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ABSTRACT In recent decades, studies on short-term traffic speed forecasting of the large-scale road are a
new challenge for researchers and engineers. Especially based on deep learning neural networks, studies on
short-term traffic forecasting have achieved mush-room growth. This study proposes a stacked Bidirectional
Gated Recurrent Unit neural network model to predict the traffic speed of the expressway over different
estimation time intervals in an effective manner. By building a multiscale-grid model, it can take less time
to derive a set of key traffic parameters of different scales to predict traffic speed of the various-scale road.
The speed prediction of small-scale sections can cover more detailed road spatial features preparing for
Vehicle Navigation System, and the speed prediction of large-scale sections can establish the real-time traffic
control strategies. In order to validate the effectiveness of the proposed model, we use the floating car data,
with an updating frequency of 1 minute from the urban freeway of Beijing, for model training and testing.
The experimental results show that the stacked BiGRU network with the multiscale-grid model enables to
capture the spatial-temporal characteristics of traffic speed efficiently. Furthermore, the BiGRU with two
layers (BiGRU-2L) outperforms benchmark models in the prediction of the traffic speed, which presents
a significant advantage in reducing the overfitting problem, decreasing the excessive time-consuming and
improving the effective use of limited computation resources.

INDEX TERMS Stacked bidirectional gated recurrent unit network, multiscale grid model, traffic speed
prediction, floating car data.

I. INTRODUCTION
Recent years have witnessed increase ever-growing traffic
demand, which gradually leads to the average speed of road
network becoming slow down, causing a series of traffic
issues (i.e. the reducing traffic efficiency, waste of time and
traffic congestion), deteriorating the traveler’ experiences,
tremendously [1], [2]. Nowadays, it is widely acknowledged
that short-term traffic prediction can serve as an effective
tool to address or alleviate the problem. Short-term traffic
prediction can be applied to detect the traffic speed of the
road network efficiently for the rapid response to various
traffic status. What’s more, successful implementation of
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traffic speed prediction can not only identify the traffic state
of the road network to enhance transportation professionals’
decision-making process but also benefit travelers’ route pre-
planning and rescheduling [3].

With the rapid development of data storage and data pro-
cessing techniques, the real-time traffic can be obtained by
various sensors such as infrastructure sensors, mobile sen-
sors, loop sensors, microwave sensors and traffic cameras
and so on [4]. As a ubiquitous kind of mobile sensor, the
floating cars can provide speed, time and position information
to probe a city’s rhythm and pulse [5], [6]. In comparison
with the conventional data collecting method, the floating
car data (FCD) has three important advantages. First, real-
time traffic data (i.e. the traffic speed, time, longitude and
latitude information) can be collected, and automatically sent
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to a processing center where the traffic parameters (such
as upstream and downstream speed, average speed, history
speed, time slice etc.) are directly extracted [7]. Moreover,
the FCD enables to monitor the large-scale road network and
facilitate the large-scale speed prediction, which can cover a
wider area than fixed sensors with observing a limited number
of areas [8]. Finally, via GPS-equipped vehicles, high-quality
data is collected with low costs and high efficiency [9]. All
these characteristics have made FCD a popular mainstream
data collection method for traffic speed prediction [10].

Based on the map-matching and Geographic Information
System (GIS) techniques, lots of studies have been con-
ducted to extract traffic parameters from the FCD [11], [12].
However, two major obstacles are revealed in applying these
techniques to apply the FCD to road networks. On the one
hand, it has been generally acknowledged that map-matching
is a time consuming and complicated tool [13], making it
challenging to match massive FCD trajectories across the
whole urban road networks [14]. On the other hand, how to
acquire high quality and timely updated map to ensure the
accuracy of thematches has been a tough problem. Therefore,
even if we can obtain a large amount of traffic information
from the FCD, the prediction of traffic speed with the grid
model using the FCD is widely recognized a critical problem
to be solved [15]. To fill these gaps, the traffic grid model has
been proposed in this paper to match the trajectories to road
networks more effectively. The traffic grid model has been
applied in the traffic field, traffic state evaluation [10], traffic
jam control [16], traffic light control [17], traffic forecast-
ing [18]. However, it should not be ignored that the traditional
grid model has two defects. When using the grid model to
mine the spatiotemporal patterns, it is difficult to process
the problem of grid boundary [19], especially the trajectories
point near the grid boundary [20]. Furthermore, the size of
the traditional grid is fixed [9], which limits the extraction
of multiscale road features. Therefore, this paper proposed a
multiscale-grid model, which includes two methods (i.e. grid
fusion and grid combination). Firstly, the grid fusion method
transforms the trajectories into the grid sequences to solve the
grid boundary problem. Second, the grid combinationmethod
generates various scale datasets and adopted to prediction
models.

Overall, the existing traffic speed prediction methods
can be divided into two categories: model-calculation
based methods and data-driven methods. Model-calculation
based methods are criticized for theoretical assumptions
and computed with small amounts of empirical data [21].
The model-calculation based methods have offered valu-
able insights on traffic speed prediction, such as the
statistical model (e.g. Autoregressive Integrated Moving
Average (ARIMA)) [22], and traffic simulation model
(e.g. cellular automata model) [23]. However, most of the
model-calculation methods are limited by the lack of a great
deal of actual data, insufficient computing resources and
certain ideal assumptions [24]. Moreover, it is unreasonable
for model-calculation based methods to predict large-scale

road network speeds with massive traffic data rapidly. Due to
the complexity of the real traffic scenarios, it is insufficient
to predict traffic speed by simulation and statistical anal-
ysis. Different from model-calculation based methods, the
data-driven methods have relaxed assumptions for inputs and
the methods with unfixed structure and parameters, which
are more capable of processing outliers, missing data, and
noisy data [25]. For instance, Support VectorMachine (SVM)
[26], Kalman filter (KF) [27] and artificial neural networks
(ANN) [28] are typical data-drivenmethods, which have been
successfully applied to traffic speed forecasting. Although
the aforementioned machine learning models have made
some achievements, the non-parametric based methods show
poor performance in learning the spatial-temporal features of
traffic speed [29].

