
Received September 16, 2020, accepted October 11, 2020, date of publication October 14, 2020, date of current version January 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3031091

Parameterized Local Maximum Synchrosqueezing
Transform and Its Application in Engineering
Vibration Signal Processing
ZHENFENG HUANG, DAHUAN WEI, ZHIWEI HUANG, HANLING MAO , XINXIN LI,
RUI HUANG, AND PENGWEI XU
School of Mechanical Engineering, Guangxi University, Nanning 530004, China

Corresponding author: Hanling Mao (maohl79@gxu.edu.cn)

This work was supported in part by the Science and Technology Base and Talents Special Project of Guangxi Province under Grant
AD19259002, in part by the Natural Science Foundation of Guangxi under Grant 2018GXNSFAA180116, Grant 2016GXNSFAA380119,
and Grant 2018GXNSFAA138206, and in part by the National Natural Science Foundation of China under Grant 51365006.

ABSTRACT The time-frequency (TF) analysis (TFA) method is an effective tool for analyzing the time-
variant features of non-stationary signals. Synchrosqueezing transform (SST) is a promising TFA method
that has recently shown its usefulness in a wide range of engineering signal processing applications. On the
other hand, the SST method suffers from some drawbacks, one of which is that when processing the
frequency-modulated (FM) signal, the TF representation will smear heavily, which hinders its application
in engineering vibration signals. In this paper, we propose a new TFA method named parameterized
local maximum synchrosqueezing transform (PLMSST) to study engineering vibration signals with FM
characteristics. First, the limitation of SST in signal processing is discussed. Next, we demodulate the
signal by parameterizing the short-time Fourier transform (STFT) to correct the deviation of instantaneous
frequency (IF) estimation. Further, we detect the local maximum of the spectrogram in the frequency
direction to get the accurate IF estimate, and then obtain the energy-concentrated TF representation. Finally,
we introduce the reconstruction function of this method. The performance of the proposed method is
validated by both the numerical and experimental signals including vibration signals of the rolling bearing
and the bridge. The results show that the proposed method is more effective in processing engineering
vibration signals than other TFA methods.

INDEX TERMS Engineering vibration signal, frequency modulation, instantaneous frequency,
synchrosqueezing transform, time-frequency analysis.

I. INTRODUCTION
Extracting dynamic features from complex engineering
vibration signals is an effective way to study the state and
inherent properties of structures. Vibration signals are usu-
ally non-stationary and nonlinear. The time-frequency (TF)
analysis (TFA) method is one of the most popular and effec-
tive methods to deal with vibration signals because the TFA
method can not only show the frequency information of
signals but also reflect the law of frequency changing with
time. The energy of signals will be concentrated at the instan-
taneous frequency (IF) of the TF plane and around it, so the
IF can be obtained, and then the features of non-stationary
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signals can be extracted. Therefore, to accurately estimate the
IF of vibration signals, it is indispensable to obtain the TF
representation with high TF resolution.

Classical linear TFA methods, such as short-time Fourier
transform (STFT) and wavelet transform, are often suffering
from lowTF resolution due to the limitation of theHeisenberg
uncertainty principle. Bilinear TFAmethods, such asWigner-
Ville distribution, can improve the TF resolution. But when
processing multi-component signals, interference terms will
be introduced. To improve the performance of TFA meth-
ods, Auger and Flandrin [1] proposed the TF reassignment
method, which collects TF energy near the IF of the signal
and improves the readability of the TF result. Since the
reassignment method reassigns the TF Spectrogram into the
IF trajectory along the two-dimensional (2-D) TF direction,
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it loses the ability to reconstruct signals. Daubechies et al. [2]
proposed synchrosqueezing transform (SST), which squeezes
the TF coefficients into the IF trajectory only in the fre-
quency direction and supports signal reconstruction. Thus,
it is widely applied in various fields, such as electrocardio-
gram signals [3], acoustic signals [4], seismic signals [5],
and mechanical signals [6], etc. When processing slowly
varying signals, the result of SST is equivalent to the ideal TF
representation. However, when the signals to be processed are
frequency-modulated (FM) signals accompanied by noise,
the TF representation of original TFAmethods smear heavily.
As a post-processing method, SST also suffers from low TF
resolution [7], [8].

