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ABSTRACT Textual information is ubiquitous in our lives and is becoming an important component of our
cognitive society. In the age of big data, we consistently need to traverse substantial amounts of data even
to find a little information. To quickly acquire effective information, it is necessary to implement a textual
similarity search based on an appropriate index structure to efficiently find results. In this article, we study
top-k textual similarity search and develop a tree-based indexing approach that can construct indices to
support various similarity functions. Our indexing approach clusters similar records in the same branch
offline to improve the performance of online search. Based on the index tree, we present a top-k search
algorithm with efficient pruning techniques. The experimental results demonstrate that our algorithm can
achieve higher performance and better scalability than the baseline method.

INDEX TERMS Tree-based indexing, top-k similarity search, textual similarity.

I. INTRODUCTION
Textual information exists everywhere in our lives, and it is
an important component in constructing a cognitive society.
As we live in an era characterized by dramatic, rapid change,
we consistently need to traverse a considerable amount of
data to find only a few pieces of information. Textual sim-
ilarity search retrieves a set of input strings and finds all
strings similar to the given query. For example, suppose
that we want to find publications about ‘‘Data Mining in
Relational Databases’’ from Google Scholar. The system not
only returns the records containing all five keywords but also
retrieves records with some of the keywords in the query.
Most of the results do not contain all of the keywords.

There are various applications designed based on tex-
tual similarity search. First, it can help us with informa-
tion retrieval. If we want to find a message in our e-mail
inbox, we can use only a few keywords to do so. As we
input more keywords, we can narrow the range and locate
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the correct message. Second, we can use similarity search
to integrate and enrich knowledge bases. This is important
because a given object might have different names in the
different knowledge bases. For example, ‘‘Avengers 4’’ and
‘‘Avengers: Endgame’’ are two objects in different knowledge
bases. If we use one object to find similar objects in another
knowledge base, after comparing their textual description,
it can easily be determined that these two objects represent
the same movie. We can integrate them and use both sets
of information to enrich the knowledge bases. Third, textual
similarity searches can be used for data clustering. We can
classify a given dataset into several categories based on tex-
tual similarity. For example, when we create a new ontology
in a knowledge base, it can be classified into the category
containing the ontologies most similar to it.

All of the above applications utilize specific similarity
search models. This means that their results are calculated
by a specific similarity measure. However, it is not always
clear which similarity measure is appropriate. It is necessary
to test different measures to identify the best one for the given
search task. In addition, some applications present results that
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demandmultiple similarity measures. For example, in genetic
engineering, scientists need to compare gene segments and
DNA sequences. When sequencing DNA, we need to com-
pare the orders of bases in DNA sequences, which can help
us to determine gene mutations. We can also calculate the
number of common gene segments between creatures for
biological classification. Obviously, these two tasks demand
different similarity measures. In some cases, they are sub-
tasks of the same mission (such as COVID-19 analysis).
Constructing two models for different subtasks in a single
project requires considerable time and space to design search
methods and store indices. Therefore, it is necessary to design
a unified model to support different similarity measures.

Existing approaches [1]–[4] typically ask users to specify
a threshold and return results based on a specific similarity
function. However, if users have no idea how similar the
records in the dataset are to the query, the given threshold
may not facilitate efficient search. Moreover, different simi-
larity functions, such as Jaccard similarity, cosine similarity,
Dice similarity and edit distance, have different limitations.
For instance, edit distance is a character-based similarity
that takes the string as a sorted character set. It can easily
find similar strings such as ISBN code. However, when a
user uses several keywords when querying a search engine,
because the strings contain the same keywords but are sorted
in different orders, token-based similarity functions such as
Jaccard similarity are more suitable. Therefore, considering
these situations, we study top-k textual similarity search in
this article, which utilizes a dynamic threshold based on the
number of k to find the k most similar records for the given
query.

It is worth noting that the number of records has an impor-
tant effect on search performance. To address this issue,
on the one hand, we need to devise an appropriate index
structure to store the records that is easy to search. On the
other hand, it is necessary to provide efficient pruning tech-
niques to filter records during search. Therefore, we present
a tree-based indexing approach that clusters records based on
their textual similarity, and similar records are then stored in
the same branch. Based on our indexing, we propose a top-
k similarity search algorithm to support multiple similarity
functions that find the top-k similar results when traversing
the tree. With the help of two efficient pruning techniques,
our approach is designed to improve search performance.