With the development of Intelligent Transportation Sys-
tems, the short-term traffic speed predictions are shifting
from traditional machine learning methods to deep learning
algorithms [30]. The traffic speed prediction methods using
deep learning algorithms can capture spatial-temporal corre-
lations of the traffic flow. From the perspective of temporal
features, the Recurrent Neural Networks (RNNs) contribute
to the dynamic traffic evolution with the time series data [31].
Although RNN is adopted in capturing time series of traffic
flow and speed, traditional RNN cannot capture the long-term
dependence of the input sequence [3]. In order to overcome
these shortcomings, long short-term memory (LSTM) was
developed to predict short-term travel speed [32]. By com-
parison with traditional RNN, LSTM has more advantages
in dealing with long time-series data, which enable to deter-
mine the optimal time lag for prediction speed automatically.
Recent years, LSTM is becoming more and more popular
in traffic forecasting, such as traffic flow prediction [33],
short-term traffic prediction [34], traffic speed prediction [35]
etc. One of the famous LSTM variants is the Gated Recur-
rent Unit (GRU) model, which has fewer neurons but can
achieve the same or better performance than LSTM [36].
However, neither LSTM models nor GRU model can capture
the spatial feature of traffic speed. In terms of spatial correla-
tions, convolutional neural networks (CNNs) have been used
to capture adjacent relations for spatial characteristics [37].
However, CNN cannot capture the temporal correlation,
while LSTM fails to characterize the spatial correlation. The
convolution LSTM (Conv-LSTM) was proposed to capture
the spatial-temporal correlation of traffic flow [38]. Although
Conv-LSTM has good prediction accuracy, it usually needs a
long training time [39].

Consequently, to reduce the computational complexity,
a novel multiscale-grid-based model has been proposed to
extract the spatial features from large-scale networks. Mean-
while, to extract complete, sequential information about traf-
fic speed temporal feature, the Bidirectional Gated Recurrent
Unit (BiGRU) network is proposed to predict traffic speed.
As theGRUvariants, the concept of BiGRU comes fromBidi-
rectional Recurrent Neural Networks (BiRNN) [40], in terms
of two separate memory blocks processing sequence data
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in both forward and backward directions, producing more
accurate prediction results. Although the BiGRU had been
applied in quite a few traffic fields, like the lane change
manoeuvre [41], travel time prediction [42] and traffic vol-
ume prediction [43], multiscale-grid-based traffic speed fore-
casting need further study. Furthermore, since the shallow
single-layer BiGRU only captures short-term memories [44],
the stacked Bidirectional Gated Recurrent Unit (SBiGRU)
model is proposed to long-term time series prediction. Later,
we combine the multiscale-grid model with SBiGRU to pro-
pose a novel framework to predict the short-term traffic speed.

Compared with the existing literature, the proposed
method has the following contributions:

First, it is completely based on the data, without the aid
of any additional tools such as complex map-matching and
digital maps. This feature makes the proposed method practi-
cal and accessible for researchers and engineers who are not
familiar with the map-matching and GIS techniques.

Second, under the multiscale grid modelling, the road net-
works are transformed into discrete cells, and the FCD data
are matched to the grids via a simple assignment process
to extract spatial patterns, where the computation load is
largely reduced compared to map-matching and Geographic
Information System (GIS) techniques. The multiscale traffic
grid combination can better reflect the topological structure
of the road. It not only solves the grid boundary problem
but can generate various scale datasets to feed to prediction
models. The simplicity of the grid model and the parameter
extraction, along with the constant input of the GPS data,
makes the proposed method highly efficient in the traffic
speed prediction.

Third, the novel SBiGRU with multiscale-grid-base model
characterizes the spatial-temporal properties of the spatial-
temporal predictors, capturing the spatial-temporal features
of traffic speed in the large-scale road network for the short-
term traffic speed prediction.

Fourth, this method is easily transferred to other cities for
the prediction of traffic state.

Using the expressway of Beijing as a case study, the accu-
racy and stability of the proposed method are demon-
strated. The rest of this paper is organized as follows.
Section 2 describes the FCD data and details the proposed
methodology. Section 3 conducts a case study and in-depth
analysis of the experimental results. Finally, Section 4 ends
with major conclusions and discussions for future research.

II. METHODOLOGY
A. DATA CLEANING
The obtained FCD were sampled at a rate of 1 minute (min),
which saved in datasets, and their variables and attributes are
listed in Table 1.

There may be some error data for original GPS, due to
either blockage of GPS signals and hardware/software bugs
during the data collection and the transmission process [45].
In order to provide good quality of data and ensure the

TABLE 1. The detailed data attributes of the FCD system.

accuracy of the derived results, it is important to detect and
remove the wrong records that are incompatible with the
physical phenomena of traffic. The data cleaning process is
carried out according to the following two steps.

Step1: Remove the data that are beyond the range of the
traffic analysis region.

Step2: Remove the data in which the corresponding vehicle
speeds are out of the range of 0-120 km/h.