Many studies have recognized this drawback and put
forward many improved methods. Li and Liang [9]
used the demodulated operator to transform the time-
variant frequency into a constant frequency, and then
obtained a better TF resolution using SST. In order to
address the multi-component and time-variant frequency
signals, Feng et al. [10] decomposed each FM compo-
nent with the generalized demodulation method, the IF
of each mono-component being accurately estimated via
SST. Wang et al. [11]–[13] proposed matching SST, further
emerging into improved SST to enhance the energy concen-
tration for the strong FM signals. Demodulation has been
considered as an effectivemethod to enhance the performance
of the original SST [14]. However, the above-demodulated
methods require the precise time-varying FM law. It should
be noted that in most practical situations it is difficult to deter-
mine demodulated parameters precisely, especially for deal-
ing with the noisy multi-component FM signals. In addition,
due to the limitation of SST, these matching SSTmethods can
only correct the deviation of IF estimation to a certain extent,
and can not greatly improve the energy concentration of the
TF representation.

Besides, second-order SST [15], [16], and high-order
SST [17], [18] have been proposed, which greatly improve
the energy concentration of the TF result. However, increas-
ing the SST order will bring higher calculational cost and
be easily disturbed by noise. Tu et al. [19] proposed a
two-step algorithm, demodulated transform and high-order
synchrosqueezing method to achieve a compact TF represen-
tation. Although obtaining better performance in FM signals,
this method requiresmore computational cost than high-order
SST. Yu [20] proposed synchroextracting transform (SET),
which improves the readability of the TF result obviously.
However, it could not achieve perfect signal reconstruc-
tion, which will lead to large reconstruction errors when
processing strong FM signals. Zhu et al. [21] proposed syn-
chroextracting chirplet transform to improve the accuracy
of IF estimation. The TFA algorithm [22] combined poly-
nomial chirplet transform and synchroextracting (PSE) was
proposed, which can enhance the energy concentration of
the TF representation of the strong FM signal. However,
the method combined chirplet transform and synchroextract-
ing is difficult to overcome the shortcoming of SET, i.e.,

achieving perfect reconstruction signal. Yu et al. [23] pro-
posed multisynchrosqueezing transform, employing an iter-
ative reassignment procedure to concentrate the blurry TF
energy in a stepwise manner, meanwhile retaining the ability
of signal reconstruction. Zhu et al. [24] proposed multi-
synchrosqueezing chirplet transform (MSSCT), which is con-
sidered to be a combination of adaptive chirplet transform and
multisynchrosqueezing transform. Although these methods
squeeze the TF coefficients into the ridge by applying multi-
ple SST operations to improve the energy concentration of the
TF result, they usually generate the IF trajectories that deviate
from the true TF ridges when faced with the FM signals with
noise, making it difficult to obtain a good TF representation.

The engineering vibration signal is the typical FM signal
and often accompanied by background noise. A TFA method
used to analyze engineering vibration signals should aim at
1) accurately estimating IF, 2) obtaining the high-resolution
TF representation, and 3) allowing for perfect signal recon-
struction. Therefore, in this paper, we propose a new TFA
method, which uses two strategies: 1) parameterized TFA and
2) local maximum TF reassignment. In this way, the problem
of IF bias estimation caused by noise interference in FM sig-
nals is solved, which does not need the precise time-varying
FM law. With local maximum TF reassignment, the energy
concentration of the TF representation can be improved to
the greatest extent, and the influence of noise is small. In
addition, perfect signal reconstruction can be realized.

