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ABSTRACT Immunohistochemistry (IHC) plays an important role in evaluating the status of ER, PR, Ki-
67 and human epidermal growth factor receptor 2 (HER-2) during diagnosis of breast cancer. Although some
existing automated approaches can solve the high time-consumption and inter-/intra-observer variability
drawbacks to a certain extent, most of them are can’t analyze both nuclear staining and cell membrane
staining using the same method. This is attributed to the difference in localization of the positive signal of
immunohistochemical staining in different biological markers. The present study proposes a novel automated
image analysis model for scoring and grading of ER, PR, Ki-67 and HER-2 immunohistochemical images
based on whole tissue sections in breast cancer. The scoring results of the trained model and manual
interpretation of ER, PR, Ki-67 and HER-2 were then finally analyzed and compared. Experimental results
show that the F1-measure was 0.8450, 0.8533 and 0.7962 for nuclear recognition of Ki-67, ER/PR and
HER-2 respectively. For stain grading of Ki-67, ER/PR and HER-2, the F1-measure was 0.9776, 0.8306 and
0.9573 respectively. The scoring consistency of ER/PR, Ki-67 and HER-2 between our model and expert
interpretation was 0.9279, 0.9712 and 0.8046 respectively. Our results demonstrate that artificial intelligence
technology is a feasible and accurate method for accurate quantitative immunohistochemical analysis that
can solve the drawbacks of low repeatability and time consumption brought by manual counting. The main
contribution of our proposed model is that it can recognize both nuclear staining and cell membrane staining
and grade the staining intensity as a sequential learning task.

INDEX TERMS Automatic analysis, breast carcinoma, deep learning, Er, Her-2, immunohistochemistry,
Ki-67, Pr.

I. INTRODUCTION
Breast cancer is the most common malignant tumor that
harms women’s health. Its occurrence even in the younger
women has steadily increased in recent years [1]. There were
more than 266,000 new cases of breast cancer in women in
the United States in 2018. This accounted for 30% of all
malignant tumors in women. It also significantly exceeded
lung cancer (13%) which came second [1]. In the 2015 Chi-
nese malignant tumor statistics, breast cancer ranked first in
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women with new malignant tumors (15%). It has become
the leading cause of death in women under 45 years old [2].
ER, PR, Ki-67 and human epidermal growth factor receptor 2
(HER-2) proteins are themain biological indicators that guide
the diagnosis, molecular classification, treatment plan and
prognosis evaluation of breast cancer [3], [4]. The expression
of these biomarkers is commonly assessed by immunohis-
tochemical (IHC) staining. However, this traditional scoring
method is strongly dependent on the expertise and experience
of histopathologists, it also has the disadvantages of being
time-consuming and non-replicable in practice. Cognizant
to this, these common problems remain a challenge for the
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pathologists to provide an accurate scoring for ER, PR,
Ki-67 and HER-2 in breast cancer.

Modern artificial intelligence methods such as deep learn-
ing supplement pathologists’ expertise in ensuring constant
diagnostic accuracy. In recent years, increasing models have
been developed for ER, PR, Ki-67 and HER-2 assisted
computer automated analysis to overcome the major hin-
drances for evaluating the positive score in lung cancer, pan-
creatic cancer, gastroesophageal cancer, breast cancer, and
other tumors [5]–[7]. Different deep learning networks and
algorithms have been used for detection, segmentation and
classification of cell membranes and nuclei from ER, PR,
Ki-67 and HER-2 IHC images in breast cancer, this has
yielded models such as HER-2Net deep learning network,
Gamma mixture model and HscoreNet deep neural network
structure among others [8]–[10]. Although most of those
models have achieved good detection results, there are still
some problems in practical applications. Saha et al. (2018)
proposed a deep neural network structure named HER-2Net,
which estimates the expression level of HER-2 by semantic
segmentation of cell membranes and nuclei in pathological
images of breast cancer tissues based on pixel classifica-
tion of the entire visual field [8]. But this method does not
follow the HER-2 immunohistochemical analysis guidelines
which requires to show the membrane staining status of each
cell [8]. Some methods for scoring of ER an PR, for exam-
ple, the HscoreNet deep neural network structure, does not
completely segments unevenly colored nuclei of ER and PR.
What’s more, this model requires labeling of the edges of the
entire cell, which is extremely time-consuming [10]. From the
reported research we can get, it is almost impossible to ana-
lyze both the nuclear staining and the cell membrane staining
within the same pipeline with the help of the most existing
automated approaches, because the localization of the pos-
itive signal of immunohistochemical staining is different in
different biological markers [11], [12]. That means different
models are required to analyze different biomarkers at the
same time. In view of the above reasons, an effective model
that can solve the problem of accurate immunoassay under
different staining modes with the premise of less labeling
is needed. Visual saliency detection methods in quantitative
analysis of pathological immunity can be applied to many
different tasks. Cognizant to this, the fully convolutional net-
works was chosen as the nuclear detection backbone network
in this study, and the DenseNet was used as the backbone net-
work of the intensity classification model to recognize both
nuclear and cell membrane staining results. The effectiveness
of the pipeline was then verified via immunohistochemical
staining of Ki-67, ER, PR and HER-2 in breast cancer tumor.

