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ABSTRACT Convolutional neural networks have achieved amazing success in many areas in recent years,
and VGG is a widely used convolutional neural network model. However, it has some limitations, such
as a large number of parameters, which take up significant memory and thus restrict its application in
resource-constrained scenarios such as mobile devices and embedded systems. In convolutional neural
networkmodels, the different number of convolutional layers can extract different granularity features, which
represent the different levels of importance in the image recognition process. Here, we propose a new VGG
architecture with different granularity feature combinations that combine different granularity features from
block1, block2, block3, block4, and block5 in VGG. Each block is followed by a local fully connected
layer to reduce the dimensionality of the coarse and fine features, and five different granularity features
are combined as the input of the first global fully connected layer. By combining the features of different
blocks, it can increase information flow from a lower layer directly to a fully connected layer and increase
feature reuse without adding too many connections. The addition of five local fully connected layers means
an increase in parameters, so we reduce the neuron number in two global fully connected layers to reduce the
number of parameters. The well-known datasets CIFAR-10 and MNIST were used to evaluate the network’s
classification performance. The experimental results show that the proposed model achieves better training
and testing performance than traditional VGGs and reduces the number of parameters.

INDEX TERMS Combination, convergence speed, different granularity, feature, performance.

I. INTRODUCTION
In recent years, convolutional neural networks (CNNs) have
achieved great success in image classification tasks through
supervised learning. CNNs are effective for learning better
feature representations in the field of computer vision [1]–[7].
We have witnessed a tremendous improvement in image
classification tasks due to the use of supervised learning
combined with the powerful model of CNNs [8].

CNNs have become an important tool for machine learning
and many related fields. The superior performance of deep
CNNs usually comes from their deeper and wider archi-
tectures [3]; however, the networks have suffered from an
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increasing memory burden, which has become a bottleneck
for many applications [9].

Several works have shown that significant information of
the input images is lost with depth in the successful ImageNet
classification CNNs [10], and the deeper structure does not
always guarantee a better result, as validated by the experi-
ments of He and Sun [11].

Visual recognition requires rich representations that span
levels from low to high and scales from small to large, with
resolutions from fine to coarse; the skip connections from
the shallower to deeper stages can merge scales and resolu-
tions [12], and the different scales and resolutions can better
express the features.

VGG is a widely used CNN model proposed by Karen
Simonyan and Andrew Zisserman. VGG is the abbreviation

26208 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5776-611X
https://orcid.org/0000-0002-4595-2625
https://orcid.org/0000-0002-9596-6582


Y. Zhou et al.: Improving the Performance of VGG Through Different Granularity Feature Combinations

of the Oxford Visual Geometry Group. The VGG16 and
VGG19 [8] models are stacks of convolutional layers, fol-
lowed by three fully connected (FC) layers; specifically,
the first two have 4096 neurons each, and the third performs
a 10-way CIFAR-10 [13] andMNIST [14] classification. The
final layer is the softmax layer. The configuration of the FC
layers is the same in all networks [8]. Table 1 illustrates the
architecture and parameters of models VGG16 and VGG19.

TABLE 1. The VGG Model [2].

In Table 1, the ‘‘3’’ after ‘‘conv’’ represents the filter size,
and the number after ‘‘conv3-’’ represents the number of
filters. We use VGG16 and VGG19 as our baselines, with
stack 3 × 3 convolutions and 2 × 2 max-pooling operations
to build deeper networks.

Some excellent studies [15]–[18] have shown that there
is considerable redundancy in a traditional VGG model,
and layer-by-layer connections make the network repli-
cate features of the front layer in the whole network.
Hosny et al. [19], [20] performed several experiments
using different models, such as Alex-net, ResNet, VGG,
and GoogleNet. Their results showed that the VGG model
required substantial memory and high-configuration hard-
ware. Hammad and El-Sankary [21] improved the perfor-
mance of VGG in terms of power, area, and speed by
replacing the exact multipliers with approximate multipliers.