II. SST
We begin this study with the framework of STFT. The expres-
sion of STFT-based SST can be written as

Ts(t, ω′) =
∫
+∞

−∞

G(t, ω)δ(ω′ − ω0(t, ω))dω (1)

where G(t, ω) is the STFT of signal s(t), and the expression
is as follows

G(t, ω) =
∫
+∞

−∞

g(u− t) · s(u) · e−iωudu (2)

where g(u-t) is the moving window, and the IF estimate
ω0(t, ω) can be written as

ω0(t, ω) =
∂tG(t, ω)
iG(t, ω)

(3)

A harmonic signal whose expression can be written as

s(t) = A(t) · eiϕ(t) (4)

The IF of a harmonic signal can be considered as a con-
stant, and the amplitude of STFT can be expressed as∣∣Gh (t, ϕ′(t))∣∣

=

∣∣∣∣∫ +∞
−∞

e−iϕ
′(t)u
· s(u) · g(u− t)du

∣∣∣∣
= A(u) ·

∣∣∣∣∫ +∞
−∞

e−iϕ
′(t)u
· eiϕ(u) · g(u− t)du

∣∣∣∣
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= A(u) ·

∣∣∣∣∫ +∞
−∞

eiϕ
′(t)u−iϕ′(t)u

· g(u− t)du

∣∣∣∣
= A(u) · |g(u− t)du|

= A(u) · ĝ(0) (5)

According to [23], the model of an FM signal can be
expressed as

s(t) = A(t) · ei(ϕ(t)+ϕ
′(u−t)t+ϕ′′(t)(u−t)2/2) (6)

The amplitude of STFT of the FM signal can be written as∣∣Gm(t, ϕ′(t))
∣∣

=

∣∣∣∣∫ +∞
−∞

g(u− t) · s(u) · e−iϕ
′(t)udu

∣∣∣∣
= A(u) ·

∣∣∣∣∫ +∞
−∞

g(u− t) · ei(ϕ(t)+ϕ
′(u−t)t+ϕ′′(t)(u−t)2/2)

· e−iϕ
′(t)udu

∣∣∣∣
= A(u) ·

∣∣∣∣∫ +∞
−∞

g(u− t) · eiϕ(t) · eiϕ
′(t)u
· e−iϕ

′(t)t

·eiϕ
′′(t)(u−t)2/2

· e−iϕ
′(t)udu

∣∣∣∣
= A(u) ·

∣∣∣∣∫ +∞
−∞

g(u− t) · eiϕ(t) · e−iϕ
′(t)t
· eiϕ

′′(t)(u−t)2/2du

∣∣∣∣
= A(u)·

∣∣∣eiϕ(t) · e−iϕ′(t)t ∣∣∣ · ∣∣∣∣∫ +∞
−∞

g(u− t) · eiϕ
′′(t)(u−t)2/2du

∣∣∣∣
= A(u) · ĝ(r) (7)

Since it is an FM signal, iϕ′′(t)(u − t)2/2 is not zero. The
Fourier transform of the window function is the maximum
value at zero, so ĝ(r) < ĝ(0). By comparing (5) and (7),
we can see that the amplitude of the modulated signal is
lower than that of the harmonic signal, i.e.,

∣∣Gm
(
t, ϕ′(t)

)∣∣ <∣∣Gh
(
t, ϕ′(t)

)∣∣. The main reason is the existence of a modu-
lated element eiϕ

′′(t)(u−t)2/2. Therefore, when processing the
FM signal, the result of STFT smear heavily. Here, we use the
numerical signal (8) in [25] for further explanation. In addi-
tion, white noise is added to the signal, and the signal-to-noise
ratio (SNR) is equal to 20 dB. Fig. 1(a-b) shows the result of
STFT. We can see that the energy of the FM part is blurry
seriously.

s(t) =

{
sin(2π · (25 · t + 10 · sin(t))), 0 < t ≤ 6
sin(2π · 34.6 · t), 6 < t ≤ 14

(8)

As a post-processing tool, SST also produces the same
phenomenon. As shown in Fig.1(c-d), the energy of the FM
part is blurry than that of the harmonic part, which leads to
the inaccurate estimation of the IF.

III. THE PROPOSED METHOD
A. PARAMETERIZED STFT
The most important step to obtain an ideal TF representation
is to accurately estimate the IF of the original TFA method.

FIGURE 1. The signal (8) with the SNR is equal to 20 dB. (a) STFT result,
(b) zoom of STFT result, (c) SST result, and (d) zoom of SST result.