II. MATERIALS AND METHODS
A. CASE SELECTION
500 patients diagnosed with breast cancer who underwent
surgery in 2017 or 2018 at West China Hospital of Sichuan
University were selected for this study. All patients were
pathologically diagnosed with invasive breast cancer by two

senior pathologists, excluding those that received chemother-
apy, radiotherapy, hormone therapy or immunotherapy before
surgery. Collect paraffin samples from all patients for ER,
PR, Ki-67 and HER-2 immunohistochemical staining. The
dataset included Haematoxylin & Eosin (H&E), ER, PR,
Ki-67 and HER-2 stained slides.
B. IMMUNOHISTOCHEMISTRY AND SLIDES COLLATION
For immunohistochemical staining of ER, PR, Ki-67 and
HER-2, 4 um sections were freshly cut from the respective
representative paraffin blocks and transferred onto slides. The
slides were then incubated on a 600◦C hotplate for 10 min-
utes. The sections were then deparaffinized and rehydrated
using xylene and graded alcohol. They were then stained
using ER (clone SP1), PR (clone SP2), HER-2 (clone 4B5)
and Ki-67 (clone MIB1) antibodies. Staining patterns were
visualized by diaminobezidin (DAB) and counterstained with
Mayer’s hematoxylin. Appropriate positive and negative con-
trols were included. Slides with objective reasons such as
uneven staining and incomplete sections were not included
in the study. Finally, only 215 cases with 1075 immunohisto-
chemistry slides were collated.
C. IMAGE ACQUISITION
All the 1075 sections were collated into a complete digital
scanning section Whole Slide Images (WSI) using a digital
section scanner (Unic PRECICE600) set at a magnification
of X40.
D. MANUAL ASSESSMENT
ER/PR positive has been defined as ≥1% labelled inva-
sive tumor cells regardless of the staining intensity based
on the 2010 ASCO/CAP (The American Society of Clin-
ical Oncology and the College of American Pathologists)
guidelines [13]. For Ki-67, manual counting of the positive
tumor cells in the three high power fields (HPFs) and cal-
culation of the average percentage of positive tumor cells
was done [14], [15]. On the other hand, positive signal
localized on the cell membrane were detected for HER-2.
HER-2 scoring was done based on the 2018 ASCO/CAP
guidelines: HER-2 cases with a score of 0 or 1+ were clas-
sified as negative, those with a score of 3+ were classified
as positive while those with a score of 2+ were classified as
equivocal. The latter were further assessed by fluorescence
in-situ hybridization (FISH) to test for gene amplification
(A summary of guidelines for HER-2 IHC scoring criteria is
shown in Table 1) [16].
III. MACHINE LEARNING ARCHITECTURES
A. DATA PREPARATION
35 cases of each marker were randomly selected and used
as the experimental data. 158 fields of view for Ki-67,
40 fields of view for ER/PR and 47 fields of view for
HER-2 under the X40magnification were selected to train the
nuclear detection model. Each field of vision contained pos-
itive and negative cells in different ratios. Different staining
results for each marker were first classified before labeling.
HER-2 staining results were divided into three categories
according to the guidelines. Cells with strong, complete and
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TABLE 1. Recommended HER-2 scoring criteria for IHC stained breast cancer tissue slides according to 2018 ASCO/CAP guidelines.

FIGURE 1. Images of differently stained sections and their corresponding labeled masks.

uniform cell membrane staining were defined as category 3.
Those with weak to medium intensity and with intact cell
membrane staining were defined as category 2, while those
with incomplete of no staining and with weak cell mem-
brane staining were defined as category 1. Similarly, ER/PR
staining results were divided into four categories: cells with
dark brown and uniform cell nuclei staining were defined as
category 4, those with medium intensity cell nuclei staining
were defined as category 3, those with blue and light blue
mixed with light brown cell nuclei staining were defined as
category 2 while those with pure blue and light blue cell
nuclei staining were defined as category 1. Ki-67 staining
results were divided into two categories: cells with brown
nuclei or no defined staining intensity were defined as cat-
egory 2, while those with pure blue and light blue cell nuclei
staining were defined as category 1. Different categories with
labeled using different colors for each marker (Fig.1)

Each square field of view had a side length of 1600 pixels.
After the data was marked by the pathologists, it was equally
divided into four small images. The top left and bottom right
images were used as the training data, the upper right image

was used as the validation data while the lower left image was
used as the test data. 119 training sets (72 fields for Ki-67,
20 fields for ER/PR and 27 fields for HER-2) of WSI were
used to fit the parameters of the model while 58 verification
sets (38 fields for Ki-67, 10 fields for ER/PR and 10 fields for
HER-2) ofWSI were used to tune the model hyperparameters
during the training procedures. Another 58 sets (38 fields for
Ki-67, 10 fields for ER/PR and 10 fields for HER-2) were
selected for testing (Table 2).

A bounding box was drawn on 2000 nuclei whose average
cell short axis length was found to be 22 pixels after cal-
culations. A 22∗22 matrix block that satisfies the gaussian
distribution was first generated. A matrix block with a side
length of 822 pixels was then generated and a Gaussian
distribution small matrix block then inserted into the mask
map with the center point coordinates of the cell. How-
ever, the newly inserted matrix block interfered with the
matrix block inserted later because of cells overlap. Cog-
nizant to this, a maximum pooling process of the block to
be inserted and the mask matrix was done prior to insertion.
The 800∗800 block corresponding to the original image from
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TABLE 2. Selection and establishment of data sets of each marker.

FIGURE 2. Ground truth preparation for nuclear center point detection
training data.

the mask map was then taken out once the insertion was
complete. 0.5 was finally used as the threshold to generate
the mask of the equivalent kernel representation (Fig. 2).

B. UNIVERSAL IMMUNOHISTOCHEMICAL AUTOMATIC
DETECTION MODEL
Saliency detection is a type of algorithm in computer vision.
The goal is to identify more prominent objects from the
background. Unlike traditional machine learning algorithms
that require manual design of feature extraction operators,
models based on deep learning can automatically learn fea-
ture expressions in specific tasks [17]. Ki-67, ER and PR
were nuclear stained in quantitative immunoassay. Nuclear
detection and classification are typical target detection tasks.
Since the workload of rectangular box labeling is too large,
we define the nuclear detection as a saliency detection task.

Traditional saliency detection algorithms are design fea-
ture descriptors that rely heavily on prior knowledge of the
data. The problem arise from the non-uniform definite degree
of accuracy used in the nuclear and membrane antigen stain-
ing. However, this problem does not exist when the deep
learning method is introduced. In this method, the kernel of

the convolutional neural network is usually set to 3∗3. The
receptive field accumulated by the multi-layer deep convo-
lutional neural network then extract the cell membrane and
cytoplasm staining results to make decisions.

Visual saliency detection methods in quantitative analysis
of pathological immunity can be applied to many different
tasks. Cognizant to this, the fully convolutional networks was
chosen as the backbone network in this study. It was the
first model to propose segmentation using full convolutional
neural networks.

Fully convolutional networks (FCN) and its variants have
lot of successful applications in semantic image segmen-
tation. The basic idea of FCN is to replace dense layers
with convolutional layers. This makes the size of the model
output to be consistent with the size of the input [18]. The
results predicted by the model represent the same shape using
ground truth training models of different sizes and shapes.
This demonstrate that the FCN has a very strong charac-
terization learning ability. Kainz et al. (2015) found that
there are multiple extreme points in the model trained using
equivalent kernels to characterize the nucleus. The two real
points are easily merged using a post-processing algorithm
that combines the multiple extreme points, which may result
in missing the detection of the nucleus [19]. The nucleus has a
small proportion in the field of view. As such, if a small kernel
is used to characterize the nucleus, training the FCN leads
to missed detection. At the same time, using larger kernel
can cause overlap problems especially in areas with serious
atypical nuclei. Both Janowczyk [20] and Xing [21] used the
equivalent kernels as Ground Truth in the experiment, but
they both took the detection task as a segmentation problem
to train the model, that is, each pixel was classified into the
foreground and background. While, we regard it as a regres-
sion problem, that is, using mean square error (MSE) as a loss
function to return the probability that each pixel belongs to the
foreground. If solved as a classification problem, the output
of the network is N∗M∗2 and the two values corresponding
to each pixel are the probabilities that the pixel belongs to
each category. As Fig. 3, a sparse softmax cross entropy
with logits is chosen as the loss function of training. When
the problem is solved as a regression problem, the output
of the model has only one channel. The MSE is thus used as
the loss function. As provided in Equation (1), where M and
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FIGURE 3. An illustration of the cell detection network architecture.

N are the image width and height for each calculation error,
j and k represent the pixel position, where xj,k represents the
value of the ground truth of the pixel, and x ′j,k represents
the predicted value of the pixel. The convergence rate of
regression has been found to be significantly higher than that
of classification based on experiments.

MSE =
1
MN

M∑
j=1

N∑
k=1

(
xj,k − x ′j,k

)2
(1)

Compared with the Faster R-CNN method of end-to-
end regression targets that directly circumscribed rectangles
and category classification [22], the regression probability
map (PMap) method can only return the probability of the
entire image belongs to the target [23]. So, it is necessary to
use a post-processing algorithm to calculate the center point
of the nucleus.

The probability map predicted using the equivalent nucleus
as Ground Truth algorithm have multiple local maxima in
the cell region. Moreover, it is not appropriate to use the
find peaks algorithm to determine the center point of the
nucleus. Cognizant to this, the morphological open operation
is used to remove the noise after threshold segmentation of
the probability map.

The connected component refers to an image area com-
posed of foreground pixels having the same pixel value and
adjacent positions in the image. