
SPECIAL SECTION ON RELIABILITY IN SENSOR-CLOUD SYSTEMS AND APPLICATIONS (SCSA)

Received August 17, 2020, accepted September 2, 2020, date of publication September 9, 2020, date of current version September 14,
2021.

Digital Object Identifier 10.1109/ACCESS.2020.3022959

EPLA-DSTree: Extending Piecewise
Linear Approximation on a Dynamic
Segmentation Tree Index in
Sensor-Cloud Systems
BIN XIE1, QIUHONG LI 2, YANG WANG3, AND PENG WANG 3
1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2Shanghai Chang Jiang Intelligent Data Technology Company Ltd., Shanghai 201600, China
3Computer College of Fudan University, Shanghai 200433, China

Corresponding author: Qiuhong Li (09110240012@fudan.edu.cn)

ABSTRACT In sensor-cloud applications, a huge amount of time series are generated. Efficient similarity
search approaches are necessary for processing these sensor time series data. Concerning of time series
search, whole matching similarity search and subsequence similarity search are two main research focuses.
In this paper, we study the whole matching similarity search problem. We propose EPLA-DSTree, which
extends piecewise linear approximation on a dynamic segmentation tree index for whole matching on time
series. Compared with DSTree, EPLA-DSTree improves data locality of nodes by a better time series
representation. EPLA-DSTree has a tighter lower bound for nodes which leads to a better query performance.
Experiments show that it has a less index building time and a better query performance. To meet the
requirements of sensor-cloud applications, we present an parallel EPLA-DSTree on MapReduce, which is a
popular cloud programming model.

INDEX TERMS Time series search, sensor cloud, index.

I. INTRODUCTION
In sensor-cloud applications, a huge amount of data series
are generated. Most of the data series are time relevant.
For example, UCI [35] project, which collects 18000 time-
series recordings from a chemical detection sensor platform
at six different locations in a wind tunnel facility in response
to ten high-priority chemical gaseous substances. Similar-
ity search on time series is essential in many applications
[1]–[5], [9], [15], [38], [39]. Typical application ranges across
image processing [26], finance analysis [25] and environment
monitoring [29], [29]. Given a set TS of time series, a query
time series Q, and a distance threshold ε, a similarity search
retrieves the time series S ∈ TS such thatD(Q, S) ≤ ε, where
D(·, ·) is a distance function. When the Euclidean distance is
used and the time series in question are assumed of the same
length, the problem is called whole matching [1], which has
been popularly used in various applications. The problem is
challenging in practice, since often the set of time series TS
to be searched may contain many time series and each time
series may be long.
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A time series can be regarded as a point in a multidi-
mensional space, one dimension representing a time instant.
A fundamental challenge, however, is that the length of time
series is often long. A time series often contains readings at
hundreds or even thousands of instants. It is highly ineffective
to directly index time series using spatial indexes, such as an
R-tree [7]. Obviously, the data collecting by sensors can be
treated as time series data. In the paper, we study a real use
case of time series similarity search problem in a bridge con-
dition monitoring system. In this system, data was collected
from about one thousand sensors of more than 20 types, such
as thermometers, accelerometers, strain gauges, displacement
meters, and fatigue meters. The length of each time series is
256, and one million times series were collected.

To tackle the whole matching problem, many index
structures have been proposed [1]–[5], [15], which will be
briefly reviewed in Section V, all those indexes are based on
two fundamental principles.

To tackle this problem, many existing methods apply
dimensionality reduction techniques, such as Singular Value
Decomposition (SVD) [8], Discrete Fourier Transform
(DFT) [1], DiscreteWavelet Transform (DWT) [4], Piecewise
Linear Approximation (PLA) [5], [13], Piecewise Aggregate
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FIGURE 1. A comparison of APCA and PLA.

Approximation (PAA) [10], Adaptive Piecewise Constant
Approximation (APCA) [11], Extended Adaptive Piece-
wise Constant Approximation (EAPCA) [24] and Chebyshev
Polynomials (CP) [2]. After dimensionality reduction, a mul-
tidimensional index, such as R-tree [7], can be used as an
index in the lower dimensional space.

Accordingly, in the state-of-the-art time series indexing
methods, such as the R-tree based methods, SAX [14],
iSAX [15], all time series to be indexed are segmented in the
same way. Thus, they are global segmentation approaches.
Those methods focus on how to approximate or symbolize
segments and construct indexes. The segmentation of time
series is not closely integrated with index building. DSTree
[24] improves the data locality by adopting a dynamic seg-
mentation method. However, the time series representation
can be improved. As Fig. 1 shows, we can acquire a better
representation of time series by utilizing Piecewise Linear
Approximation (PLA).

In this paper, we study a more accurate time series
representation based on DSTree, which improves the bound
tightness and search efficiency by utilizing PLA. Note that
our work can be easily extended to subsequence matching [6]
where query time series are allowed to have different lengths.

We propose EPLA-DSTree, which extends piecewise
linear approximation on a DSTree index for whole match-
ing on time series. By combining Piecewise Linear Approx-
imation (PLA) with dynamic segmentation technique of
DSTree, which not only offers better representation accu-
racies, but also support upper bound estimations, which
enrich the functionalities of index greatly. As Fig. 1 shows,
PLA representation is more similar to the real time series
compared with EAPCA representation, which is adopted by
DSTree. Furthermore, we present an parallel EPLA-DSTree
on MapReduce, which is a popular cloud programming
model. By this way, EPLA can be used to handle huge
amount of sensor cloud data. The main idea of the parallel
approach is to utilize a Locality Sensitive Hashing [27] for
data partitioning.