In VGG, the FC layers with weight matrices of sizes
25088 × 4096, 4096 × 4096 and 4096 × 1000 [22] are
shown in Table 1. This suggests that the large models may
be redundantly designed for the task; VGG16 has more than
130M parameters [23].

ResNet is time consuming in the training process,
requiring 8 GPUs to train for 2 to 3 weeks, which restricts its
application in resource-constrained scenarios such as mobile
devices and embedded systems [23]. DenseNet connects
each layer to every other layer in a feedforward fashion,
so it has L(L+1)/2 connections, whereas traditional networks
have only L connections [24]. Huang et al. [25] proposed a
CondenseNet model to prune the redundant connections
between layers [25]; compared to DenseNet, CondenseNet
used only 1/10 of the computation at comparable accuracy
levels.

Filter pruning enables a model with a structured spar-
sity and more efficient memory usage than weight pruning
and thus achieves a more realistic acceleration [3]. Emily
Denton’s experiments showed that deep neural networks are
heavily overparametrized [26], which leads to high computa-
tional cost and a high memory footprint. Liu et al. [27] used
pruning algorithms to reduce the parameters to 30%-60% of
the traditional model while maintaining or even improving
the accuracy. Therefore, filter pruning is highly advocated
for accelerating networks. Many works adopted filter prun-
ing [28]–[32] in their models.

These approaches are effective because deep networks
often have a substantial number of redundant weights that
can be pruned or quantized without sacrificing (and some-
times even improving) accuracy. For convolutional networks,
different pruning techniques may lead to different levels of
granularity [33].

In this article, we present a different granularity combi-
nation VGG (DGC-VGG) architecture that takes the widely
used VGG model [8] as an example. We use two benchmark
datasets, CIFAR-10 and MNIST, to investigate the effects of
the loss value, accuracy, convergence speed, and the number
of parameters.

The contributions in this work can be summarized as
follows:

1) By combining the features of different blocks, the model
can increase information flow from a lower layer directly to
an FC layer and increase feature reuse without adding too
many connections. The accuracy can be improved, and the
loss value and the number of parameters can be reduced.

2) In the DGC-VGG model, as the number of neurons
increases in the FC layer, all four indicators of the model are
improved.

3) In the proposed model, no preprocessing is used. The
DGC-VGGs exhibit faster convergence and better robustness,
and they are more stable as the epoch numbers increase.

The remainder of this article is organized as follows.
Section II presents the related works of CNNs. In Section III,
we describe the experimental setup and provide details
regarding the compared methods, datasets and models used
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for evaluation. In Section IV, we present the results from the
experiments and compare the methods. Finally, Section V
concludes the paper.

II. RELATED WORKS
We review the recent progress in CNNs. The related methods
are categorized and introduced as follows.

A. SKIP CONNECTION
Some neural network layers comprise a deep convolutional
neural network [7]. Deeper layers can extract more semantic
and global features, but these signs do not prove that the last
layer is the ultimate representation for any task [12].

In fact, skip connections have proven to be effective for
classification and regression [24]. He et al. [4] used a skip
connection of identity mapping to improve convergence; the
vanishing gradient problemwas also greatly relieved by intro-
ducing the skip connections into the network. To deepen
the networks, skip connections or shortcut paths have been
widely adopted to ease network training [34]. In [12], it is
shown that a skip connection structure is an efficient way
to make the top layers accessible to the information from
the bottom layers, as successfully adopted in ResNet [4] and
Highway Network [35].

Skip connections can alleviate the vanishing gradient prob-
lem and strengthen feature propagation while encouraging
feature reuse and reducing the number of parameters [24].

B. FEATURE COMBINATION
Additionally, feature combination is a critical dimension of
the architecture to further increase the information flow from
a lower layer directly to a higher layer. For the operation
of a join layer, some choices seem reasonable, including
concatenation and addition [24].

Concatenating featuremaps, which are learned from differ-
ent layers, can increase variation in the input of subsequent
layers and improve efficiency. Huang et al. [24] replaced
the identity mapping in the residual block by concatenating
operations so that new feature learning can be reinforced
and old feature reuse can be maintained; they never combine
features through summation before they are passed into a
layer. DenseNet concatenates several layers densely; it can
reduce parameters while maintaining better accuracy.