To summarize, the contribution of our work is as follows:
1) We formalize top-k textual similarity search and devise

a tree-based index to support it. The indexing approach
clusters similar records in the same branch offline to
improve the performance of online search.

2) Based on the tree-based index, we design a tex-
tual similarity search method to support multiple
similarity functions. To improve search efficiency,
we devise an adapted search strategy for our indexing
approach. In the search algorithm, we also implement
two pruning strategies to tighten the bound of the
dynamic threshold to further improve pruning power.

3) We implement our algorithm in several datasets and
compare it with the existing algorithm to evaluate its
performance. The experimental results show that our
algorithm can achieve high performance and good scal-
ability.

The remainder of our paper is organized as follows.We for-
mulate the problem and review existing relevant works in
Section II. In Section III, we present the indexing framework.
The search algorithm is described in Section IV. The experi-
mental results are shown in Section V. Finally, we conclude
our work in Section VI.

II. PRELIMINARIES
In this section, we formalize the definition of top-k textual
similarity search and review some relevant existing works.

A. PROBLEM DEFINITION
First, we formally define top-k textual similarity search.

Given a dataset D and a query Q, if we want to find the
top-k records from D that are the most textually similar to
Q, we need to calculate all similarity values between Q and
each record in the dataset. Then, the k records with the highest
similarity scores are selected as the results.

Next, we formalize top-k textual similarity search as
follows.
Definition 1 (Top-k Textual Similarity Search): Given a

dataset D, a query Q, a number of results k and a similarity
function, a top-k similarity search attempts to find the k
records from D that are the most similar to Q.

TABLE 1. Dataset D.

Example 1: Table 1 is a dataset with 8 records in which
each character is a token. Suppose that we use Jaccard sim-
ilarity to measure similarity. Consider a query ‘‘ACEG’’,
and we want to find the top 3 results. After calculating the
similarity score of the query and each record, we can finally
obtain the results r1, r2, and r8.

B. RELATED WORKS
1) TOKEN-BASED SIMILARITY SEARCH
In token-based similarity search, each string is considered a
set of tokens. Users find similar results after comparing the
common tokens between the token set of query and records
in the dataset. The common similarity measures of token-
based similarity include Jaccard [5], cosine [6] and Dice [7].
Recently, there have been some studies on token-based string
similarity search [4], [8]–[11] Satuluri and Parthasarathy [11]
provided a string similarity search method based on locality-
sensitive hashing. Li et al. [4] developed Flamingo, which
utilizes count and heap filters to address this problem and
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grouped strings by length, and developed different list-merge
algorithms for them to improve performance. Specifically,
Flamingo contains three algorithms: ScanCount, MergeSkip,
and DivideSkip. ScanCount is simply designed based on
array and inverted list. MergeSkip improves ScanCount and
skips the lists that cannot be results. DivideSkip is the best
algorithm in Flamingo. It first splits the token list of strings
into two groups. Then, it uses MergeSkip to generate can-
didates for the short group and checks whether IDs in the
candidates appear in the long group to generate results.
As there are no additional structures used in DivdeSkip,
the space complex isO(D) (where D is the size of the dataset).
Zhang et al. [8] provided a B+-tree-based approach for top-
k similarity search, which reorders tokens in a string by
frequency.

2) CHARACTER-BASED SIMILARITY SEARCH
In character-based similarity search, each string is consid-
ered a sequence of characters. Users calculate two records’
similarity based on the number of their common char-
acters. The most representative character-based similarity
functions are edit distance and Hamming distance [12].
In [3], [13]–[19], the researchers studied string similarity
search based on edit distance. Specifically, HSTree [20], [21]
is designed by partitioning strings into several segments
to construct a complete binary tree as an index to orga-
nize the data for searching. Lee et al. [22] improved
HSTree by connecting the inverted lists of the HSTree node
and its child nodes to speed the traversal of the index.
Wei et al. [23] provided a hash-based similarity search
approach, which assigns each string a hash lable and
identifies dissimilar bit pattens between two hash lables.
Deng et al. [19] presented a pivotal prefix-based filter algo-
rithm for string similarity search. Zhang et al. [24] studied
top-k similarity search and proposed a Bed−tree, which is a
B+-tree-based index to support edit distance by transforming
records to integers for pruning. Wang et al. [25] studied
KNN sequence search. To address this issue, they provided
a method, AppGram, that combines a frequency queue and
CA algorithm to prune KNN candidates.