STFT is often unable to effectively characterize the time-
varying features of the FM signal, so we need to eliminate the
influence of the FM part on STFT, so that the original spec-
trogram can effectively describe the time-varying features
of strong FM signals. Therefore, we use the demodulated
operator to correct the bias estimation of TF.

According to (7), we get that the modulated element
eiϕ
′′(t)(u−t)2/2 affects the STFT result. To eliminate the influ-

ence of modulated element, it is necessary to introduce a
demodulated operator e−iβ(t)(u−t)

2/2, so we get the following
formula

G(t, ϕ′(t))=
∫
+∞

−∞

g(u− t) · s(u) · e−iϕ
′(t)u
·e−iβ(t)(u−t)

2/2du

(9)

The amplitude of it can be written as∣∣G(t, ϕ′(t))∣∣
=

∣∣∣∣∫ +∞
−∞

g(u− t) · s(u) · e−iϕ
′(t)u
· e−iβ(t)(u−t)

2/2du

∣∣∣∣
=

∣∣∣∣∫ +∞
−∞

g(u− t) · A(u) · ei(ϕ(t)+ϕ
′(u−t)t+ϕ′′(t)(u−t)2/2)

· e−iϕ
′(t)u
· e−iβ(t)(u−t)

2/2du

∣∣∣∣
= A(u) ·

∣∣∣∣∫ +∞
−∞

ei(ϕ
′′(t)−β(t))(u−t)2/2

· g(u− t)du

∣∣∣∣
≤ A(u)

∣∣∣∣∫ +∞
−∞

g(u− t)du

∣∣∣∣ (10)

If ϕ′′(t) = β(t), the amplitude will achieve its maximum
value in the IF. Actually, it is often impossible to determine
the value β(t), so we use a series of discrete β to approximate
the best-demodulated operator e−iβ(t)(u−t)

2/2. The STFT for-
mula for considering the discrete demodulated operator is as
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FIGURE 2. The signal (8) with the SNR is equal to 20 dB. (a) PSTFT result,
and (b) zoom of PSTFT result.

follows

G(t, ϕ′(t), β)=
∫
+∞

−∞

g(u− t)·s(u)·e−iϕ
′(t)u
·e−iβ(t)(u−t)

2/2du

(11)

According to [26], a rotating parameter α is introduced,
which will produce a rotation effect on the TF plane, and the
rotating degree is arctan(−β).

β =
FS
2TS

tan(α), α ∈ (−π/2, π/2) (12)

where TS is the sampling time and FS is the sampling fre-
quency. There are N values with α.

α = −
π

2
+

π

N + 1
,−
π

2
+

2 · π
(N + 1)

, . . . ,−
π

2
+

N · π
(N + 1)

(13)

In this way, we get the parameterized short-time Fourier
transform (PSTFT), and its expression can be written as

G(t, ω, α)=
∫
+∞

−∞

g(u− t)·s(u)·e−iωu · e−i·tan(α)·
FS
2TS
·(u−t)2/2du

(14)

Fig.2(a-b) shows the TF representation of PSTFT. We can
see that the energy of the signal is concentrated at the IF
and around it. At the same time, the amplitude |G(t, ω, α)|
reaches the maximum. In this way, we correct the deviation
of TF estimation and accurately describe the time-varying
features of FM signals.

B. LOCAL MAXIMUM TF REASSIGNMENT
PSTFT provides an accurate IF result, but the high-resolution
TF representation cannot be obtained. SST squeezes the TF
coefficients into the IF trajectory, which can improve the TF
resolution, but its noise robustness is poor. Inspired by [14],
we further process the PSTFT result by detecting the local
maximum of the spectrogram in the frequency direction and
forming a new frequency-reassignment operator.

ωm(t, ω) =


argmax

ω
|G(t, ω, α)|,

ω ∈ [ω −1,ω +1], if |G(t, ω, α)| 6= 0
0, if |G(t, ω, α)| = 0

(15)

FIGURE 3. The signal (8) with the SNR is equal to 20 dB. (a) PLMSST
result, and (b) zoom of PLMSST result.