The main contributions include:
• We propose a novel time series representation by
extending PLA, named as EPLA.

• We propose a novel time series index, named as
EPLA-DSTree by combining EPLA and DSTree.

• We implement a similarity search approach utilizing
EPLA-DSTree on a real bridge monitoring system,
which collects monitoring data by more than one
thousand sensors.

TABLE 1. Some frequently used symbols.

• We propose a parallel approach based on Locality Sen-
sitive Hashing of EPLA-DSTree on MapReduce to meet
the requirements of Sensor Cloud applications.

The rest of the paper is organized as follows. Section II-A
presents preliminary knowledge of thework. Section III intro-
duces the EPLA representation and how it is applied to the
DSTree index and improve the data locality and query perfor-
mance. Section IV reports the experiment results. Section V
reviews the related work. Section VI concludes the paper.
Table 1 summarizes the symbols frequently used in this paper.

II. PRELIMINARY KNOWLEDGE
A. DSTree
A DSTree supports two types of queries. The first one is
the traditional similarity search, which returns the time series
nearest to the query time series. The second type is to esti-
mate the distance distribution, which returns a histogram of
distances between the query time series and all indexed time
series.

Before introducing the exact similarity search, we first
introduce a heuristic search method, which is more efficient
and will be used in the exact search method later.

1) A HEURISTIC METHOD
Instead of finding the exact most similar time series by check-
ing all possible nodes in a DSTree, a heuristic search only
investigates one leaf node, and tries to find the most similar
time series in this node. This method is based on the heuristic
that similar time series are often indexed in the same node.

Specifically, given a query Q, we start from the root node.
If the root node is not a leaf node, then we find a child node
of the root node that can hold Q as if Q ware inserted into
the index. This search process is conducted recursively until
a leaf node N is met. Then, we calculate the distance D(S,Q)
for every time series S ∈ T SN , and return the time series of
the shortest distance. Please note that the heuristic method,
as the name suggests, may not find the most similar time
series in the whole data set.

2) THE EXACT SEARCH
To speed up search, we combine the heuristic search method
and the lower bounding distance function to prune the search
space. The exact search begins with a best-so-far (BSF)
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answer returned by the heuristic search method. The intuition
is that, by quickly obtaining a time series that is likely similar
to the query time series, a large portion of the search space
may be pruned effectively.

B. PLA
Given a time series S = (s1, . . . , sn) of length n, PLA divides
it into several joint segments S = (S1, . . . , Sm), (m = n

w ),
where Si = (sri−1+1, . . . , sri ) (r0 = 0, 1 ≤ r1 < · · · <

rm = n). PLA approximates each segment with a linear
representation. Concretely, for the i-th segment, we re-denote
it as Si = (si1, . . . , siwi ), where wi = ri − ri−1, PLA uses a
linear function s̃ij = ai · j+ bi (1 ≤ j ≤ wi) to approximate Si,
where ai and bi are the slope and the intercept respectively
such that the reconstruction error (sum of squared error),
sse(Si), is minimized. sse(Si) is defined as the Euclidean
distance between the approximated and actual time series.

sse(Si) =
wi∑
j=1

(sij − s̃ij)2 =
wi∑
j=1

(sij − (ai · j+ bi))2

where two parameters ai and bi satisfy the following two
conditions:

∂(Si)
∂(ai)

= 0

∂(Si)
∂(bi)

= 0

Here, ai and bi can be obtained by solving the above formula.
In particular, we have:

ai =
12
∑wi

j=1(j−
l+1
2 )sij

w(w− 1)(w+ 1)

bi =
6
∑w

j=1(j−
2w+1
3 )sij

w(w− l)

III. EXTENDING THE PLA REPRESENTATION
Piecewise Linear Approximation (PLA) [5], [13] is a
well-known time series representation, which approximates
time series using consecutive linear segments. In this section,
we extend PLA to EPLA. Similar to EAPCA, both the lower
and upper bounds of distances are provided. Before introduc-
ing EPLA in detail, we offer a visual demonstration of the
advantage of PLA (A detailed review of PLA will be given in
Section III-A) over APCAwhen handling violent fluctuations
in time series, which is illustrated in Fig. 1. Clearly, PLA is
far less lossier than APCA in this case.

A. PLA PROPERTIES
In fact, PLA has two interesting properties. Let εij = sij−ai ·
j− bi (1 ≤ j ≤ wi). we have

wi∑
j=1

jεij = 0 (1)

wi∑
j=1

εij = 0 (2)

For each segment Sj, having obtained the corresponding
slope aj and intercept bj, the PLA representation of the time

series S is S̃ = ((a1, b1, r1), . . . , (am, bm, rm)). Using the
slopes and intercepts, PLA can give a lower bound of the
distance between two time series, which is given as follows.
Lemma 1 (PLA Lower Bound): Given two time series X

andY such that |X | = |Y |, let X̃ = ((aX1 , b
X
1 , r1), . . . , (a

X
m, b

X
m,

rm)) and Ỹ = ((aY1 , b
Y
1 , r1), . . . , (a

Y
m, b

Y
m, rm)) be two PLA

representations of X and Y , respectively. Then,

D(X ,Y ) ≥

√√√√ m∑
i=1

dPLAi (3)

where

dPLAi =

wi∑
j=1

((aXi − a
Y
i )j+ (bXi − b

Y
i ))

2 (4)

We omit the proof of Lemma 1 for space usage.
Next, we introduce our new EPLA, which, by combining

the sum of squared error, can provide an upper bound and a
tighter lower bound on distances.