Most of the existing works can only perform token-
based or character-based similarity search since the indices
they construct are based on one kind of similarity function.
However, the method we provide in this article can support
both types of search. This is because our index tree is con-
structed by the similarity of strings, not a specific similarity
function.

III. TREE-BASED INDEX
Tofind textual similarity objects frommassive datasets, based
on a given query q, we need to calculate the similarity score
between q and each record in the dataset, which is too ineffi-
cient. Thus, we always construct an index structure for the
dataset to prune as many unnecessary records as possible.
In this article, we construct a tree-based index.

To store each record in a node of the index tree, we calcu-
late the similarity among records. Therefore, records in the
same branch are similar. Based on this idea, we formalize the
definition of the index tree as follows:
Definition 2 (Index Tree): Given a fanout number f ,

the dataset is converted into an index tree T based on the
similarity among records, where

• Each node stores only one record, and
• Children of a node should share common tokens, and the
number of children is less than f .

Specifically, we classify the records based on cluster meth-
ods such as k-means and hierarchical theories. When con-
sidering a classified record set for constructing a subtree,
the record with the highest similarity score with the rest in
the cluster is selected to be stored in the root of this subtree,
and the others are stored in the branches.

To construct an index tree, suppose that we use k-means
theory and that the distance between a node and its child
is 1 − Sim, where Sim is the similarity between two nodes’
records. Given a dataset and a fanout f , we first aggregate the
dataset into f clusters and select eachmean record to build the
first-level nodes (the level of the root is 0). The other records
are partitioned into each selected node based on clusters.
If the number of records classified to a node is less than f ,
we directly store each of them in the children of this node as
leaf nodes. Otherwise, we iteratively repeat the k-means algo-
rithm to select next-level nodes until the number of remaining
records is not larger than f . Then, we store them in the leaf
nodes and terminate the cluster of this branch. Recursively,
we can divide each cluster into smaller clusters and ultimately
generate an index tree in which the root of the tree is an
empty node and each of the other nodes stores individual
records based on textual similarity. That means there is a
one-to-one correspondence between a node and a record. For
simplicity, in the remainder of the paper, a node is referred to
interchangeably with its corresponding record.

In addition to the record, we also store other parameters
in a node to speed the search, including the maximum dis-
tance dmax between the node and its descendants, the min-
imum number of tokens in children nmin and the token set
ts that contains all the tokens in the node and its descen-
dants. The algorithms utilizing these parameters are described
in Selection IV.

As the upper-level nodes in the index tree contain a large
number of tokens in their token set, we next discuss how
to store the token set in a node. Since the presence of too
many tokens in the nodes could increase space complexity,
we use hash tables and bloom filters to store these tokens.
All the tokens are sorted based on the document frequency df .
We store tokens with high df in the hash table and others
in the bloom filter. The bloom filter has a probability of
false positives, but this will not affect the correctness of our
algorithm, and this is discussed in the next section. Utilizing
these two storage structures, as the size of hash table Sh and
the space of bloom filter Sb are fixed, the size of the token set
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FIGURE 1. Tree-based index construction.

is Sh+Sb. Suppose that there are N records in the dataset and
the average size of records is Savg. Each node corresponds
to a distinct record. The space complex of the index tree is
O((Savg + Sh + Sb)× N ).
Example 2: Consider the dataset D in Table 1, where each

letter in the records represents a token. Suppose that the
fanout f=2, and we use Jaccard similarity to measure the
distance. The tree-based index structure can be constructed
as shown in Figure 1. We first aggregate the records into
two clusters. Utilizing these clusters, we can determine that
the first-layer nodes and the other records are stored in their
child nodes. In the first step, we classify records into two
clusters. ‘‘BCDF’’ and ‘‘ABCD’’ are the mean records of
the two clusters. Therefore, we store them in the first-layer
nodes of the index tree. For example, the left child node of
ROOT in Figure 1(a) contains the record ‘‘BCDF’’. When
comparing it with other records in this cluster, its maximum
distance is 0.83, and the minimum number of tokens of its
following records is 3. This information is shown in the first
line of the node. Then, all the tokens contained in these
clusters are placed in the second line. Since the structure
under this node has not been constructed, we utilize an ellipse
containing the remaining records to present the distribution of
these records. By repeating this step, we can finally construct
the index tree as shown in Figure 1(b).