Larsson et al. [36] instantiated each joint to compute the
elementwise mean of its inputs, and ResNet adopts a residual
sum operation in each stage, which has proven to be a simple
and efficient way to build a deeper neural network [24].

C. DIFFERENT GRANULARITY
The different numbers of convolutional layers can extract the
different granularity features. Li et al. [37] used two branches
for local and global feature extraction in their SMGN model,
the SMGN extracts multiple granularity features; these fea-
tures are concatenated together as multiple granularity fea-
tures of person images to enhance their discriminating ability.
Du et al. [38] proposed a progressive training strategy that

effectively fuses features from different granularities for
fine-grained visual classification. Sun et al. [39] conducted
multigranularity emotional block partitioning on network
texts and performed sentiment analysis comparisons with
different granularities.

III. DGC-VGG
Inspired by the above research work, we add skip connection
to our model and use connection and addition methods to
combine the different granularity features.

In our model, different granularity features, obtained by
different blocks, are transferred into a one-dimensional char-
acter by an FC operation. After five convolutional blocks, all
features are combined by using concatenation and summation
operations. We reduce the neuron number in the FC layers to
prune the redundant neurons. TheDGC-VGGmodel is shown
in Figure 1.

FIGURE 1. The DGC-VGG model.

In DGC-VGG, the different numbers of convolutional
blocks can extract the different granularity features.
DGC-VGG combines the different granularity features of
different convolution blocks and contains shorter connections
between the lower block and the first global FC layer, which
can better represent the original image.Wemodify the neuron
number in FC layers to improve the performance and reduce
the parameters of the model.

We take the widely used VGG16 and VGG19 models as
the baseline, both of which have five blocks. The first two
blocks contain two layers, and the last three blocks contain
three layers in VGG16 and four layers in VGG19.

Each layer contains three consecutive operations: a 3 × 3
convolution, batch normalization (BN) [40], and a rectified
linear unit (ReLU) [41] activation function. Clevert et al. [42]
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found that BN can improve ReLU networks. ReLU keeps
positive inputs unchanged and outputs zero for the negative
inputs; therefore, it can avoid the vanishing gradient prob-
lem, enabling the training of much deeper supervised neural
networks [43]. Currently, ReLU is the most widely used
activation function. Although there are various alternatives to
ReLU, none have managed to replace it due to inconsistent
gains [44]. Each block contains one 2× 2 max-pooling layer
at the end of the last layer:

f (x1, . . . , xn) = max
(
0, σ (BN (

∑
ωi ∗ xi + b))

)
(1)

where σ is the ReLU activation, BN is batch normalization,
and ωi and b are the weights and bias in the convolution,
respectively.

After each block, a local FC layer is used to extract the
different granularity features and reduce the dimensionality
of the outputs, and then the five outputs are combined into
a single tensor as the input of the first global FC layer. The
details are shown in Figure 1.

In Figure 1, block1 and block2 have the same number (two)
of convolution layers and one max-pooling layer; we mark
the two blocks in red. Block3, block4 and block5 have the
same number (three or four) of convolution layers and one
max-pooling layer; these blocks are marked in green. All FC
layers (local and global FC layers) are marked in brown. The
symbol ⊗ represents the combination of different granular-
ity features. We use two combined methods in DGC-VGG:
concatenation and summation.

O = Concat(ob1, ob2, ob3, ob4, ob5) (2)

Concat denotes the concatenation operator, and ob1, ob2, ob3,
ob4, and ob5 refer to the feature maps produced by all blocks:

O = Sum(ob1, ob2, ob3, ob4, ob5)/5 (3)

where Sum denotes the summation. The outputs after five
local FC layers are averaged as the input of the first global
FC layer.

The additional FC layer not only saves the original features
but also increases the number of parameters in the training
and testing processes.We try to reduce the number of neurons
to reduce the parameters. In VGG16 and VGG19, the first
two FC layers have 4096 neurons each; we set the number of
neurons to 1024, 512, 256, 128, and 64, which will improve
the performance without increasing the training and testing
time.