B. EPLA AND UPPER/LOWER BOUNDS USING SUM OF
SQUARED ERROR
Now we give the definition of EPLA. Recall that in EAPCA,
the authors introduced the standard deviation to describe
the approximation quality. Likewise, here we apply sse
to describing that of the linear segments. Concretely, for
time series S of length n, EPLA approximates it as S̃ =
((a1, b1, sse1, r1), . . . , (am, bm, ssem, rm)), where a is the
slope, b is the intercept and sse is the sum of squared error.
We have the following results.
Theorem 1: Given two time seriesX and Y such that |X | =
|Y |, let X̃ = ((aX1 , b

X
1 , sse

X
1 , r1), . . . , (a

X
m, b

X
m, sse

X
m, rm))

and Ỹ = ((aY1 , b
Y
1 , sse

Y
1 , r1), . . . , (a

Y
m, b

Y
m, sse

Y
m, rm)) be two

aligned EPLA representations of X and Y, respectively. Then,

D(X ,Y ) ≥

√√√√ m∑
i=1

dPLAi + (
√
sseXi −

√
sseYi )

2 (5)

and

D(X ,Y ) ≤

√√√√ m∑
i=1

dPLAi + 2(sseXi + sse
Y
i ) (6)

Proof:
Using the same definition of Xi, Yi, εXij and ε

Y
ij as those in

Lemma 1, and letting 1 =
∑wi

j=1(ε
X
ij − ε

Y
ij )

2, we now begin
to deduce

1 ≥ (
√
sseXi −

√
sseYi )

2

=

√√√√ wi∑
j=1

(εXij )
2 −

√√√√ wi∑
j=1

(εYij )
2

2

(7)

and

1 ≤ 2(sseXi + sse
Y
i ) = 2

( wi∑
i=1

(εXij )
2
+

wi∑
i=1

(εYij )
2

)
(8)
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For Inequation 7

1 =

wi∑
j=1

(εXij − ε
Y
ij )

2
=

wi∑
j=1

(εXij )
2
+

wi∑
j=1

(εYij )
2
− 2

wi∑
j=1

εXij ε
Y
ij

By the Cauchy-Schwarz inequality

(
wi∑
j=1

εXij ε
Y
ij )

2
≤ (

wi∑
j=1

(εXij )
2)(

wi∑
j=1

(εYij )
2)

therefore,

1 ≥

wi∑
j=1

(εXij )
2
+

wi∑
j=1

(εYij )
2
− 2

√√√√ wi∑
j=1

(εXij )
2

wi∑
j=1

(εYij )
2

=

√√√√ wi∑
j=1

(εXij )
2 −

√√√√ wi∑
j=1

(εYij )
2

2

(9)

For Inequation 8
wi∑
j=1

(εXij − ε
Y
ij )

2
=

wi∑
j=1

(εXij )
2
+

wi∑
j=1

(εYij )
2
− 2

wi∑
j=1

εXij ε
Y
ij

= 2

(εXij )
2
+

wi∑
j=1

(εYij )
2


−

wi∑
j=1

((εXij )
2
+ (εYij )

2
+ 2εXij ε

Y
ij )

= 2

 wi∑
j=1

(εXij )
2
+

wi∑
j=1

(εYij )
2

− wi∑
j=1

(εXij +ε
Y
ij )

2

≤ 2

 wi∑
j=1

(εXij )
2
+

wi∑
j=1

(εYij )
2

 (10)

With both Inequations (7) and (8) proved, it is apparent that
both the lower and upper bounds hold.
Comparing Inequations (3) and (5), the lower bound given

by EPLA uses the sums of squared error to achieve a tighter
lower bound than PLA. Both the lower and upper bounds
given by EPLA are realizable.

C. BOUNDING DISTANCES TO A SET OF TIME SERIES
If we can acquire the lower bound between a query and a set of
time series, we can prune the calculations for the query with
the time series in the set with the lower bound greater that the
given threshold. The tighter the lower bound is, the better the
pruning power we have.

For a time series X and a set of time series Y1, . . . ,
Yc, (|X | = |Y1| = · · · = |Yc|), let X̃ =

((aX1 , b
X
1 , sse

X
1 , r1), . . . , (a

X
m, b

X
m, sse

X
m, rm)), Ỹ1 = ((aY11 , b

Y1
1 ,

sseY11 , r1), . . . , (a
Y1
m , b

Y1
m , sse

Y1
m , rm)), . . . , Ỹc = ((aYc1 , b

Yc
1 ,

sseYc1 , r1), . . . , (a
Yc
m , b

Yc
m , sse

Yc
m , rm)) be aligned EACPA

representations, respectively. Let the minimal and maximal
values of the distance between two lines in the i-th seg-
ments of Y1, . . . ,Yc be d_PLAmini = min

1≤j≤l
{d_PLA

Yj
i } and

FIGURE 2. Set approximations.

d_PLAmaxi = max
1≤j≤l
{d_PLA

Yj
i } respectively. Moreover, let the

minimal and maximal values of the sum of squared error in
the i-th segments of Y1, . . . ,Yc, respectively, be ssemini =

min
1≤j≤l
{sse

Yj
i } and sse

max
i = max

1≤j≤l
{sse

Yj
i }.We have the following

bounds.

min
1≤j≤c
{D(X ,Yj)} ≥

√√√√ m∑
i=1

(ri − ri−1)(LB
d_PLA
i + LBssei ) (11)

and

max
1≤j≤c
{D(X ,Yj)}≤

√√√√ m∑
i=1

(ri − ri−1)(UB
d_PLA
i + UBssei ) (12)

It is apparent that similar to the mean values and standard
deviations in EAPCA, EPLA utilizes the distance between to
lines d_PLA and the sum of squared error sse to construct the
bounds. Before giving an in-depth view of how the bounds
of the two parts can be calculated, we first discuss the two
representation choices for a time series segment given a linear
approximation. To be concrete, given the set of time series
Y1, . . . ,Yc and their EPLA representations Ỹc, . . . , Ỹc as
mentioned above, we have two types of representations for
the lines in the i-th segment, as is illustrated in Fig. 2.