B. THE METHOD FRAMEWORK
Figure 1 shows the framework of the prediction method that
we applied in this study. Through constructing the gridmodel,
the trajectories would be added a new attribute (i.e. the grid
number). With the grid fusion and combination, the grid size
and grid number might be changed at the same time. After-
wards, based on the different scales of grids, the correspond-
ing time-spatial parameters of traffic speed were extracted,

FIGURE 1. The flowchart of the prediction method.
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FIGURE 2. The FCD mapping to grid.

and the training datasets and testing datasets were made up,
which were preparing for the model prediction.

C. THE MULTISCALE GRID MODEL
The traffic grid model is based on the City Management
Grid Modelling Theory [46]. In this technique, a grid-wide
network is established to transform roads into discrete grids;
afterwards, the FCDwill be matched to the grids in terms of a
simple assignment process [14]. This method avoids the com-
plexity and time-consuming calculation of map-matching
algorithms as well as the needs of a detailed and timely
updated map, achieving a considerable improvement in the
efficiency of traffic prediction.

The multiscale grid model not only has the advantages of
the traditional grid model but can capture road speed features
of different scales more accurately and flexibly. In the multi-
scale grid model, a novel grid fusion method is proposed to
solve the problem ofGPS points deviationwhen the trajectory
points match the grid. Furthermore, it can dynamically com-
bine grids to predict road speeds of different scales, which
overcomes the fixity of the traditional grid model.

1) IDENTIFYING THE SIZE OF GRID AND MATCHING THE
FCD TRAJECTORIES TO GRIDS
In the current study, the area of each road is divided into
grids with a fixed size. In constructing such grids, one crucial
parameter needs to be specified: the size of each grid. If the
size of the grid is too large, it may contain more parallel free-
ways in the same direction, and the traffic conditions between
different roads cannot be differentiated. On the contrary, if the
grid size is too small and cannot cover a freeway adequately,
the FCD samples would be insufficient for some grids of the
road, leading to the calculations of travel speed and vehicle
positions inaccurate.

Considering the above factors, we empirically estimate the
size of the grid 100 × 100 m2, reconstructing the freeway
network. By taking the urban expressway in Beijing, China,

as a case study, the trajectories of FCD will be represented by
mapping to grids. As shown in Figure 2(a), the selected region
(i.e. 20 × 20 km2) is split into 200 × 200 grid2 (i.e. each
grid is 100 × 100 m2). Then we only need to extract the grid
to match the trajectories point (see Figure 2(b)). In addition,
to reduce the computational complexity, the extracted grids
are renumbered.

2) GRID FUSION
When the freeway mapping to grids, how to define the rela-
tion of the downstream and upstream of the freeway has
become the point of discussion; He et al. (2017) argued
that it could select the grid with more GPS points (2017).
However, due to the fixed size grid and the freeway network’s
structure irregular, sometimes the FCD on the urban express-
way cannot match one certain grid adequately. As shown in
Figure 3, the trajectories of vehicles are almost parallel to
the intersection boundary of grid A and grid B; thus it is not
adequate to estimate the traffic state, only by choosing either
grid A or grid B. Therefore, it is necessary to merge the grids
which located on the same longitudes or the same latitudes
to estimate the same traffic state adequately. The process of
the grid fusion is equivalent to the process of map matching
dealing with anomalous trajectory points, which is based on
trajectory without affecting other roads. Based on the above
method, Ring 4 of Beijing is expressed with 592 grids and
renumbered the 592 grids. The clockwise (i.e. CW) direction
is grid number ordering from small to large. However, the
counterclockwise (i.e. CCW) is opposite.

3) GRID COMBINATION
Differences from grid fusion, the target of the grid combi-
nation can improve the prediction accuracy in different grid
combination scales. As shown in Figure 4, based on the
multiscale-grid-combination method, the roads are matched
with various scale grid-combination, which is divided into the
road sections of different segmentation. Through renumbered
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FIGURE 3. The grid fusion and distinguish the direction.

FIGURE 4. The grid combination.

the combinations, a grid chain is made up, clearly. It can
be seen that the range of grid numbers decreased with the
increase of grid-scale combinations in the same study region.
Additionally, it indicated that the dimension of FCD datasets
decreases with enlarging grid-scale combinations in the same
datasets. Finally, the multiscale datasets are constructed to
prepare for prediction. Taking 592 grids of Beijing Ring
4 road as an example, provided that we combine two grids
(see Figure 4(b)), and the dimensions of datasets are halved
(i.e. 296 grids). Similarly, it will calculate various predictive
accuracy by combining three grids, four grids or even more
grids; which grid combined method is the best, requiring
further discussion.

D. EXTRACTING TRAFFIC PARAMETERS
Traffic speed prediction at one location normally uses a
sequence of speed values with n historical time steps as
the input data, which can be extracted by floating car data.
However, the speed may be influenced by the velocities of

nearby locations, otherwise even locations far away, espe-
cially when traffic jam propagates through the traffic net-
work [47]. Therefore, for the prediction model, we cannot
only take into account the temporal features but also the
spatial features. To analyze these spatial feature parameters’
influence, the proposed multiscale grid model in this study
does consider not only the spatial position of the grid in the
road network but also the upstream and downstream traffic
speed of different directions. In temporal feature parame-
ters, when predicting the speed of large scale road network,
the impact of historical average speed and historical median
speed should not be neglected, which can extract adequately
historical speed trend. Additionally, the different time slices
in the grids and peak hours also require being considered.
Besides, three categories of weather variables are considered,
including temperature (measured by Celsius degree), weather
state, wind speed (measured by mile per hour). In conse-
quence, we selected eleven parameters: the upstream aver-
age speed U s

t , the downstream average speed Dst , the time

VOLUME 9, 2021 1325



D. Chen et al.: Multiscale-Grid-Based Stacked Bidirectional GRU Neural Network Model for Predicting Traffic Speeds

TABLE 2. The parameter definition.