IV. EXPERIMENTS
A Lenovo computer equipped with a dual-core Intel Core i7
processor and 96 GB of DDRAM was used to perform the
experiments. We implemented the VGGs and DGC-VGGs
using the TensorFlow library [45].

A. DATASETS
In this section, we present the experimental results for
two benchmark datasets, MNIST [14] and CIFAR-10 [13].

MNIST is considered a simple and solved problem that
involves digit image classification [46], which consists
of 60,000 training images and 10,000 testing images of hand-
written numbers with a size of 28× 28. There are 10 classes
corresponding to digits from 0 to 9. CIFAR-10 is a sig-
nificantly more complex image classification problem than
MNIST; it consists of 50,000 training images and 10,000 test
images with 10 classes of natural objects.

B. PARAMETER SETTINGS ON MNIST AND CIFAR-10
In each block, 3 × 3 convolutional kernels with stride 1 are
used in convolutional layers to analyze images, and 1-padding
is adopted to ensure that the scale of images does not change
after convolution. The filter number of each block is set as 64,
128, 256, 512 and 512. Max-pooling layers are utilized in the
encoder to 2× downsample the images. In the max-pooling
layers, 2× 2 filters with stride 2 are used, and the number of
filters is set as that of the convolutional layer. Each block is
followed by a local FC layer, which contains the same number
of neurons as that of the first two FC layers. The neuron
numbers are set as 64, 128, 256, 512, and 1024.

We train for 20 epochs onMNIST, use the Adam optimiza-
tion strategy with a learning rate of 0.0001 and use he_normal
initialization for the parameters. The batch size is 128.

The structure and parameters used in CIFAR-10 are similar
to those used for MNIST.We train CIFAR-10 for 164 epochs,
and the batch size is 250.We adopt a segmented learning rate;
if the epoch number is less than 81, then the learning rate is
0.1; if the epoch number is greater than 121, then the learning
rate is 0.001; in other cases, the learning rate is 0.01.

C. RESULTS AND DISCUSSION ON CIFAR-10
We evaluate the DGC-VGG networks on the traditional
VGG16 and VGG19 models by concatenation and summa-
tion operations, respectively. All models are trained from
scratch, and all other hyperparameters are kept fixed.

We change the neuron number in the FC layer of
DGC-VGG16 with two combination methods and evalu-
ate the model on CIFAR-10 with four measure indexes
(training loss, training accuracy, testing loss, testing accu-
racy). The experimental results of DGC-VGG16 (Figure 2)
with the concatenation (DGC-VGG16 (Concat)) operation on
CIFAR10 are presented in the appendix. The number after
Concat in Figure 2 represents the neuron number in b1-fc,
b2-fc, b3-fc, b4-fc, b5-fc, fc1, and fc2 in Figure 1.

We modify the combination method in Figure 1 to com-
bine the feature by the summing operation. After each FC
layer that follows each block, the granularity of features is
from coarse to fine, and we adopt a summation method to
combine the different granularity features and then calculate
their average. The experimental results of DGC-VGG16 with
the summation operation (DGC-VGG16(Sum)) are shown in
Figure 3 in the appendix. The number after Sum in Figure 3
also represents the neuron number in seven FC layers.

Figures 2 and 3 show that as the number of neurons
increases in the FC layer, all four indicators of the model
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FIGURE 2. Results of DGC-VGG16 (Concat) on CIFAR-10.

FIGURE 3. Results of DGC-VGG16(Sum) on CIFAR-10.

are better. The experimental results of VGG16, DGC-VGG16
(Concat), and DGC-VGG16(Sum) are shown in
Figure 4.

Figure 4 reveals that in the training stage, the loss value
and accuracy of the three models are very close (the conver-
gence speed of DGC-VGG16s is faster), but in the testing
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FIGURE 4. Results of VGG16 and DGC-VGG16 on CIFAR-10.