Assuming that two arbitrary modes are well separated at
sufficient frequency distance, i.e., ϕ′k+1(t) − ϕ

′
k (t) > 41.

where1 is the discrete frequency interval. The Fourier trans-
form of the window function reaches the maximum at zero,
so we can get

ωm(t, ω)=

{
ϕ′k (t), if ω ∈

[
ϕ′k (t)−1,ϕ

′
k (t)+1

]
0, otherwise

(16)

By parameterizing STFT and local maximizing TF reas-
signment, we obtain a newTFAmethod named parameterized
local maximum synchrosqueezing transform (PLMSST).
It can be written as

PLMSST (t, ω′, α)=
∫
+∞

−∞

G(t, ω, α)δ
(
ω′−ωm(t, ω)

)
dω

(17)

We can see that the proposed method accurately describes
the time-varying features of the signal (8) (see Fig. 3(a-b)),
and obtains the high-resolution TF representation, which is
almost equivalent to the ideal TFA (ITFA) (see Fig. 4(a-b)).

C. SIGNAL RECONSTRUCTION
Since the TF coefficients are only reassigned in the frequency
direction, the proposed method supports signal reconstruc-
tion.

By calculating the integral in the frequency direction,
we get∫

+∞

−∞

PLMSST (t, ω′, α)dω′

=

∫
+∞

−∞

∫
+∞

−∞

G(t, ω, α)δ
(
ω′ − ωm(t, ω)

)
dω′dω

=

∫
+∞

−∞

G(t, ω, α)
∫
+∞

−∞

δ
(
ω′ − ωm(t, ω)

)
dω′dω

=

∫
+∞

−∞

G(t, ω, α)dω

= 2πg(0)s(t) (18)

Then, we can recover the original signal perfectly

s(t) =
1

2πg(0)

∫
+∞

−∞

PLMSST (t, ω′, α)dω (19)
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FIGURE 4. The signal (8) with the SNR is equal to 20 dB. (a) ITFA
representation, and (b) zoom of ITFA representation.

FIGURE 5. The signal (22). (a) The waveform, and (b) the spectrum.

For the multi-component modes, each mono-component
mode is decomposed from the TF coefficients in the IF tra-
jectories of the PLMSST representation, and the expression
is as follows

sk (t) =
1

2πg(0)
PLMSST

(
t, ϕ′k (t), α

)
(20)

A popular algorithm [15], [20] of IF trajectories detection
is written as

E(ϕk (t)) =
K∑
k=1

∫
+∞

−∞

|TFR (t, ϕk (t))|2dt

−

∫
+∞

−∞

(
λ · ϕ′k (t)

2
+ η · ϕ′′k (t)

2
)
dt (21)

IV. NUMERICAL VALIDATION
A. SIMULATED FM SIGNAL
In this section, we construct a simulated FM signal to illus-
trate the performance of PLMSST comparing with other TFA
methods.

S1(t) = e0.05t sin(2π(35t + 2 sin(5t)))

S2(t) = e0.1t sin(2π(17t + 2.2 sin(5t)))

S(t) = S1(t)+ S2(t) (22)

The sampling frequency is 100 Hz and the sampling time is
4 s. The waveform and the spectrum are shown in Fig. 5 (a-b).
However, it is difficult to understand the nonlinear behaviors
of the signal only from the information in Fig. 5.

To obtain more information, we need to extend the time-
varying features into the 2D TF plane with the help of TFA
methods. The results obtained by STFT, PSTFT, SST, fourth-
order SST, SET, and PLMSST are shown in Fig. 6(a-d) and
Fig. 7(a-b). We can see that although the result of STFT

FIGURE 6. The signal (22). (a) STFT result, (b) PSTFT result, (c) SST result,
and (d) fourth-order SST result.

FIGURE 7. The signal (22). (a) SET result, (b) PLMSST result, (c) ITFA
representation, and (d) detected IFs.

is smeared, it can basically reveal the law of frequency
information changing with time. The energy of PSTFT is
more concentrated at the IF and around it, which corrects
the deviation of TF estimation, but does not obtain a high-
resolution TF representation. Both SST and fourth-order SST
show more concentrated results than that of STFT, but the
phenomenon of energy distribution still exists. SET is an
excellent TFAmethod with a concentrated TF representation.
The PLMSST result shows more concentrated TF features
than the other results, and approximates the ITFA represen-
tation (see Fig. 7(c)). To decompose the two modes, it is
necessary to detect the IF trajectories. Due to the energy-
concentrated TF result of PLMSST, the detected IF trajec-
tories are very close to the true IF (see Fig. 7(d)).