slice TSst , the grid number GN s
t , the historical median speed

M s
t+1, the historical average speed H s

t+1, average speed V s
t ,

the peak hour Pst , the weather state Cs
t , wind speed W s

t , the
lowest temperature LT st and the highest temperatureHT st (see
the Table. 2) to predict the speed in future time series (i.e.
t + 1, t + 2, t + 3), respectively. According to the grid-
wide network, we extracted the twelve variables (i.e. TSst ,
GN s

t , U
s
t , D

s
t , M

s
t+1, H

s
t+1, V

s
t , P

s
t , C

s
t , LT

s
t , HT

s
t , W

s
t ) of

multivariate time series in different slices (e.g. 5 min, 10min,
20min, 30min, etc), respectively.
The definition for the Average speed of time interval t at

grid s is given by:

V s
t =

N∑
i=1

vst

N s
t
, s = 0, 1, 2, . . . , S, t = 0, 1, 2, . . . ,T (1)

For the CW direction, the V s±1
t is calculated as s-1; by

contrast, in the CCW direction it is calculated as s+ 1. When
the grid s = 0, the grid s of U s

t is selected as the maximum
number S. The definition for the upstream average speed of
time interval t at grid s is given by:

U s
t =

V s±1
t

N s±1
t

, s = 0, 1, 2, . . . , S, t = 0, 1, 2, . . . ,T (2)

For the CW direction, the V s±1
t is calculated as s + 1; by

contrast, in the CCW direction it is calculated as s-1. When
the grid s selected the maximum number S, the grid s of Dst
is the minimum number. The definition for the downstream
average speed of time interval t at grid s is given by:

Dst =
V s∓1
t

N s∓1
t

, s = 0, 1, 2, . . . , S, t = 0, 1, 2, . . . ,T (3)

Because the numerical value of GN s
t has an influence on

the calculation of weight matrix, one-hot encoding is adopted
to avoid the influence of numerical value on the weight
matrix.

Suppose the traffic network consisting of grid s, with
twelve variables, and we require predicting the traffic speeds
over (t + 1, t + 2, t + 3, etc.) time series. The input can be
characterized as a data matrix (i.e. X sT ), and the output can be
expressed as a vector (i.e. Y sT ), (4), as shown at the bottom of
the next page.

The predicted target value is defined as:

Y sT =
[
yst−n, y

s
t−n+1 · · · y

s
t−1, y

s
t
]T (5)

Therefore, based on the data matrix [X sT ,Y
s
T ], it is further

split into the training dataset (i.e. [X sT ,Y
s
T ]tr , whose propor-

tion is 70%) for training and the test dataset (i.e. [X sT ,Y
s
T ]te,

whose proportion is 30%) for testing.
To improve the effectiveness of the optimal solution by

eliminating, the data normalization is proposed; this method
uses the proportion of calculation to make the dataset fall into
the specific range and removes the limitation of data units
by converting the dataset to no pure dimensional data for the
model training and testing. Additionally, in accordance with
excluding the effects of large eigenvalues, normalization can
improve the training speed. The minimum-maximummethod
(see Equation (6)) is one of the major normalized methods.

X ′T =
X − Xmin

Xmax − Xmin
(6)

E. LSTM AND LSTM VARIANTS MODEL
Similar to other structures of a machine learning model for
the traffic speed forecast, LSTM and GRU both contain two
stages: the training stage and the prediction stage. In the
course of the training stage, by enhancing the memory of iter-
ative information with the threshold layers, these two struc-
tures are more conducive to calculate the biases, weights and
other parameters, which could identify and store historical
speed information, reducing the training time of the model.
During the speed prediction stage, the predictive speed of the
time series can be obtained by performing a vector operation
on the input data based on the training model [48].

The architectures of the LSTM and GRU are seemingly
similar, which consists of three layers: the input layer,
the memory blocks and the output layer. As shown in
Figure 5, in the structure of memory blocks, the function σ
(i.e. Sigmoid function whose scale is [0, 1]) can control the
information maintained in each cell of the memory block,
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FIGURE 5. The structure of memory blocks of LSTM and GRU.

effectively allowing memory blocks to selectively decide
what to keep or drop from the memory, called ‘‘gate’’. There-
fore, the data flow can be represented as follows: the data
from the input layer is passed to the memory blocks, and the
memory blocks are updated with values based on the gates.
Eventually, the output layers are calculated by combining the
memory with the previous state of the network as well as the
current input.

However, there are significant differences in the structure
of memory blocks, compared with the LSTM layer being
made up of input gates St , forget gates Ft and output gates
Ut (see Figure 5(a)) the GRU layer is composed of two
gates(see Figure 4(b)): reset gate Rt and update gate Zt
(see Figure 5(b)), contributing to fewer parameters and faster
convergence [49]. It is noted that the update gate is used
to control the extent to which the state information of the
previous moment is brought into the current state. The larger

the value of the update gate, the more the state information
of the previous moment is brought in. The reset gate controls
how much information is conveyed to the current candidate
set ˜Hist in the previous state. The smaller the reset gate is; the
less information is passed to the previous state.