TABLE 2. Parameters of VGG16 and DGC-VGG16S on CIFAR-10.

stage, the two measure indexes of DGC-VGG16 have great
advantages. According to Table 1 and Figure 1 and formula 4,
the parameters of DGC-VGG16s are fewer than those of
VGG16, as shown in Table 2:

P = fnp ∗ C
2
∗fnn + fnn (4)

where P denotes the parameters; fnp represents the filter
number of the previous layer;C is the filter size, and we use
3×3 receptive fields throughout the whole net, so C is 3; and
fnn represents the filter number of the next layer.

DGC-VGG16(Sum) and DGC-VGG16(Concat) improve
the average test accuracy by 0.92% and 0.89% and reduce
the average loss by 11.51% and 11.77%, respectively,
on Cifar10 compared to VGG16, as shown in Table 3.

We perform the same experiments with DGC-VGG19 on
CIFAR-10, and the experimental results of DGC-VGG19 and
DGC-VGG16 are similar; as the number of neurons increases
in the FC layer, the four indicators of the model DGC-
VGG19 are better. The experimental results of DGC-
VGG19 (Concat) are shown in Figure 5, and the results of
DGC-VGG19 (Sum) are shown in Figure 6 in the appendix.

From Figures 5 and 6, we can obtain the same conclu-
sion as that reached from Figures 2 and 3; that is, with an
increasing neuron number, each measure index of the model
DGC-VGG19 is better. Therefore, we choose DGC-VGG
with 512 neurons in the FC layer to evaluate DGC-VGG16,
DGC-VGG19, VGG16, and VGG19 on CIFAR-10. The
experimental results of VGG19, DGC-VGG19 (Concat), and
DGC-VGG19 (Sum) are shown in Figure 7.

DGC-VGG19(Sum) and DGC-VGG19(Concat) improve
the average test accuracy by 2.1% and 1.9% and reduce the
average loss by 17.26% and 16.93%, respectively, on Cifar10
compared to VGG19, as shown in Table 3.

The experimental results between VGG19 and DGC-
VGG19s and VGG16 and DGC-VGG16s are slightly differ-
ent. In the training and testing stages, all fourmeasure indexes
of DGC-VGG19s are better than those of VGG19, and the
parameters of DGC-VGG19s are less than those of VGG19,
as shown in Figure 7 and Table 4.

From Figures 4 and 7 and Table 2 and Table 4, we can
conclude that the DGC-VGGs are better than the traditional
VGGmodel on the CIFAR10 dataset, with respect to not only
the four measure indexes in training and testing but also the
number of parameters and convergence speed.

D. RESULTS AND DISCUSSION ON MNIST
We use the DGC-VGGs to repeat the experiments on MNIST
bymodifying several parameters: the training epoch, learning
rate, batch size, and so on, as mentioned in Section IV.B.
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TABLE 3. The Performance and Parameters of DGC-VGG Compared with VGG. the Symbol ↓ Indicates Reduction, and ↑ Indicates improvement.

FIGURE 5. Results of DGC-VGG19 (Concat) on CIFAR-10.

TABLE 4. Parameters of VGG19 and DGC-VGG19s on CIFAR-10.

Because MNIST is considered a simple and solved prob-
lem that involves digit image classification, CIFAR-10 is
a significantly more complex image classification problem
than MNIST [46], and we evaluate the model on MNIST

with three measure indexes (training loss, training accuracy,
and testing accuracy). The results of DGC-VGG16(Concat)
on MNIST are shown in Figure 8 in the appendix, and the
number after Concat represents the neuron number in seven
FC layers.

As seen in Figure 8, the difference between loss and accu-
racy during training is not obvious; the accuracy does not
increase with increasing number of neurons, unlike those on
CIFAR10. The accuracies of DGC-VGG16(Concat) with dif-
ferent neuron numbers in the FC layers are shown in Table 5
in the appendix.
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FIGURE 6. Results of DGC-VGG19(Sum) on CIFAR-10.

TABLE 5. The Testing Accuracy of DGC-VGG16(Concat) on MNIST.

TABLE 6. The Testing Accuracy of DGC-VGG16(Sum) on MNIST.