In the first type, we use the slope and the intercept
to represent a line. Let us illustrate it with the example
in Fig. 2(a), where there are three lines, Ỹ 1

i , Ỹ
2
i , Ỹ

3
i , where

Ỹ ki 1 ≤ k ≤ 3 is represented by two parameters, (aki , b
k
i ).

We combine the largest of each of the two parameters,
amaxi and bmaxi , to form a line, and amini and bmini to form
another. As shown in Fig. 2(a), these two lines can envelop all
three lines.

In the second type, we use the left and right ending points
to represent the lines. We continue with the example in Fig. 2,
where for the same lines as that in Fig. 2(a), Ỹ 1

i , Ỹ
2
i , Ỹ

3
i ,

Ỹ ki is thus represented as (lki , r
k
i ), where lki = aki + bki

and rki = aki (ri − ri−1) + b. Then, by connecting lmini and
rmini , we can obtain the bottom line in Fig. 2(b), denoted by
Lmini ; by connecting lmaxi and rmaxi , we can obtain the top
line, denoted by Lmaxi . These two lines can also envelop all
three lines.

It is easy to see that the second type can give a tighter
approximation. Therefore, in our work, we use the second
type. That is, we use four parameters, lmax , lmax , rmin, rmin,
to construct the bounds.

We are now finally in a position to specify the bounds of
d_PLA and the bounds of sse. The latter can be obtained in a
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FIGURE 3. An illustration of the naive set bounds.

similar manner to that used to obtain the bounds of standard
deviation in EAPCA, that is,

LBssei =


(
√
ssemini −

√
sseXi )

2 if sseXi ≤ sse
min
i ;

0 if ssemini < sseXi ≤sse
max
i .

(
√
ssemaxi −

√
sseXi )

2 if ssemaxi ≤ sseXi ;

(13)

UBssei = 2(
√
ssemaxi +

√
sseXi ) (14)

Next we will focus on obtaining the bounds of the distance
between to lines, i.e. the bounds of d_PLA, using lmax ,
lmax , rmin, rmin. We propose two types of bounds, naive
bounds and line-based bounds.

1) NAIVE BOUNDS
We now introduce the naive bounds of d_PLA. For simplicity
we only focus on one segment, i.e. the i-th segment, the length
of which is wi = ri − ri−1. Recall that in ‘(4) d_PLAi is
a summation of wi values. Then we first select the possible
minimal value for each term, i.e. each j in (4), and sum
them up to form the lower bound. Fig. 3 illustrates the cases
according to the position of X̃i = (lXi , r

X
i ). Here we elaborate

on case 1.

In case 1, it holds that lXi < lmaxi and rXi < rmaxi . For each
j, the j-th value in X̃i be |lXi +(r

X
i − l

X
i ) ·

j−1
wi−1
|, denoted by X̃ij.

Similarly, for each Ỹ ki , 1 ≤ k ≤ c, we denote the j-th value
in it by Ỹ kij , that in the top line Lmaxi by Lmaxij , and that in the
bottom line Lmini by Lminij .
Then for any j, we have

(X̃ij − Lmaxij )2 ≤ (X̃ij − Ỹ kij )
2
≤ (X̃ij − Lminij )2

By summing all j’s, the lower bound is
n∑
j=1

(X̃ij − Lmaxij )2

and the upper bound is
n∑
j=1

(X̃ij − Lminij )2

The lower and upper bounds in other cases are summarized
in Fig. 3.

2) LINE-BASED BOUNDS
The native bound is straightforward, and easy to compute.
However, it is not optimal. The main reason is that the values
used to compute the lower (or upper) bound may not be in
the same line. For example, for the upper bound in case 2,
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the left part is computed by X̃i and Lmaxi , while the right
part is computed by X̃i and Lmini . Apparently, this bound is
unreachable.

In this section, we introduce the line-based bounds (Fig. 6),
which guarantee reachability. The underlying rationale is that
for X̃i, we find a line in the region, the distance betweenwhich
and X̃i is minimal (or maximal). We illustrate this with the
lower bound in Fig. 6(b). The red dotted line, denoted by
(̃Y )mini , is the line which minimizes d_PLAi. That is, it holds
that, for the lower bound

d_PLA(X̃i, Ỹmini ) ≤ d_PLA(X̃i, Ỹ ki ), 1 ≤ k ≤ c

For the upper bound, we find a line, denoted by (̃Y )maxi , which
holds that

d_PLA(X̃i, Ỹmaxi ) ≥ d_PLA(X̃i, Ỹ ki ), 1 ≤ k ≤ c

Next, we introduce how to find Ỹmini and Ỹmaxi for the lower
bound.We formalize this as the following problem. Given the

query line X̃i = (lXi , r
X
i ), the j-th value in it being X̃ij+

rXi −l
X
i

wi−1
·

(j− 1), (1 ≤ j ≤ wi). We try to find a line, so that between it
and X̃i, d_PLA is minimal.