The LSTM layer transition equations are the following:
Gates:

Ft = σ
(
Wf ∗ [Hist−1, xt ]+ Bf

)
(7)

St = σ (Ws · [Hist−1, xt ]+ Bs) (8)

Et = σ (We · [Hist−1, xt ]+ Be) (9)

Input transform:

Ct = Ft ∗ Ct−1 + Et ∗ St (10)

Memory update:

Ut = σ (WU · [Hist−1, xt ]+ BU ) (11)

Hist = Ut ∗ tanh (Ct) (12)

The GRU layer transition equations are the following:
Gates:

Rt = σ (Wr ∗ [Hist−1, xt ]) (13)

Zt = σ (Wz ∗ [Hist−1, xt ]) (14)

Memory update:

˜Hist = tanh
(
WH̃is · [Rt ∗ Hist−1, xt ]

)
(15)

Hist = (1− Zt ) ∗ Hist−1 + Zt ∗ ˜Hist (16)

yt = σ (Wy · Hist ) (17)

Activation functions:

σ (x) =
1

1+ e−x
(18)

tanh(x) =
ex − e−x

ex + e−x
(19)

where the operator [ ] denotes that two vectors are connected;
the operator ∗ denotes the product of matrices; xt is the input
vector at the time step t;Wf ,Ws,We,Wr ,Wz,WH̃is present the
weights; Bf ,Bs Be present the bias vectors; σ is the Sigmoid
function; tanh is non-linear activation functions;

To better solve the problem of exploding/vanishing gradi-
ent and make the deep networks converge fast, the Rectified
Linear Unit (ReLU) is proposed [50].

ReLu =

{
x, x > 0
0, x < 0

(20)

X sT =


TSst−n, GN s

t−n, U s
t−n, Dst−n, M s

t−n+1, H
s
t−n+1, V s

t−n, Pst−n, W s
t−n, Cs

t−n, LT st−n, HT st−n
TSst−n+1, GN

s
t−n+1, U

s
t−n+1, D

s
t−n+1, M

s
t−n+2, H

s
t−n+2, V

s
t−n+1, P

s
t−n+1, W

s
t−n+1, C

s
t−n+1, LT

s
t−n+1, HT

s
t−n+1

...
...

...
...

...
...

...
...

...
...

...
...

TSst−1, GN s
t−1, U s

t−1, Dst−1, M s
t−1, H s

t−1, V s
t−1, Pst−1, W s

t−1, Cs
t−1, LT st−1, HT st−1

TSst , GN s
t , U s

t , Dst , M s
t , H s

t , V s
t , Pst , W s

t , Cs
t , LT st , HT st


(4)
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As theGRUvariants, through two separatememory blocks,
BiGRU can process sequence data in both forward and
backward directions (see Figure 6(a)), which ensures that
it can better deal with large-scale data. Furthermore, com-
pared with BiGRU, the SBiGRU has more hidden layers
(see Figure 6(b)), which can capture long-term memories
more accurately to carry out the traffic speed forecasting for
the various grid scales. It is noted that the number of hid-
den layers of the SBiGRU model has a significant influence
on prediction accuracy. It is generally acknowledged that
the deeper neural network layers, the better robustness and
accuracy are [51]. Nevertheless, too many hidden layers will
increase model complexity, which may easily lead to over-
fitting. Therefore, to measure the influence of the number of
hidden layers, the various multilayer model will be tested in
this experiment.

FIGURE 6. The structure of BiGRU and Stacked BiGRU.

F. THE MULTISCALE GRID MODEL WITH THE SBIGRU
NETWORK
In this section, a novel architecture (i.e. the combining of the
multiscale grid model with the SBiGRU network) is proposed
for the large scale traffic speed prediction (see Figure 7).
In the preparation stage, it can be seen that utilizing the
multiscale grid combination method extracts spatial charac-
teristics of traffic speed to build different datasets as input
variables. In the prediction stage, we establish a double-layer
memories blocks to extract the long-term memories and
short-term memories of traffic speed in different grid com-
binations. The first BiGRU layer is used to learning the
spatial-temporal characteristics and present to the second
hidden layer to predict the traffic speed in the large scale

road network. In the course of the training procedure of the
proposed model, the training object is minimizing the root
mean squared error (RMSE) between the estimated values
and ground-truth values. The weight and bias can be learned
through the training process. As shown in Table 3, the training
process can be divided into two phases, including the first
phase for extracting the spatial features by the multiscale grid
model and the second phase for learning the parameters.

TABLE 3. Pseudo-code of the process to train the BiGRU.

G. THE INDEX OF PERFORMANCE
To compare the performance of our proposed model with
other state-of-the-art methods, measurement is required to
evaluate the prediction performance of models. In the traffic
speed prediction field, the Mean Absolute Error (MAE), the
Root-Mean-Square Error (RMSE), mean absolute percentage
error (MAPE) and R-square (R2) are used to evaluate the
benefits and drawbacks of this model. The definitions are as
follows:

MAE(Yi,
∧

Yi) =
1
n

n∑
i=1

|Yi −
∧

Yi | (21)

RMSE(Yi,
∧

Yi) =

[
1
n

n∑
i=1

|Yi −
∧

Yi |2
] 1

2

(22)
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FIGURE 7. The framework of the multiscale grid model with the stacked BiGRU network.

FIGURE 8. The average speed of ring 4 of Beijing.

MAPE(Yi,
∧

Yi) =
1
n

n∑
i=1

|Yi −
∧

Yi |
Yi

(23)

R2 = 1−

n∑
i=1

(Yi −
∧

Yi)2

n∑
i=1

(Yi − Yi)2
(24)

where n is the number of test samples, Yi is the real traffic

speed,
∧

Yi is the traffic speed to be predicted. Yi is the average
speed.