As shown in the example, the index tree is constructed
based on the similarity among records. The greater the
detail with which we need to partition the dataset, the more
layers are constructed in the tree. This means that the
partition of the dataset, which is determined by f , will
influence the efficiency of traversing the tree. This is shown
in Selection IV.

Updates: For a new record r , we select a branch with the
greatest similarity to it by comparing it with the token set of
nodes; suppose this branch is rooted by node n. If it is more
similar to the token set than node n, we select it as the root,
update the parameters on it, and utilize the original record in
n for comparison with the children. Otherwise, we compare r
with children of node n. We repeat this process until visiting
a node that has no more children than the specific fanout. For
deletion, if it is not a leaf node, we select the record with
the greatest similarity among its descendants to replace the
deleted node. For a new vacancy, we repeat this selection until
the penultimate level contains specific fanouts.

In this article, all tokens have the same weight when calcu-
lating similarity, which means that we compare all tokens in a
record with those in another record in determining similarity.
Our method can also consider weighted textual similarity
for records containing multiple attributes, and the weighted
similarity of records is the weighted sum of the similarity
scores of all attributes in the records.

IV. TOP-K SIMILARITY SEARCH
In this section, we present a top-k similarity search algo-
rithm utilizing the tree-based index structure provided above.
We also design pruning conditions to resolve the challenge of
improving the efficiency of traversing the index.

A. SEARCH STRATEGY
After constructing the tree-based index structure, we next
need to discuss how to use it to find similarity records.

When traversing the index to search candidate results,
we want to visit as few nodes as possible. Therefore, our
traversing strategy is designed based on improving the best
first traversal (BFT ) method [26], which always visits the
node with the maximum weight from the priority queue.

Given a queryQ and a datasetD, first we initialize a thresh-
old τ and priority queue to store the nodes that may have
descendants as results. The items in the queue are denoted
by [n,w], where n denotes the node in the index tree and
its weight is denoted by w. We utilize the similarity between
node n and the query to measure the weight. Based on the
minimum weight in the priority queue, we use the best first
traversal to find the top-k similarity results. As we store
records in each internal and leaf node, we can use the original
BFT method to traverse. For each node n popped from the
priority queue, we access this node and compute the similarity
between the record on nodes n and Q to determine whether
it should be selected into the result set. If it is an answer,
we also need to update τ . Then, we calculate the similarity
score between its token set and query. If the score is larger
than the threshold τ , there may be a result in the descendants
of n. Therefore, we push the child of n, which has a distance
smaller than 1− τ , into the queue with its weight. Otherwise,
we prune the subtree whose root is this child. Obviously,
based on the BFT method, we can reduce the time for visiting
deeper nodes since we always visit the node with the largest
weight from the priority queue.

To improve efficiency, we also need some filter techniques
to help us further prune unnecessary nodes or branches dur-
ing traversal, in addition to utilizing the dynamic thresh-
old τ . Thus, we provide some pruning strategies in the next
subsection.

B. PRUNING STRATEGIES
The fewer branches we access, the faster we finish traversing
the index tree. Thus, it is very important to design efficient
pruning techniques to speed traversal. In this subsection,
we provide two pruning strategies for our search method.
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1) TRIANGLE INEQUALITY
If a node n has a descendant containing a record that may be
a result, it should satisfy

1− τ ≥ Dis(Q, n)+ n.dmax (1)

where τ is the threshold and Dis(∗, ∗) denotes the distance
between two records based on their similarity.

This inequality is designed based on the trilateral relation-
ship in a triangle where the sum of the distance between
the record r on node n and the query. Moreover, the dis-
tance between r and records on the descendants of n should
be larger than the shortest length 1 − τ . As the distance
between query Q and node n has already been calculated
when node n is pushed into priority queue, to satisfy this
triangle inequality, we need to calculate the distance between
n and its descendants. The max distance (dmax) has already
been stored in the node n. Therefore, we only need to estimate
whether the inequality has been satisfied.

2) TOKEN BOUND
In addition to utilizing distance among nodes for pruning,
we also design a pruning strategy based on token number.
The pruning strategy of the token bound utilizes the thresh-
old to deduce the extremum number of common tokens
shared between the query and the record that may be a
result. Since we want to use it for pruning descendants of
a node, we calculate the similarity between the query and
the token set of the node to obtain the bound of the token
number.