Note that any line Ỹ ki in the i-th segment, denoted by
(lki , r

k
i ), can be expressed as,

Ỹ kij = lki +
rki − l

k
i

wi − 1
· (j− 1) (1 ≤ j ≤ wi)

where
lmini ≤ lki ≤ l

max
i

rmini ≤ rxi ≤ r
max
i

We have

d_PLA(X̃i, Ỹ ki ) =
wi∑
j=1

(lXi +
rXi − l

X
i

wi − 1
· (j− 1)

− lki −
rki − l

k
i

wi − 1
· (j− 1))2

=

wi−1∑
j=0

(lXi +
rXi − l

X
i

wi − 1
· j− lki

−
rki − l

k
i

wi − 1
· j)2

=

wi−1∑
j=0

(lXi − l
k
i

+
rXi − l

X
i − r

k
i + l

k
i

n− 1
· i)2 (15)

Let 1l = lXi − lki , 1r = rXi − rki , as shown in Fig. 4.
We then have

d_PLA(X̃i, Ỹ ki ) =
wi−1∑
j=0

(1l +
1r −1l
wi − 1

) · j2

=

wi−1∑
j=0

(1l2 + (
1r −1l
wi − 1

) · j)2

+21l
1r −1l
wi − 1

· j)

FIGURE 4. 1l and 1r .

=

wi−1∑
j=0

1l2 +
wi−1∑
j=0

(
1r −1l
wi − 1

)2 · j2

+21l
wi−1∑
j=0

1r −1l
wi − 1

· j

= n1l2+(
1r−1l
wi − 1

)2 ·
1
6
(wi−1)wi(2wi−1)

+21l
1r −1l
wi − 1

·
1
2
(wi − 1)wi

=
wi

6(wi − 1)
((2wi − 1)(1r2 +1l2)

+(2wi − 4)1r1l) (16)

We take the partial derivative of 1l and 1r respectively,

∂d_PLA(X̃i, Ỹ ki )

∂1l
= 0

∂d_PLA(X̃i, Ỹ ki )

∂1r
= 0

that is,
wi

6(wi − 1)
((2wi − 2) · 21l + (2wi − 4)1r) = 0

wi
6(wi − 1)

((2wi − 2) · 21r + (2wi − 4)1l) = 0

It can be inferred that

1l =
2− wi
2wi − 1

1r (17)

1r =
2− wi
2wi − 1

1l (18)

Combining (17) and (18), we can obtain the following
properties.
• d_PLA(X̃i, Ỹ ki ) is an upward paraboloid, as shown
in Fig. 5.

• When1l > 0, to minimize d_PLA(X̃i, Ỹ ki ), it holds that
1r < 0.

• When1l < 0, to minimize d_PLA(X̃i, Ỹ ki ), it holds that
1r > 0.

• To maximize d_PLA(X̃i, Ỹ ki ), either l
k
i or r

k
i should take

one of its corresponding boundary values.
Based on the properties above, we can obtain the linewhere

the lower or upper bound can be reached, as well as the
corresponding bound.
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FIGURE 5. d_PLA(X̃i , Ỹ k
i ).

To be specific, there exist the following nine cases.
Due to space limitations, only four of them are illustrated
in Fig. 6.
Case 1: lXi ≥ l

max
i , rXi ≥ r

max
i , as is shown in Fig. 6(a).

In this case, the lower bound is reachedwhen lki = lmaxi and
rki = rmaxi , while the upper bound is reached when lki = lmini
and rki = rmini .
Case 2: lXi ≥ lmaxi , rmaxi > rXi > rmini , as is incompletely

shown in Fig.6(b), due to the space limitations.
In this case, the lower bound is reached when lki = lmaxi

and rki = min(rmaxi , rXi +
2−wi
2wi−1

(lmaxi − lXi )). One of such
occasions is shown in Fig.6(b).

The upper bound is reached on one of the following occa-
sions: lki = lmini , rki = rmini , or lki = lmini , rki = rmaxi ,
or lki = lmaxi , rki = rmaxi , of which two are shown in Fig.6(b).
Case 3: lXi ≥ lmaxi , rXi ≤ rmini , as is incompletely shown

in Fig. 6(c), due to the space limitations.
To obtain the lower bound in this case, two occasions

require considering.

1) lXi − lmaxi ≥ rmini − rXi , then lki = lmaxi , rki =
max(rmini ,min(rmaxi , rXi +

2−wi
2wi−1

(lmaxi − lXi ))).
2) lXi − l

max
i < rmini − rXi , then l

k
i = max(lmini ,min(lmaxi ,

lXi +
2−wi
2wi−1

(rmini − rXi ))), r
k
i = rmini .

The upper bound can be reached on one of the following
occasions. lki = lmaxi , rki = rmaxi or lki = lmaxi , rki = rmini or
lki = lmini , rki = rmaxi or lki = lmin, rki = rmini .
Case 4: lmaxi > lXi > lmini , rXi ≥ r

max
i

The lower bound in this case is reached when lki =
min(lmaxi ,

lXi +
2−wi
2wi−1

(rmaxi − rXi )), r
k
i = rmaxi .

The upper bound is reached on one of the following occa-
sions: lki = lmini , rki = rmini , lki = lmaxi , rki = rmini or
lki = lmaxi , rki = rmaxi .
Case 5: lmaxi > lXi > lmini , rmaxi > rXi > rmini , as is shown

in Fig. 6(d).
The lower bound in this case is reached when lki = lXi ,

rki = rXi .
The upper bound is reached on one of the following

occasions: lki = lmini , rki = rmini , lki = lmini , rki = rmaxi ,
lki = lmaxi , rki = rmini or lki = lmaxi , rki = rmaxi .