We modified the method to combine the features by
a summing operation; the experimental results of DGC-
VGG16(Sum) are shown in Figure 9 in the appendix. The
accuracies of DGC-VGG16(Sum)with different neuron num-
bers in the FC layers are shown in Table 6 in the appendix.

DGC-VGG16(Sum) and DGC-VGG16(Concat) improve
the average test accuracy by 11.92% and 12.03%, respec-
tively, on MNIST compared to VGG16, as shown in Table 3.

When the model is changed on MNIST, the experi-
mental results of DGC-VGG19s are the same as those of
DGC-VGG16s. The training loss and accuracy are shown
in Figure 10 in the appendix, and the accuracies of DGC-
VGG19(Concat) are shown in Table 7 in the appendix. The
experimental results of DGC-VGG19(Sum) are the same as

TABLE 7. The Testing Accuracy of DGC-VGG19(Concat) on MNIST.

TABLE 8. The Testing Accuracy of DGC-VGG19(Sum) on MNIST.

TABLE 9. The Testing Accuracy and Parameters of VGG16 and
DGC-VGG16s on MNIST.

those of DGC-VGG19(Concat), as shown in Figure 11 and
Table 8 in the appendix.

DGC-VGG19(Sum) and DGC-VGG19(Concat) improve
the average test accuracy by 0.95% and 0.84%, respectively,
on MNIST compared to VGG19, as shown in Table 3.
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FIGURE 7. Results of VGG19 and DGC-VGG19s on CIFAR-10.

FIGURE 8. Training loss and accuracy of DGC-VGG16(Concat) on MNIST.

TABLE 10. The Testing Accuracy and Parameters of VGG19 and
DGC-VGG19s on MNIST.

FromFigures 10 and 11, we can obtain the same conclusion
as that from Figures 8 and 9. With an increase in the neuron

number, the difference between the loss and accuracy during
training is not obvious after epoch 5. Therefore, we choose
DGC-VGG with 512 neurons in the FC layer to evaluate
DGC-VGG, VGG16, and VGG19 on MNIST. The exper-
imental results of DGC-VGG16 with two methods of the
feature combination and VGG16 are shown in Figure 12.
The experimental results of DGC-VGG19 and VGG19 are
shown in Figure 13. The accuracies and parameters of the
three models are shown in Tables 9 and 10, respectively.

Figures 12 and 13 show that the performance of
DGC-VGG is better than that of VGG, while DGC-VGGs
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FIGURE 9. Training loss and accuracy of DGC-VGG16(Sum) on MNIST.

FIGURE 10. Training loss and accuracy of DGC-VGG19(Concat) on MNIST.

FIGURE 11. Training loss and accuracy of DGC-VGG19(Sum) on MNIST.

tend to be more stable than VGG with increasing epoch
number. Different numbers of convolutional layers can
extract different granularities of the features. DGC-VGGs
combine the features from shallower and deeper convo-
lution blocks, and they contain shorter connections from

shallower convolutional block to the FC layer, which can
increase information flow from a lower layer directly to
a higher layer and can increase feature reuse without
adding too many connections, so the accuracies are
better.
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FIGURE 12. Results of VGG16 and DGC-VGG16s on MNIST.

FIGURE 13. Results of VGG19 and DGC-VGG19s on MNIST.

V. CONCLUSION
In this study, we propose a new convolutional neural network
architecture in which we add five local FC layers after each
block in VGG and combine the features that are output from
five local FC layers as the input of the first global FC layer.
Different numbers of convolutional layers could extract dif-
ferent granularities of features, and DGC-VGG combines the
different granularity features of different convolution layers,
which could better represent the original image. Experiments
on the image classification task demonstrate that DGC-VGG
achieves higher accuracy, lower loss value, faster conver-
gence speed, and fewer parameters. DGC-VGG improves the
average test accuracy by 0.89% to 2.1% and reduces average
test loss by 6.03% to 17.03%, respectively, on Cifar10, and
improves the average test accuracy by 0.84% to 0.95% on
MNIST.

APPENDIX
See Figs. 2, 3, 5, 6, 8–11, and Tables 5–8.
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