Suppose that we use Jaccard similarity to measure the
similarity between two records. For records A and B, their
similarity score is

J (A,B) =
X

|A| + |B| − X
(2)

where |A| and |B| denote the number of tokens in A and
B, respectively. X denotes |A

⋂
B|, the number of common

tokens shared between A and B.
Therefore, for query Q and threshold τ , if node t is a result,

it needs to satisfy

X
|Q| + |t| − X

≥ τ (3)

Since the token number of the query is confirmed, for the
subtree rooted by n, we can obtain the lower bound of token
numbers Tlb based on nmin to verify whether there may be a
result in the descendants of node n, that is,

Tlb =
⌊ τ

1+ τ
× (|Q| + n.nmin)

⌋
+ 1 (4)

Other textual similarity measures have different bounds
of token numbers. We present some token bounds of other
similarity measures in Section IV-D.

To utilize this token pruning condition, we need to count
the number of common tokens between the query and the
token set of a node. For a node n, if this number is not smaller

Algorithm 1 Top-k Search (Q,D)
Input: D: Dataset, Q: Query
Output: R: Results

1 begin
2 Initialize threshold τ ← 0;
3 Initialize a priority queue PQ = ∅;
4 Construct an index tree T ;
5 PQ← [T .root, 0]
6 while PQ is not empty do
7 n← PQ.dequeue();
8 if PRUNE(Q, n, τ ) = true then
9 Prune n;

10 Continue;

11 if R.size() < k or Sim(n.node,Q) > τ then
12 R.update(n);
13 Update τ ;

14 if n is not a leaf then
15 for child c ∈ n do
16 if PRUNE(Q, c, τ ) = false then
17 PQ.enqueue([c,Dis(c, query)]);

FIGURE 2. Top-k Search Algorithm.

than Tlb, we stop counting and treat node n as a candidate
to push it into the queue. Otherwise, we prune the subtree
rooted by n.

In our index tree, we utilize a bloom filter to store tokens
on the nodes. When we verify whether a token is in the bloom
filter and find that it is not, this token must not exist in the set.
If it is, the token may not be in the set. Therefore, utilizing
a bloom filter may not prune all the subtrees to dissatisfy
the token bound because of its probability of false positives,
and it does not prune the correct results. This means that the
bloom filter only impacts the efficiency of pruning but not the
correctness.
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FIGURE 3. An example of search process.

C. TOP-K SEARCH ALGORITHM
When combining the pruning strategies into the BTF search-
ing method, our top-k textual similarity search algorithm
based on the index tree is shown in Algorithm 1.

We first initialize the threshold and priority queue, then we
construct an index tree for the dataset (line 2 - line 4). After
constructing the index, we push [root, 0] into the priority
queue and begin traversal (line 5). For each item popped from
the queue, we use triangle inequality and token bound pruning
strategies to estimate whether this node and its descendants
may contain a result (line 8 – line 10). If not, we prune it.
Otherwise, we calculate the similarity between Q and the
record in this node to verify whether it could be a result and
update τ (line 11 – line 13). As we discuss above, the chal-
lenge of improving search efficiency is how to decrease the
number of accessed nodes. Therefore, in addition to pruning
the item popped from the queue, we also utilize the pruning
strategies before we push it. Therefore, we only add the chil-
dren of an internal node that can survive pruning strategies
into the priority queue (line 14 – line 17).
Time Complexity: As our aim is to find the top-k results,

we only access at most k leaves with the help of the priority
queue. Therefore, the time complexity of our algorithm is
based on the number of accessed nodes. In the worst case,
each leaf containing a result is in an individual path from the
root to itself. Supporting the average length of these paths is
L. We need O(kL) searches.
Example 3: Consider the index tree in Figure 1(b).