III. RESULT ANALYSIS AND COMPARISON
A. DATA DESCRIPTION AND EXPERIMENTAL SETUP
1) DATA DESCRIPTION
In order to prove the accuracy, stability, and validity of our
prediction model, the FCD data provided by the Beijing
Taxi company are utilized as the dataset. The Beijing Taxi
company provided 40-day FCD ranged from May 1 to
July 31, 2016, involving FCD in Wednesday, Friday (a total
of 26 weekdays) and Sunday (a total of 14 weekends), which

include 16931629 floating cars’ trajectories (i.e. 28.7GB
in size) with the longitude and latitude range as <116.25,
116.50> and <39.83, 39.99>.

Based on the multiscale grid model, ring 4 of Beijing
is mapped with the 592 fixed girds. Then, the trajectories
traveling along the CW and CCW direction of ring 4 of
Beijing were extracted, respectively. To intuitively show the
whole pattern of speed changes, Figure 8 shows the trends of
the average speed of CW and CCW direction in both week-
day and weekend, respectively. It can be seen that the trend
of average speed fluctuation is the constant in the evening
(0:00-5:00) whether on the weekday or weekend. At the same
time, in the daytime (5:00-23:00) the average speed of the
weekend is faster than the weekday in general. Therefore,
when exploring the change of speed, it tends to choose the
daytime (6:00-22:00).

To see more detail of the speed fluctuation, the spatial-
temporal distribution of average speed was presented, where
the redder colour, the slower the speed. As shown in Figure 9,
it is noted that in themorning peak hour (7:00-10:00) the grid-
locks are mainly concentrated below the grid 300 in the CW
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FIGURE 9. Spatial-temporal distribution of speed.

direction; nevertheless, the gridlocks of the CCW direction
are opposite, which located above grid 240. Moreover, in the
evening peak hour (17:00-19:00), between 180 and 250 grids,
unlike the CCW, there are gridlocks in the CW direction.
It is worth mentioning that there are gridlocks around grid
400 in both morning and evening peaks. It can be concluded
that there are some tidal phenomena below the grid 300.
Furthermore, the gridlock in the CW direction has a clearer
boundary, suggesting that the change of speed trend is more
regular than CCW.

2) FEATURE SELECTION
According to the feature selection, the few most important
variables or parameters will be identified, and the new sub-
set is input into the prediction models, which can reduce
spatial-temporal complexity of predictor variables, result in
less computation, fewer parameters, and save the cost of
observing the feature [52]. The random forest (RF) algorithm
is adopted to calculate the importance of the variables. In the
RF algorithm, variable importance can be obtained by calcu-
lating the out of bag error (OOB error) and Gini coefficient.
OOB error has stronger generalization ability, even if there
are continuous variables and categorical variables, the accu-
racy of OOB error will not be affected. Therefore, according
to OOB error, Figure 10 shows the variable importance.

From Figure 10, it can be observed that the seven cat-
egories of spatial-temporary variables, including average
speed, upstream average speed, downstream average speed,
historical average speed, historical median speed, the time
slice and grid number, are the dominating factors, and the

FIGURE 10. Variable importance ranking by the random forest.

most important is the average speed. However, other vari-
ables, such as highest temperature, peak hour, weather have
few contributions (less than 5%) to the prediction. In this
paper, by considering the trade-off between the computa-
tional efficiency and predictive performance, we select seven
categories of variables: the average speed, the upstream aver-
age speed, the downstream average speed, the historical aver-
age speed, the historical median speed, the time slice and the
grid number.

3) PARAMETER SETTINGS
According to the data description, the dataset is split into four
parts: the CW dataset and the CCW dataset in the weekend
or weekday. Later, the dataset for different estimation time
steps is built. Citing the 10 min time interval (i.e.144 time
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slices per day) with non-combination (i.e.592 grids) in week-
days (26 days) as an example, the dimension matrix of
[X sT ,Y

s
T ]10min is [592 × 144 × 26, 8]. According to the rule

of the dataset classification, the training dataset [X sT ,Y
s
T ]tr is

[592 × 144 × 26 × 70%, 8], the test dataset [X sT ,Y
s
T ]te is

[592× 144× 26× 30%, 8].
Based on the minimum-maximum normalization method,

the training dataset and the test dataset are normalized. In the
proposed model, we need to consider the following hyperpa-
rameters: the dimension of hidden units, and the dimension of
the mini-batches, and the epochs. For the activation function,
the Rectified Linear Unit (ReLu) is proposed, which can solve
the problem of exploding/vanishing gradient better. In order
to prevent over-fitting, the dropout is set to 0.5. Meanwhile,
the Adam algorithm is used to update the parameters of
the neural network. The hyper-parameter settings are shown
in Table 4.

TABLE 4. Hyper-parameter settings.

B. EXPERIMENTAL RESULTS
1) MODEL COMPARISONS
In this section, the proposed model SBiGRU and benchmark
models are trained on the training set and validated on the test
set, respectively. In the benchmark models, we considered
four benchmark methods, which includes traditional time-
series prediction model (i.e. ARIMA), data-driven methods
(i.e. SVM), deep learning approaches (i.e., LSTM, GRU)
and the stacked deep learning models LSTM-2L (i.e. LSTM
with two hidden layers) and GRU-2L ( i.e. GRU with two
hidden layers). For the ARIMA model, based on the best
AIC (Akaike Information Criterion), the optimal model is
obtained as ARIMA (3, 1, 1). In the parameter selection of
the SVM model, the kernel function is set as radial basis
function (RBF), and the penalty coefficient ‘‘C’’, and the
parameter ‘‘Gamma’’ were determined by the cross valida-
tion. For the stacked deep learning models, in order to reduce
model complexity and avoid over-fitting problems, the deep
learning model with two hidden layers (i.e. LSTM-2L,
GRU-2L) is set as the benchmark models. At the same time,
for the fair comparison, the BiGRU-2L (i.e. BiGRU with two
hidden layers) is selected as the target model in the SBiGRU
models. To ensure fairness, the aforementioned benchmark
algorithms have the same input features (the same category
and the time interval). The multiscale-grid data is set to
dataset uncombined (i.e. 592 grids are uncombined). The time
lag is set to 10 min, and the hyperparameters are set the same

as the proposedmodel. Then we use the RMSE, R2, andMAE
tomeasure the total predictive accuracy of fitting in the whole
test data, and use MAPE to measure the models’ predictive
performance.

