposed model produces better recognition
rates with low computation complexity compared to those
of the models in [59], [63], [64]. These models adopt deep
convolutional neural networks for improving face and ear

TABLE 2. Performance comparison in recognition rate (%) on AR dataset.

TABLE 3. Performance comparison in recognition rate (%) on AWE
dataset.

image representation to achieve good accuracy. However,
deep features are high-dimensional features which may lead
to more computational complexity than that achieved with
hand-crafted features (LBP and HOG) used in this work.
Furthermore, most of the previous works on biometric recog-
nition were based on traditional distance and classifiers [16],
[53], [62], [64], [65].

Multimodal biometric recognition has got more attention
in the last decades, and it has been used in many intelligent
applications such as immigration systems, access control
systems, and surveillance systems. In order to improve the
performance of a multimodal biometric recognition, the pro-
posed model depends on combination of ear images with face
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FIGURE 5. Model performance generated datasets through 10 repetitions.

images to construct robust and efficient multimodal feature
vectors. To evaluate the proposed model for multimodal bio-
metric recognition, we firstly constructed virtual multimodal
datasets by using face and ear images and generated six
virtual multimodal datasets called MD1 to MD6. However,
the number of ear images is limited to 7∼10 images for each
subject in the ear dataset. Therefore, the proposed takes the
corresponding 7∼10 face images to the available ear images.
• MD1 (ORL+AWE) and MD2 (ORL+AMI). To build
virtual multimodal datasets MD1 and MD2, the pro-
posed method uses ORL face dataset with ear databases
AWE and AMI. These two multimodal databases have
40 individuals; for each subject, ORL face images and
corresponding ear images from AWE and AMI are
randomly selected, respectively. Therefore, MD1 has
400 multimodal images in which

TABLE 4. Average recognition rates (%) of the proposed model on
different datasets.

• MD1 is composed of face images fromORL face dataset
and ear images from AWE ear dataset. It has 400 mul-
timodal images. Each subject has 10 multi-traits com-
posed of face and ear images. On the other side, MD2 is
composed of face images from ORL dataset and ear
images fromAMI dataset. It has 280multimodal images,
each subject has 7 multi-traits.

• MD3 is composed of GT and AWE datasets, andMD4 is
composed of GT and AMI datasets. MD3 contains
500 multi-images, and every subject has 10 multi-traits
for 50 subjects. On the other hand, MD4 includes
images for 50 individuals with 7 multi-traits for each
one. Hence, the total number of images for MD4 is
350 images.

• MD5 is composed of AR and AWE datasets, andMD6 is
composed of AR and AMI datasets. MD5 contains
1000 multi-traits for 100 individuals, while MD6 con-
tains 700 multi-traits for 100 subjects.

In order to evaluate the efficiency and robustness of the
proposed DAGSVM model, experiments have been con-
ducted on the virtual multimodal datasets MD1 to MD6.
All experiments have been evaluated 10 times, whereas
each multimodal dataset is proposed 5 fold cross-validation.
Figures 5(a), 5(b), and 5(c) show the proposed model through
10 repetitions on MD1 to MD6.

Figure 5 reveals that means the proposed DAGSVMmodel
is stable, robust, and efficient for multimodal biometric
recognition. Furthermore, we can see that the results on
MD5 and MD6 are the best as they have the largest sizes as
shown in Table 1. This means that the proposed model can
achieve excellent performance, especially when providing
more images for training.

The experimental results prove that the proposed model
can also improve the multimodal recognition based on the
fusion of face and ear images compared to the case of using
individual traits as shown in Table 4. It can be noticed
from Table 2 that he proposed model gives an accuracy of
99.50 % for multimodal biometric recognition, while it gives
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TABLE 5. Performance comparison in recognition rate (%) between
different fusion and recognition frameworks.

FIGURE 6. System performance (ROC curves) for individual face and ear
biometric systems.

accuracies of 99.00 % and 96.00 % for face and ear biometric
recognition, respectively.

Moreover, we also introduce the ROC curves of the
proposed model on MD1 to MD6 datasets as shown in
Figures 7(a), 7(b), and 7(c). We can find that the proposed
model gives better performance for multimodal biometric

FIGURE 7. Performance of the proposed model on different datasets.

recognition compared to ear or face recognition only as
shown in Table 4 and Figures 7(a), 7(b), and 7(c).

In addition, Figures 6(a) and 6(b) show the ROC curves
for face and ear recognition. ROC curve refers to the
model performance and presents the relation between the
Acceptance Positive Rate (APR) and the False Positive
Rate (FPR). Anyone can observe that the model perfor-
mance on the AR face dataset is the best as it is large
enough. In addition, the model performance on the AMI ear
dataset outperforms AWE dataset as presented in Table 4
and Figure 6 (b). The AWE is considered as a challenging
ear dataset [53, 63, 64, 65, 67],which contains ear images
with high degrees of variability in pose, illumination and
resolution as shown in Figure 2.
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We have evaluated the proposed multimodal biometric
recognition model and compared it with some state-of-the-
art multimodal biometric models, especially those based on
face and ear images as shown in Table 5.

Table 5 illustrates that the performance of the proposed
multimodal biometric recognition model (LDM-DAGSVM)
is superior to recent state-of-the-art multi-biometric models
using face and ear images [10], [16], [31], [68], [70]. More-
over, we compared the proposed multimodal recognition
model based on face and ear images to other multimodal bio-
metric recognitionmodels [13], [69] using different biometric
traits. We can observe that the proposed model achieves com-
petitive results compared to the other multi-biometric models
using three biometric traits, and requiring more sensors to
collect the data for three traits, not tomention the computation
complexity of the traits.

V. CONCLUSION
The main motivation of the proposed multimodal biomet-
ric model includes two aspects: face and ear images repre-
sentation, and human classification. Therefore, an efficient
framework, based on a hybrid model of learning distance
metric (LDM) and directed acyclic graph (DAG) support
vector machine (SVM), has been proposed for a multimodal
biometric recognition in this paper. Mahalanobis distance
metric learning is used to seek a square matrix from the
training set. Besides, kernel SVM is used to achieve better
generalization ability than that of the traditional classifiers
such as K-Nearest Neighbor (KNN) using Euclidean dis-
tance. Extensive experiments have been conducted on public
and available face and ear datasets, and their fusions which
are constructed as multimodal datasets. With experiments
conducted on unimodal and multimodal datasets, the experi-
mental results demonstrate that the proposed model is more
effective than the other recent state-of-the-art human recog-
nition models.
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