Suppose that the query is ‘‘AGEF’’ and we want to find
the top 3 similarity records based on Jaccard similarity. The
process of traversing the tree for the search query is shown
in Figure 3. In these subfigures, the nodes being grey indicates
that they have been visited or stored in the priority queue,
and the nodes that are pointed represent the node of the
current popped item from the queue. For simplicity, we use
the record to describe the node in which it is stored. After
initialization, we first pop the root. Since it does not contain

any record, next we push its children, the nodes on the first
level, with their weights into priority queue (Figure 3(a)).
Then, we pop the item with node ‘‘BCDF’’ to verify whether
it is a result and push its children that pass the two pruning
conditions into the queue. Iteratively, we can traverse all
its descendants. After the third result [CFG,0.4] is selected
into the result set, we have three results, and the threshold
is updated to 0.33. Then, we continue to pop items from
the priority queue. That is, [BCG,0.17] (Figure 3(b)). After
computation, the triangle inequality (1−0.33 ≥ 0.83+0.25)
is false. Therefore, this node and its descendants are pruned.
Then, we continue traversing the tree based on the priority
queue and finally pop the last item [ABCD, 0.14] from the
queue (Figure 3(c)). We find that it also needs to be pruned
because there is only one token ‘‘A’’ shared by the query’s
token and this node’s token set, which is less than the lower
bound lb=b0.33/1.33 ∗ (4+ 3)c + 1 = 2. Therefore, the top
3 similarity records of ‘‘AGEF’’ are ‘‘CDF’’, ‘‘CFG’’, and
‘‘BDEF’’.

D. DIFFERENT TEXTUAL SIMILARITY MEASURES
In Subsection IV-B, the textual similarity measure used for
our index structure and pruning strategies is Jaccard similar-
ity. Our method can also support other token-based textual
similarity functions, including cosine similarity and Dice
similarity. Ourmethod can be extended to support a character-
based similarity function if it can be transformed into token-
based equivalent. To support these similarity measures with
our tree-based indexing, we simply replace the similarity
measure used for classification, and this will not be given a
specific description in each case. Similar to the index struc-
ture, the triangle inequality with other similarity functions
will also not be described. In this subsection, we propose
a token pruning strategy based on several common textual
similarity measures.

Given a query Q and a subtree rooted by node t , suppose
there is a node n on this subtree and the threshold is τ .
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We attempt to determine whether n should be pruned by
the token-bound pruning strategy based on the threshold.
Therefore, the pruning condition for the token number based
on different textual similarity functions is shown as follows:

1) COSINE SIMILARITY
For cosine similarity COS(r, s) = |r|∩|s|

√
|r×s|

. Suppose that there
are X common tokens shared between Q and the string on
node t . If there is a result on the subtree rooted by t , we need
to satisfy

X
√
|Q| × |t|

≥ τ (5)

Based on Equation 5, we can generate the minimum token
number to make n contain a result on its descendant, that is,

Tlb =
⌊
τ ×

√
|Q| × n.nmin

⌋
+ 1 (6)

2) DICE SIMILARITY
Similar to Jaccard similarity, given two strings r and s, their
Dice similarity score is DICE(r, s) = 2×|r∩s|

|r|+|s| . We use X to
denote the number of common tokens shared by Q and the
record on t . Thus, to make node n pass the pruning condition,
the similarity score should be larger than τ . Then, we have

2× X
|Q| + |t|

≥ τ (7)

Therefore, the lower bound of the common token number
of node n is

Tlb =
⌊τ
2
× (|Q| × n.nmin)

⌋
+ 1 (8)

3) EDIT DISTANCE
Since the edit distance between two strings is the minimum
number of token edit operations (i.e., to calculate the edit
distance of strings, we need to consider themaximum number
of tokens on which there are no edit operations between two
strings. For example, consider two strings ‘‘ This book is
good’’ and ‘‘This is a good book’’; there are 3 common tokens
between them, which are ‘‘This’’, ‘‘is’’ and ‘‘good’’. There-
fore, the edit distance of two strings s and r is ED(s, r) =
max(|r|−ncrs , |s|−ncrs ), where ncrs is the maximum number
of tokens without an edit operation.

If there is an answer contained in node t under n, it must
satisfy

max(|Q| − nc, |t| − nc) < τ (9)

where nc denotes the maximum common token numbers
of Q and t .
As we can see, this inequality depends on the size of

|Q| and |t|. Thus, to implement this token pruning strategy,
we also need to store nmax, the token number of the longest
string. Based on these two parameters, we can generate the
upper bound for pruning, that is,

Tub = max(Mmin − τ,Mmax − τ ) (10)

where Mmin is the largest token number between Q and nmin
and Mmax is that of Q and nmax.

V. EXPERIMENT
In this section, we first introduce the datasets and experimen-
tal settings. Then, we present the experimental results and
analysis of comparative performance.