Rényi entropy is usually used to evaluate the energy
concentration of a TFA method. A lower Rényi entropy
value denotes a more energy-concentrated TF represen-
tation [20]–[23]. To quantitatively evaluate the energy
concentration of different TFA methods, white noises with
signal-to-noise ratios (SNRs) of 1–30 dB are added to the
signal. Fig. 8 shows the Rényi entropies of different TFA
methods under different noise levels. We can see that among
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FIGURE 8. The signal (22). Under different noise levels (SNRs of 1-30 dB),
the Rényi entropies of the TF representations generated by different TFA
methods.

FIGURE 9. The signal (22) with the SNR is equal to 11 dB. (a) STFT result,
(b) PSTFT result, (c) SST result, and (d) fourth-order SST result.

these TFA methods, the Rényi entropy of PLMSST is the
smallest under each noise level, which shows that PLMSST
has the best ability to generate an energy-concentrated TF
representation when processing the FM signals with noise.

In addition, to explore the differences of the above TFA
methods in processing noise signals, the corresponding
results are listed in Fig. 9(a-d) and Fig. 10(a-b) (the SNR
of the signal is equal to 11 dB). We can also see that
PLMSST obtains the energy-concentrated TF representation,
while other TFA methods are affected by noises at different
levels. Thanks to the post-processing of PSTFT, the detected
IF trajectories of the PLMSST representation are very close
to the true IF (see Fig. 10(c-d)).

The IF trajectories estimated by the PLMSST result can
be used to decompose the mono-component mode effec-
tively. Two decomposed modes are shown in Fig. 11(a-b).
In Fig. 11(c), we show the summation of two components.
Their errors are shown in Fig. 11(d). We can see that the
reconstruction errors of the proposed method are small, indi-
cating that PLMSST has good reversibility.

It is very important for the computational efficiency of
a TFA algorithm, so we test the computational time of the

FIGURE 10. The signal (22) with the SNR is equal to 11 dB. (a) SET result,
(b) PLMSST result, (c) true IFs, and (d) detected IFs.

FIGURE 11. The signal (22) with the SNR is equal to 11 dB. (a) Recovered
S1, (b) recovered S2, (c) recovered S, and (d) the errors between the
recovered signal and the original signal.

TABLE 1. Required computational time by several TFA methods.

above-mentioned methods in addressing this noisy signal.
The tested computer configuration is as follows: Intel Core
i7-7700 3.60 GHz, 8.0 GB of RAM, and MATLAB version
R2016a. The computational time of these methods are listed
in Table 1. Because it takes time to detect the local maximum
of the spectrogram, the calculation time of the proposed
method is long, but less than the fourth-order SST method.

B. STRONGLY TIME-VARYING SIGNAL
To further verify the performance of this method in pro-
cessing the strongly time-varying signal, we use a strongly
time-varying signal borrowed from [17], [23] to analyze. The
signal is modeled as

S1(t) = sin(2π (340t − 2 exp(−2t+0.4) sin(14π(t − 0.2))))

S2(t) = sin(2π ((75t + 30t3)))

S(t) = S1(t)+ S2(t) (23)

The sampling frequency is 1024 Hz, and the sampling
time 1s. For further comparison, here we compare with some
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FIGURE 12. The signal (23). (a) PLMSST result, (b) zoom of fourth-order
SST result, (c) zoom of fourth-order SST result, (d) zoom of SET result,
(e) zoom of SET result, (f) zoom of PSE result, (g) zoom of PSE result,
(h) zoom of MSSCT result, (i) zoom of MSSCT result, (j) zoom of PLMSST
result, and (k) zoom of PLMSST result.