Case 6: lmaxi > lXi > lmini , rXi ≤ r
min
i .

The lower bound in this case is reached when lki =
max(lmini , lXi +

2−wi
2wi−1

(rmini − rXi )), r
k
i = rmaxi .

The upper bound is reached on one of the following occa-
sions: lki = lmini , rki = rmini , lki = lmini , rki = rmaxi or
lki = lmaxi , rki = rmaxi .
Case 7: lXi ≤ l

min
i , rXi ≥ r

max
i .

To obtain the lower bound in this case, two occasions
require considering.

1) lmini − lXi ≥ rXi − rmini , then lki = lmini , rki =
max(rmini ,min(rmaxi , rXi +

2−wi
2wi−1

(lmini − l
X
i ))).

2) lmini −l
X
i < rXi −r

min
i , then lki = max(lmini ,min(lmaxi , lXi +

2−wi
2wi−1

(rmaxi − rXi ))), r
k
i = rmaxi .

Case 8: lXi ≤ l
min
i , rmaxi > rXi > rmini .

The lower bound in this case is reached when lki = lmini ,
rki = max(rmini , rXi +

2−wi
2wi−1

(lmini − l
X
i )).

The upper bound is reached on one of the following occa-
sions: lki = lmini , rki = rmini , lki = lmaxi , rki = rmini or
lki = lmaxi , rki = rmaxi .
Case 9: lXi ≤ l

min
i , rXi ≤ r

min
i .

The lower bound in this case is reached when lki = lmini ,
rki = rmini .

The lower bound in this case is reached when lki = lmaxi ,
rki = rmaxi .
In the nine cases above, bounds tighter than the naive

ones can be reached in all cases except Case 1 and Case 9,
making the line-based bounds a better choice for obtaining
LBd_PLAi in 11 andUBd_PLAi in 12. Combined with 13 and 14,
the bounds on set can be easily computed.

D. INCORPORATING EPLA WITH DSTree
We now demonstrate how EPLA can be fitted into DSTree
[24] index. The structure of the index and the con-
tents of each node remains mostly the same as that of
EAPCA-DSTree ( [24]), except that for the synopsis Z =
(z1, z2, . . . , zm) requires changes in accordance to EPLA,
where zi = (lmini , lmaxi , rmini , rmaxi , ssemini , ssemaxi ). Also,
the splitting strategies require adaptations to EPLA, where
in horizontal splitting, we can split by the left point, the right
point or sse. For the splitting strategy quality measure, let the
slope and intercept of the bottom line in the i-th segment be
(aboti , bboti ), and the slope and intercept of the top line in the
i-th segment be (atopi , btopi ). We have

QOS

=

m∑
i=1

ssemaxi +

ri−ri−1+1∑
j=1

((atopi − a
bot
i )j+ (btopi − b

bot
i ))2


(19)

E. EXACT SEARCH USING EPLA-DSTree
The pseudo-code of exact search using EPLA-DSTree is
illustrated in Figure.7, which is similar with the exact search
algorithm in [24]. The main different is that EPLA-DSTree
has a tighter lower bound. The main idea of the algorithm7
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FIGURE 6. An incomplete illustration of the line-based set bounds.

FIGURE 7. SearchEPLA(Q).

is that EPLA-DSTree prunes unnecessary comparisons by
utilizing a lower bound (Line 9 - Line 11). Only the leaf nodes
with a larger distance than the current lower bound are left for
comparisons (Line 12 - Line 16).When reaching a inner node,
the child node is pushed into the queue if the distance is less
than the current lower bound (Line 18 - Line 22).

F. SCALABILITY CONSIDERATION
There are two key factors for the parallelism of EPLA index
on cloud platforms. The first one is load balance and the sec-
ond one is data locality. We aim to find a data partitioning
approach to meet both the load balance and the data locality.
A simple data splitting method is to utilize hashing technolo-
gies. For high-dimensional sensor data, Locality Sensitivity
Hashing (LSH) [27] is a good choice for data splitting. The
basic idea of locality sensitive hashing is to use hash functions
that map similar objects into the same hash buckets with
high probability. LSH function families have the property that
objects that are close to each other have a higher probability
of colliding than objects that are far apart. We consider par-
allel construction of EPLA tree on MapReduce [28], which
is a popular programming model used by cloud platforms.
MapReduce was introduced by Dean et. al. in 2004. It is a
software architecture proposed by Google. The kernel idea of
MapReduce is map and reduce. In map phase, the LSH value
for each time series is calculated. The time series with the
same LSH values are grouped in a reduce function. In each
reduction function, an EPLA tree index is constructed for the
time series in an LSH bucket.

Although a parallel EPLA index is built on MapReduce,
users need not use MapReduce jobs to search for only one
query. Because the trees are stored on HDFS and a serial
program is allowed to read the files on HDFS too. If users
have a batch of queries, then parallel searching by adopt-
ing a MapReduce job is necessary. Given a query, the LSH
value is calculated first. The EPLA tree of the LSH value is
positioned and an approximate time series is found and the
corresponding distance (denoted as dis) is calculated. Notice
that the lower bound property of LSH, not all EPLA trees are
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FIGURE 8. Index size on the real data set.

necessary for the query. Only the ones with the lower bound
less than dis are needed.