A. EXPERIMENTAL SETUP
1) DATASETS
To evaluate our algorithm, we utilize three datasets:

1) DBLP : This is a real dataset that contains more than
one million publications, including the title, authors
and provenance. We integrated these three attributes of
a publication into one record as all the keywords in a
record having the same weight.

2) IMDB : This dataset contains records of films and TV
series from IMDB. Records in this dataset consist of
title, producer, year and category.

3) PubMed : Each record in this dataset is a title obtained
from a medical publication.

All three datasets have different lengths of records. We could
utilize them to evaluate the performance of our method for
different kinds of data. The details of these three datasets are
shown in Table 2.

TABLE 2. Datasets.

2) BASELINE METHOD
To prove the efficiency of our algorithm, we select
Flamingo [4] as the comparative experiment. As we discuss
in Section II-B, Flamingo can support multiple similarity
functions since its index structures are not designed based
on specific similarity functions. Therefore, we select Dev-
ideSkip, the best Flamingo algorithm, as the baseline method
in our experiment.

In the experiments, we employ Flamingo [4] as the baseline
method. This is because the motivation of this work is to
provide a method for multiple similarity measures. Some
recent works can very efficiently support the similarity search
problem. However, this work constructs an index or provides
a search strategy based on only one particular similarity
function. If we want them to support other similarity func-
tions, we need to change the basic framework of these works.
To the best of our knowledge, only Flamingo can support
multiple similarity measures. Therefore, we only select it for
comparison.

3) EVALUATION METRICS
All the algorithmswere implemented in Java. All experiments
were run on a Linux 10.0.4machinewith an Intel Xeon E5420
2.50 GHz CPU and 15 GB memory.

Due to space constraints, we only demonstrate the experi-
mental results utilizing Jaccard similarity and edit distance.
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TABLE 3. Top 10 results of ’‘‘Object SQL - A Language for the Design and Implementation of Object Databases. Modern Database Systems1995’’.

FIGURE 4. Evaluating fanout in tree-based algorithm.

The algorithms based on other similarity functions yield
similar results.

B. EVALUATING QUALITY
In this subsection, we evaluate the quality of our algorithm.
We randomly select a record ‘‘Object SQL - A Language for
the Design and Implementation of Object Databases. Modern
Database Systems 1995’’ as a query and use our tree-based
similarity searching algorithm to find the top 10 results based
on Jaccard similarity. The result is shown in Table 3. We also
evaluate the quality of Flamingo, and its results are the same
as ours. The experimental results show that our method can
effectively find similarity results from the database to answer
the query.

C. EVALUATING FANOUT
In this subsection, we evaluate the influence of fanout on
top-6 similarity searching by varying the number of fanouts
in the index tree. We evaluate the influence of fanout on four
types of search methods: no pruning strategies, only trian-
gle inequality pruning, only token-bound pruning and using
both pruning strategies. The results are shown in Figure 4.
As we can see, the method Index_tree achieved the highest
performance and used both pruning strategies. The algo-
rithms using only one strategy are better than those with-
out pruning strategies. No_prune has nearly no effect on
the elapsed time because this algorithm only uses a priority

queue to verify whether a record would be a result, which
makes the method always need to visit leaves for verification.
In addition, the change rule of elapsed time was parabolic
in each dataset, which means that from the smallest fanout,
the time decreased as fanout was added and after the peak
was reached, the increase in fanout increased the time. This
is because the number of fanouts directly influences the
number of levels and leaves in a tree. The greater the num-
ber of fanouts is, the fewer layers and the more leaves
are generated in the tree. For example, in Figure 4(a), for
200 fanouts, the index tree had 6 levels, and the elapsed
times of No_prune, Triangle, Token and Index_tree were
1.72 s, 0.63 s, 0.31 s and 0.16 s, respectively. Algorithms with
400 fanouts traverse the tree with 4 levels and take 1.71 s,
0.34 s, 0.11 s, and 0.04 s, respectively. Therefore, to make
our algorithm achieve high performance, we need to select
an appropriate fanout to balance the layer and number of leaf
nodes.

D. EVALUATING PRUNING TECHNIQUES
We evaluate the performance of pruning strategies in this sub-
section by considering different fanouts. Figure 5 shows the
experimental results of the top-5 similarity search. Note that
the average number of subtrees pruned by the token pruning
strategy was calculated as the subtrees pruned after inequal-
ity pruning. Triangle inequality and token pruning clearly
achieved efficient performance. This is because while both of
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FIGURE 5. Evaluating pruning conditions in search.