FIGURE 13. The signal (23). Under different noise levels (SNRs
of 1-30 dB), the Rényi entropies of the TF representations generated by
different TFA methods.

new methods like fourth-order SST and SET, and some more
advanced methods such as PSE and MSSCT. The TF repre-
sentations of the signal obtained by fourth-order SST, SET,
PSE, MSSCT, and PLMSST are shown in Fig. 12. We can
see that all these advanced TFA methods can obtain the
energy-concentrated TF representation except fourth-order
SST. White noises with signal-to-noise ratios (SNRs) of
1–30 dB are added to the signal.

Fig. 13 shows the Rényi entropies of different TFA meth-
ods under different noise levels. We can see that among
these TFA methods, the Rényi entropy of PLMSST is the
smallest under each noise level, which shows that PLMSST
has the best ability to generate an energy-concentrated TF
representation when processing the strong FM signal. The
computational time of different TFA methods are listed in

FIGURE 14. Structural sketch of the machine set.

TABLE 2. Required computational time by several TFA methods.

FIGURE 15. The bearing vibration signal with the outer ring fault. (a) The
waveform, and (b) the spectrum.

Table 2. We can see that when processing the strong FM
signals, the proposed method does not take the longest time
among these methods.

V. EXPERIMENTAL VALIDATION
A. BEARING OUTER RACE FAULT VIBRATION SIGNAL
In this section, the bearing defect signal containing the outer
ring fault provided by Western Reserve University Bearing
Data Center [23] is analyzed to validate the proposed method.
The structural sketch of the machine set is shown in Fig. 14.
The test bearing is used to support the motor shaft, and the
speed is 1772 r/min. The sampling frequency is 12000 Hz,
and the sampling time 0.2205 s. According to the informa-
tion of bearing parameters and speed, we can know that the
theoretical value of fault characteristic frequency of the outer
ring fault is 105.9Hz.

The time-domain waveform and the spectrum of the vibra-
tion signal are shown in Fig. 15(a) and (b), and the frequency
components are mainly around 2600-3800 Hz. For better
comparison, we list the TF results of STFT, SST, fourth-
order SST, PLMSST, SET, PSE, and MSSCT of 0.1 s (see
Fig. 16 and Fig. 17), representing the oscillated TF features
of the twomodesM1 andM2.We can see from Fig. 16(d) that
the proposed method achieves better TF location ability and
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FIGURE 16. The bearing vibration signal with the outer ring fault.
(a) STFT result, (b) SST result, (c) fourth-order SST, and (d) PLMSST result.

FIGURE 17. The bearing vibration signal with the outer ring fault. (a) SET
result, (b) PSE result, and (c) MSSCT.

accurately characterizes the duration time and the frequency
band of each transient component.

The Rényi entropies of these methods are calculated and
listed in Table 3. We can see that the Rényi entropy of
PLMSST is the lowest, which indicates that the proposed
method can obtain the most energy-concentrated TF repre-
sentation among these TFAmethods. The computational time
of these methods are listed in Table 4. We can see that the
calculation time of all the methods is within 30 s, and the
time consumption of the proposed method is 24.182 s, which
is less than that of the fourth-order SST. At the same time,
we detect the IF of two modes from the PLMSST result.
Fig. 18(a) and (c) show the IF of M1 and its spectrum.
Fig. 18(b) shows the reconstructed time-series waveform of
the mode M1. We can see that the spectrum has a fault

TABLE 3. Rényi entropy.

TABLE 4. Required computational time by several TFA methods.

FIGURE 18. (a) Detected IF trajectory of M1, (b) recovered signal of M1,
and (c) the spectrum of the detected IF trajectory of M1.

FIGURE 19. (a) Detected IF trajectory of M2, (b) recovered signal of M2,
and (c) the spectrum of the detected IF trajectory of M2.

frequency of 108.8 Hz, which is very close to the theoretical
fault frequency and is not found in the spectrum of the original
signal (see Fig. 15(b)).

Fig. 19(a) and (c) show the IF of M2 and its spectrum.
Fig. 19(b) shows the reconstructed time-series waveform of
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FIGURE 20. The bridge vibration signal. (a) The waveform, (b) PLMSST
result, and (c) recovered signal.

TABLE 5. Rényi entropy.

themodeM2. The frequency of the outer ring fault can also be
found. Therefore, it can be considered that the concentrated
TF representation provides a precise way for fault diagnosis
based on bearing vibration signals.