The experiment platform is server with 32 CPU cores
(Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.1GHz), 64G RAM,
and GPU (NVIDIA GeForce RTX 2080). The experiment
utilizes python 3.6.1 with scikit-learn [53], tensorflow [54],
keras [55] on Windows 10 for comparing the models.

Table 5 shows the comparison of the predictive perfor-
mance of the BiGRU-2L and the benchmark models in
different directions. It can be seen that the deep learning
model work better than the ARIMA and SVM. Moreover,
the BiGRU-2L outperforms the benchmark model in the four
measurements of predictive performance. The BiGRU-2L
achieves the best predictive performance measured, which
outperforms the ARIMA with the improvement of 6.04%,
0.97, 7.47% and 1.96 on R2, MAE, MAPE and RMSE. The
reason is that the BiGRU-2L has a significant advantage in the
training process with input sequences in forward and back-
ward directions and summarizing the temporal information
from past and future contexts.

TABLE 5. The predictive performance comparison with full grid
combination.

Figure 11 compares the R-Square values of different
methods in the direction of CW and CCW. As shown in
Figure 11(a) and (b), the BiGRU-2L model reveals the best
performance among the models in terms of the R-Square
values. In addition, it can be found that the forecasting accu-
racy in CW direction is better than that in CCW direction.
The reason is that the number of exit and entrance in the
CW direction is fewer, less impact of speed, the change of
speed trend in the CW direction is more regular, and has
higher prediction precision. It is also noticed that there is the
inflection point of R-square in CCWdirection in 11:00-12:00.
This can be attributed to the fact that the speed fluctuates
greatly during this period (see Figure 8 and Figure 9), which
has a certain influence on prediction accuracy.

Figure 12 gives the overall prediction errors produced by
these different methods on both weekends and weekdays. It is
found that the prediction errors in the weekend are smaller
than that in weekday. As shown in Figure 12(a) and (b),
the BiGRU-2L reveals better performance than other models
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FIGURE 11. R-Square values of different model.

FIGURE 12. Comparison of the prediction errors for each method.

in terms of the maximum, minimum and median of errors
in both CW and CCW direction. Furthermore, it can be
seen that the BiGRU-2L model has a smaller interquartile
range, and the error distribution is more concentrated than
those of other models. Moreover, the MAPEs of CW and

CCW direction of the BiGRU-2L are lower than others
(see Figure 12(c) and (d)), indicating that the BiGRU-2L is
more accurate and stable.

Figure 13 demonstrates the comparison of seven mod-
els: ARIMA, SVM, LSTM, GRU, LSMT-2L, GRU-2L,

1332 VOLUME 9, 2021



D. Chen et al.: Multiscale-Grid-Based Stacked Bidirectional GRU Neural Network Model for Predicting Traffic Speeds

FIGURE 13. Comparison of different methods in terms of various time
steps.

BiGRU-2L in terms of various time steps in the CWdirection.
As shown in Figure 13, the ARIMA and SVM performed
worst, and the one-layer model (i.e. LSTM, GRU) have simi-
lar predictive performance, but they are inferior to the stacked

models (i.e. LSTM-2L, GRU-2L, BiGRU-2L). Among the
deep learning models, the BiGRU-2L is capable of providing
reliable prediction whose index of performance R2 is better
than the deep learning models. Meanwhile, with the increase
of time steps, the R2 of BiGRU-2L is the slowest reduction.
The R2 of BiGRU-2L decreases by 21.98% from 1 to 12 time
steps, which is less than the LSTM, GRU, LSTM-2L and
GRU-2L (i.e. 23.34%, 23.41%, 23.21%, 22.12%). Further-
more, the average R2 (i.e. 81.786%) of 12 time steps of
BiGRU-2L is higher than the other six models (i.e. 77.682%,
78.695%, 80.748%, 80.589%, 81.111%, 81.622%).

Figure 14 shows some samples of heats maps of the
ground-true speed in different directions of the fourth ring
road and forecasting results of one-time step by BiGRU-2L,
where the deeper color area means traffic congestion. The
spatial distribution of low-speed area (i.e. traffic congestion
area) is illustrated by the heats maps, where the fluctuation
of speed is great (i.e. from the free flow to congested traffic
flow). In addition, from the samples of visualization, we can

FIGURE 14. Comparison the ground-true speed and the predicted speed by BiGRU-2L: (a) the ground-true speed in the CW
direction; (b) the predicted speed in the CW direction; (c) the ground-true speed in the CCW direction; (d) the predicted speed
in the CCW direction.
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FIGURE 15. Parameter tuning and sensitivity analysis of BiGRU model.

find that the BiGRU-2L with multiscale-grids can primarily
capture the spatial-temporal characteristics of traffic speed,
and make an accurate prediction. The combination of traffic
speed prediction and visualization can make great progress
for the traffic operators to detect and forecast grid with traffic
jams and design proactive strategies to avoid the congested
status of roads effectively.

2) SENSITIVITY ANALYSIS
In this section, this paper conducts the sensitivity analysis
and parameter tuning on Bi-GRU, where we investigated four
kinds of parameters, including some samples of prediction,
the type of training epochs, grid combination, hidden layers
and the number of feature variables.