FIGURE 6. Comparison with the existing approach for Jaccard similarity.

FIGURE 7. Comparison with the existing approach for edit distance.

them are threshold-based pruning techniques, the inequality
utilizes the similarity score while token pruning uses the
token set on the node. Moreover, as our index structure is
constructed based on clusters with similarity scores, it is not
a balance tree. Therefore, the number of pruned subtrees
depends on the location of the results.

E. COMPARISON WITH EXISTING WORK
In this subsection, we compare our algorithmwith an existing
method, Flamingo [4], which also supports multiple tex-
tual similarity measures, and we transform it to support the
top-k search problem. The time complex of Flamingo is
O(Slavgs + ncL), where lavgs denotes the average length of
the inverted list in the short group, nc denotes the number of
candidates, and S and L denote the number of inverted lists
in the short group and long group, respectively.

In the experiments, we evaluated the performance of two
algorithms by varying the results number k to support Jaccard

similarity and edit distance, which are two representative sim-
ilarity measures in token-based and character-based similar-
ity measures, respectively. In the evaluations, our algorithm
used 400 fanouts, and both pruning techniqueswere used. The
results of comparing our algorithm and Flamingo are shown
in Figures 6 and 7.

From these figures, we can see that our algorithm out-
performed Flamingo on both similarity measures. This is
because although both algorithms utilize the bound of the
token number for pruning, our algorithm also uses the triangle
inequality as a pruning strategy, and this could not be imple-
mented on Flamingo because its index structure is constructed
with an inverted list. The number of candidates generated in
Flamingo increases with k since the bound becomes lost. This
does not occur in our algorithm, as the power of our pruning
techniques increases with k . Therefore, our algorithm is more
efficient than Flamingo for top-k searching. For example,
in Figure 3(a), it took 122.3 ms to search the top 5 results
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FIGURE 8. Scalability of algorithms.

utilizing Flamingo on DBLP, while our algorithm required
only 50.3 ms to finish finding the results.

F. SCALABILITY
We vary the number of records in the dataset to evaluate the
scalability of our algorithm. Figure 8 shows the results for
different k values. In the experiments, we set fanout=400.
The results show that the elapsed time of our algorithm
scaled very well for each value of k. The elapsed times
grew steadily when increasing the size of the dataset. For
example, on PubMed (Figure 8(c)), for k=10, the elapsed
time of our tree-based algorithm was 63.2 milliseconds for
600 thousand records. In addition, searching in one million
records, it took 85.3 milliseconds. This is because for each
number of records, our pruning technique can always effec-
tively prune a large number of unnecessary nodes based on
our index structure. With the increase in records, our algo-
rithm can prune more subtrees in the index tree to accelerate
search processing.

G. DISCUSSION
In general, we observe that our tree-based similarity search
algorithm provides better results than Flamingo in all exper-
iments and all databases. We also obtain the following
observations:

1) The index tree we construct for searching can effi-
ciently organize data for searching. The fanout of the
index tree influences the power of pruning. The pruning
power grows as the fanout increases and falls after a
particular number. For the databases we used in the
experiments, this number is approximately 400.

2) Our algorithm can address the top-k similarity search
problem well on both types of similarity measures.
From the experimental results, we can see that the
elapsed time increases linearly in the value of k . This is
because our pruning strategies are designed based on k .
Therefore, the pruning power will grow with k , regard-
less of what similarity measure is used for searching.

VI. CONCLUSION AND FUTURE WORK
In this article, we studied the top-k textual similarity search
problem. We first provide a tree-based indexing approach
that constructs indexing based on the textual similarity

among records. By utilizing the index tree, we present a
search algorithm with two efficient pruning techniques to
address the issue. Both techniques can filter the number of
nodes to improve pruning. We also introduce how to sup-
port multiple similarity measures with our algorithm. The
experimental results show that our algorithm is scalable and
significantly outperforms the baseline approach. In future
research, we will study the top-k similarity join based on
the index tree and attempt to present more efficient pruning
techniques to improve performance. Moreover, we seek to
leverage crowdsourcing techniques [27]–[32] to search enti-
ties that are difficult to identify by machine.
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