B. BRIDGE VIBRATION SIGNAL
To further investigate the applicability of this method,
the measured bridge vibration signal [28] is analyzed. The
sampling frequency is 5 Hz and the sampling time is 600 s.
Fig. 20(a) and (b) show the waveform of the signal and the
TF representation of PLMSST. From the TF representation
of PLMSST, it is obvious that the amplitude of the signal
is low in the front half part (0-300 s) and accompanied by
certain FM phenomenon. While in the latter part (300-600 s),
the FM phenomenon is weakened obviously. These indicate
that when the vibration amplitude of the bridge is small,
the variation of the frequency may be caused by the back-
ground noise. Fig. 20 (c) shows the reconstructed signal of
PLMSST. Compared with the original signal, we can see that
the noise components are basically eliminated, leaving the
characteristic of a relatively regular oscillation.

For further comparison, the TF representations of STFT,
SST, fourth-order SST, SET, PSE, and MSSCT are listed in
Fig. 21 and Fig. 22. The Rényi entropies of these methods are
calculated and shown in Table 5. Both the TF representations
and Rényi entropies show that the proposed has the best
ability to characterize the bridge vibration signal.

C. BEARING EARLY RUB-IMPACT FAULT
VIBRATION SIGNAL
In this section, the proposedmethod is employed to character-
ize the vibration signals collected from a heavy oil catalytic

FIGURE 21. The bridge vibration signal. (a) STFT result, (b) SST result, and
(c) fourth-order SST result.

FIGURE 22. The bridge vibration signal. (a) SET result, (b) PSE result, and
(c) MSSCT result.

FIGURE 23. Structural sketch of the machine set.

cracking machine set with a rub-impact fault [20], [29]. The
structural sketch is shown in Fig. 23. It consists of a gas
turbine, compressor, gearbox, and motor. The gas turbine
is used to transform heat energy to mechanical energy. The
bearing cases (1#, 2#, 3#, and 4#) are used to support the
corresponding shaft. The rotation speed of the gas turbo is
5381 r/min (the rotating frequency is approximately equal to
90 Hz). The vibration of bush 2 is large than the alarm limit,
so we analyze the signal with the proposed method.

7740 VOLUME 9, 2021



Z. Huang et al.: PLMSST and Its Application in Engineering Vibration Signal Processing

FIGURE 24. The bearing vibration signal with the rub-impact fault.
(a) The waveform, and (b) the spectrum.

FIGURE 25. The bearing vibration signal with the rub-impact fault.
(a) PLMSST result, (b) the detected IF trajectory, and (c) the spectrum of
the detected IF trajectory.

The sampling frequency is 2 kHz and the sampling number
is 1024. The time-domain waveform and the spectrum of the
vibration signal are shown in Fig. 24(a) and (b). The first-
order rotating frequency is the largest component, which cor-
responds to the main fault reason. PLMSST is used to analyze
the vibration signal. The TF result in the frequency bank
of 40-140 Hz generated by the proposed method is shown
in Fig. 25(a), which clearly shows that the FM component has
a periodic oscillatory IF. We detect the IF of the component
from the PLMSST result. Fig. 25(b) and (c) show the detected
IF trajectory and its spectrum. The result shows that the IF of
mode M1 periodically oscillates around first-order rotating
frequency with a frequency of 90 Hz. The reason is that
the rub-impact fault makes the rotor running at an unstable
speed [20], [30].

VI. CONCLUSION
In this paper, we proposed a new TFA method to char-
acterize the features of engineering vibration signals.

By parameterizing TFA and local maximizing TF reassign-
ment, the proposed method corrects IF bias estimation caused
by noise interference of FM signal and greatly improves the
energy concentration of the TF result, allowing for perfect
signal reconstruction. This is very beneficial to the analysis
and processing of engineering vibration signals. The advan-
tages of the proposed method were demonstrated through
numerical simulation and practical applications. In addition,
we focused on the comparisons of the proposed method with
other classical and advanced methods. Compared with other
TFAmethods, the proposed method has the best performance
in engineering vibration signal processing.
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