G. AN EXAMPLE OF EPLA ON SENSOR DATA
We used a real data set collected in a bridge condition
monitoring system. There are more than 1000 sensors in
the system. Each sensor monitors a special condition of the
bridge. The data of the sensors are collected and treated as
time series. The length of each time series is 256, and one
million times series were collected. The total storage space is
about 3GB. The health problems of bridge can be reflected by
the time series. For example, a bombing event is represented
as a special feature in time series. By searching the special
feature (treated as a time series too), we can find all the
bombing events happening in the given period.

IV. EMPRICAL EVALUATION
In this section, we report extensive experiments to verify the
effectiveness of EPLA-DSTree.We compare both PAA-index
(using PAA as representation and R-tree as index) and
EAPCA-DSTree, iSAX2.0 with EPLA-DSTree in index effi-
ciency, approximate search error rate and pruning power.
We also showcase the lower bound tightness. All experiments
were executed on a laptop computer with an Intel Core i5
2.7GHz CPU and 64GB main memory. All experimental
results were averaged over 50 runs. The source code can be
found in [30].

A. DATA SETS AND DEFAULT SETTING
The time series in both synthetic and real data sets were
normalized with Z -normalization.

1) SYNTHETIC DATA SETS
Each of our synthetic data set is a combination of four types
of time series as follows.
• Random walk times series.
• One-segment Gaussian time series.
• Multi-segment Gaussian time series.
• A mixed sine time series.

To generate a time series, the synthetic data generator first
randomly chooses a type, and then picks the corresponding
parameters randomly to generate the time series. We
generated four synthetic data sets of time series lengths
64, 128, 256 and 512, respectively. Each data set contains
one million time series by default. We also use synthetic
data sets of up to 200 million time series in the scalability
test.

2) REAL DATA SETS
We used a real data set collected in a bridge condition
monitoring system. The length of each time series is 256,
and one million times series were collected. The total storage
space is about 3GB.

3) PARAMETERS
In an attempt to verify the effectiveness of data-adaptive and
dynamic segmentation versus global segmentation, we com-
pare EAPCA-DSTree and EPLA-DSTree with PAA-index
(implemented by ourselves) and iSAX2.0 (source code pro-
vided by the authors). Both PAA-index and iSAX2.0 use
fixed, global segmentations. To test the performance exten-
sively, we built PAA-index and iSAX2.0 with segment sizes
of 8, 12, 16 and 20 respectively. The leaf capacity threshold,
ψ , was set to 100. The FBL size for iSAX2.0 was set to
200,000. The fill factor of R-tree in PAA-index was set to 0.5.

B. INDEX SIZE
We did not implement iSAX2.0 by ourselves. Instead, we
used the implementation provided by the authors. We realize
that the the implementation details, particularly the storage
methods, in iSAX2.0 and the two types of DSTrees may
be different. To avoid any confusion, we report the abso-
lute index size for the methods we implemented but not for
iSAX2.0.

The first group of experiments compare the index space
cost of EAPCA-DSTree, EPLA-DSTree, PAA-index and
iSAX2.0 with respect to the length of time series. Specifi-
cally, we report three measurements, namely the number of
nodes in the tree, the physical index size, and the average
number of time series contained by a leaf node. The number
of nodes includes both internal and leaf nodes. Considering
the difference on data representations in the four approaches,
we also compare the physical index size for the two types of
DSTree and PAA. We use the average number of time series
in leaf nodes to evaluate the balance of the index nodes.

Since the two DSTrees use dynamic segmentation
strategies, the segment size varies in different nodes.
We report the average segment size with respect to the length
of time series, that is, the ratio of the total number of segments
in all nodes against the number of nodes.

Figure 8 shows the results on the real data set. The trends
are similar to those on the synthetic data sets. The number of
nodes of either DSTree is similar to those of iSAX2-12 and
smaller than those of iSAX2-16 and iSAX2-20. The average
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FIGURE 9. Error rate and pruning power on the synthetic data sets.

FIGURE 10. Error rate and pruning power on the real data set.

number of segments per node of EAPCA-DSTree is 8.38, that
of EPLA-DSTree being 6.03. Although the time series in the
real data set are more diverse, EPLA-DSTree can still repre-
sent the time series with a small number of segments, which
verifies the effectiveness of the dynamic splitting strategy in
EPLA-DSTree.

C. ACCURACY
We tested the effectiveness of the indexes in similarity
search, including both heuristic search and exact search. The
accuracy of heuristic search is measured by the error rate
E = |D−D|

D , where D and D are the distance between the
query time series and the exact nearest neighbor and the
heuristic search result, respectively.

For exact search, we compare the pruning power, which
is the ratio of the number of time series pruned against the
total number of time series. For both heuristic and exact
search, 100 time series were used as the queries, half of them
picked randomly from the data set, and the rest generated
randomly. Figures 9 and 10, respectively, show the results on
the synthetic and real data sets.

In Figure 9(a), although the error rate increases as the
length of time series increases for all three methods, both
DSTrees outperform the others clearly, with EPLA-DSTree
superior to EAPCA-DSTree.

The advantages of EPLA-DSTree are from two factors.
First, a tighter lower bound helps to prune more nodes.
Second and more importantly, the less split segmentations
can reduce the index build time and improve query effi-
ciency. Consequently, the heuristic search in EAPCA-DSTree
is more accurate, which gives DSTree a good starting
point in exact search. Moreover, fewer data files are vis-
ited since similar time series are clustered better into fewer
nodes.

FIGURE 11. Time series similarity comparison in nodes.

FIGURE 12. Bound tightness.

We use random walk synthetic data to evaluate the time
series similarity in the leaf nodes. The results is represented
in Fig. 11. From Fig. 11, we can conclude that the time series
in EPLA-DSTree leaf nodes is more similar that the ones in
EAPCA-DSTree leaf nodes.

D. LOWER BOUND TIGHTNESS
We test the tightness of the proposed lower bound estimation
approach. We measure the lower bound tightness by the ratio
of the estimated lower bound distance against the minimum
distance from a query to all time series indexed in a node. This
ratio is between 0 and 1, the larger, the better. We collected
this information during the processing of exact search.

E. SCALABILITY
To compare the scalability of EPLA-DSTree with
EAPCA-DSTree, we use the data generator provided by
iSAX2.0 to generate 4 data sets containing 10million, 50mil-
lion, 100 million and 200 million time series, respectively.
Each time series is of length 256. In all experiments, the leaf
capacity ψ is set to 5,000. The results of pruning power and
index building time are shown in Figure 12.

Figure 12(a) shows that EPLA-DSTree has a higher
pruning power than EAPCA-DSTree. Moreover, in all the
methods, the pruning power is larger on bigger data sets.
When a data set has more time series, the time series in each
leaf node are more similar. Consequently, more irrelevant
time series can be pruned, and fewer data files are needed
to visit to find the most similar time series.

Figure 12(b) shows that the building time of all indexes
are roughly linear to the data set size. The building time of
EPLA-DSTree is a little longer than that of EAPCA-DSTree

F. SEARCH EFFICIENCY
To compare the search efficiency of EPLA-DSTree with
EAPCA-DSTree, we used the synthetic data set of 200 mil-
lion time series of length 256 each, which is used in the
scalability test. The leaf capacity was set to 5,000. 100 time
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FIGURE 13. Search efficiency.

series were used as the queries, half of which were picked
randomly from the data set, and the rest were generated
randomly. The results are shown in Figure 13. EPLA-DSTree
has a better pruning power than EAPCA-DSTree. Since the
index size is not large (less than 100 MB), we hold the whole
index in the main memory during searching.

V. RELATED WORK
With the rapid development of Internet of Things (IoS),
sensor data and sensor applications attract more and more
attention [20]–[22], [33]. There are many research directions
concerning of IoS systems. Researchers focus on sensor data
quality, reliability of IoS systems [20], [23], [36], [37], sensor
data prediction [33] and so on. Many studies on similarity
search over time-series databases have been conducted in the
past decade. The pioneering work by Agrawal et al. [1] used
Euclidean distance as the similaritymeasure, Discrete Fourier
Transform (DFT) as the dimensionality reduction tool, and
R-tree [7] as the underlying search index. Faloutsos et al. [6]
later allowed subsequence matching and proposed the FRM
framework for indexing time series.

The subsequent work focused on two major aspects:
new dimensionality reduction techniques (assuming that
Euclidean distance is the underlying measure) and index
building techniques based on dimensionality reduction tech-
niques. Existing dimensionality reduction techniques include
SVD [8], DFT [1], DWT [4], PLA [13], PAA [10], APCA [11]
and CP [2]. These methods first reduce the dimensionality
of each time series to a lower dimensional space, and then
apply a newmetric distance function tomeasure the similarity
between any two transformed (reduced) time series. In order
to guarantee no-false-dismissals during the similarity search,
the metric distance function must satisfy the lower bounding
lemma [6].

Among all the reduction methods, SVD is accurate, but,
at the same time, costly in both time and space, since SVD
needs to calculate eigenvectors and store large matrices using
extra space. Furthermore, APCA [11] and CP [2] are the
two state-of-the-art reduction approaches. Keogh et al. [11]
indicated that APCA outperforms DFT, DWT, and PAA in
terms of the pruning power by orders of magnitude.

Approaches to building indexes can be categorized into
two types. First, the traditional multi-dimensional index
approaches, like R-tree, are used without modification [1],
[6], [10]. Second, the R-tree method is modified according
to the representation of time series [5], [11]. Since APCA
contains both mean values and right ending points in the

approximate representation, Keogh et al. [11] redefined the
MBR (Minimal Bound Rectangle) according to APCA. PLA
represents time series by disjoint lines. Each line is repre-
sented by two parameters: slope and intercept. Chen et al. [5]
proposed a new MBR definition accordingly.

Most of the previous index approaches can be split into
two phases: dimension reduction first and then building the
index. Representing time series approximately is indepen-
dent from building the index. Most recently, a new family
of index aRpproaches, iSAX [15] and iSAX 2.0 [3], were
proposed based on the representation technique, named SAX,
which is a symbolic representation for time series that allows
dimensionality reduction and indexing with a lower bounding
distance measure.

In recent years, some scalable similarity search approaches
are proposed. In [16], the authors proposed coconut, which
used bulk-loading techniques that rely on sorting the under-
lying time series. In [31], the authors proposed a distributed
approach for iSAX. In [17], [32], [34], interactive index
techniques were proposed.

VI. CONCLUSION
In sensor-cloud systems, a huge amount of data series are
collected by sensors. To process and analyze the sensor
data efficiently, we propose EPLA-DSTree, which extends
piecewise linear approximation on a DSTree index for whole
matching on time series. Compared with other time series
indexing approaches, EPLA-DSTree improves data local-
ity of index and acquires a better lower bound of nodes.
Furthermore, we proposed tighter bounds for PLA-DSTree
nodes, which is critical for similarity search efficiency.
We presented an extensive performance study on synthetic
and real data sets to verify the effectiveness and efficiency of
our new approach.
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