Figure 15(a) shows the validation error after each training
epoch is recorded for BiGRU-2L and the benchmark models.
It can be seen that the RMSE of BiGRU drops rapidly and
decreases gradually, which indicates that the convergence
speed of BiGRU-2L model is high. Furthermore, compared
with other benchmark models, the process of train epoch
of BiGRU-2L changed comparatively smooth and steadily.
To conclude, when high-efficient computation resources are
not reachable, it can reduce the number of training epochs to
make predictive performance slightly sacrificed, and it is an
acceptable way.

Figure 15(b) shows the RMSE values and training time
of the different grid combination prediction results. For
the grid combination method, we focus on two methods:
two-grids combination method and thirty-grids combination
method. The two-grids combination method has a special
advantage to cover spatial road features more detailed, which
does not only ensure the prediction accuracy but also avoid
the issue of data missing in one grid combined method.
However, the two-grids combination takes more training
time (i.e. 310 min). Compared with two-grids combination,
the thirty-grids combination method has the lowest value of
RMSE and less time-consuming. This phenomenon indicates
that the spatial characteristics of 30 grids (i.e. the road length
is 3 km) are more reasonable and more suitable for road
operation characteristics.

Figure 15(c) and d demonstrate that we train the
BiGRU-2L with 30 grids combined method under differ-
ent layers and variables, respectively, with 100 training
epochs. It can be observed that with the increase of the hid-
den layers, the training time also increases correspondingly.
Although the single-layer model needs the least training time
(i.e. 7 min), it has the worst prediction performance (i.e.
RMSE is 0.82). Compared with the single-layer model, the
six-layer model has better prediction performance, but it
takes the longest training time (i.e. 78 min). Furthermore, the
RMSE values present a down and up trend with the increase
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of layers, whereas the lowest point is the two-layer model,
whose phenomenon is caused by overfitting issues. There-
fore, the BiGRU-2Lmodel can ensure the prediction accuracy
(i.e. the RMSE is 0.64), reduce the time consumption, and
avoid the overfitting problem.

Figure 15(d) shows the influence of the number of vari-
ables on the prediction performance and the training time.
It intuitively reveals that the BiGRU-2L with 12 variables
takes 48 min to train 100 epochs, which seems to be com-
putationally expensive. Although the prediction performance
improved slightly with the increase of the selected feature
variables, the training time increased significantly. As the
Figure 10 analysis, the number of feature variables refers
to seven, with the predictive performance slightly sacrificed
(i.e. 0.097% loss only), less training time consuming (i.e.
decreased by 166%), under the case where high-efficient
computational resources are not reachable.

IV. DISCUSSION AND CONCLUSION
In this paper, a deep learning algorithm, named multiscale
grid model with the stacked BiGRU network, is proposed
for marvelous scale road network speed prediction. The
proposed architecture is fused by a multiscale grid model
and a two-layer BiGRU structure. With the multiscale grid
model grid, we extract spatial variables and reconstruct the
input matrix of the deep learning framework. Subsequently,
the proposed deep learning architecture (i.e. BiGRU-2L) is
established for capturing temporal properties of traffic speed,
and the results are promising.

The traditional data-collecting devices cover only fixed
points of the traffic network, such as the traffic microwave
sensors, which are impossible to produce a wide range of
information about travel speed within the network [24], [56].
In comparison, based on the massive numbers of FCD that
are highly spatial-temporal detailed, the speed of large-scale
road network can be accurately predicted. As for the spatial
feature attribute extraction, Yu et al. (2016) transformed the
network-wide traffic speed into a series of static images and
captured the spatial characteristics of speed by Deep Convo-
lutional Neural Networks (i.e. DCNN) [29]. However, DCNN
could not process the data of Non Euclidean Structure, which
can’t extract directional feature of speed and cost a great
quantity of time for training [57]. In this study, though the
multiscale grid model, the directional feature of speed was
extracted with less time consuming, namely, CW and CCW
direction of Beijing Fourth Ring Road. Furthermore, with the
multiscale grid model, the various grid combinations have
the special purposes, and the thirty grids combined method is
most accurate, which can establish the real-time traffic con-
trolling strategies for traffic managers to avoid the congested.
In addition, the two grids combined method can cover spatial
road features more detailed preparing for Vehicle Navigation
System.

At the stage of traffic speed prediction, the feature
selection process can help proposed model reduce train-
ing time with a less loss in the predictive performance

(measured by RMSE), which is consistent with the stud-
ies of Jintao Ke et al. (2017) [50]. The experimental result
illustrates that the BiGRU-2L outperforms the benchmark
algorithms (i.e. LSTM, GRU, LSMT-2L, GRU-2L) in the
measurements of RMSE, R2, MAE, and MAPE in large
samples, indicating that the proposed model performs bet-
ter at capturing the spatial-temporal characteristics for the
short-term traffic speed forecasting. Particularly, for the
multi-timestep speed prediction, the BiGRU-2L achieves
more accurate results than other models.

Future work will concentrate on exploring the novel deep
learning structure based on the LSTM variants and introduc-
ing a novel unfixed grid model to extract the spatial-temporal
features to improve the accuracy of the model. Mean-
while, we will also adopt Conv-LSTM model to predict the
multiscale-grid-based speed. Furthermore, further study on
the performance comparison between grid model method
and map matching method. A dataset with longer tempo-
ral dimensions and broader spatial dimensions could be
employed to train and test the proposed model. In addition,
the proposed model can be applied to other cities for traffic
speed prediction.
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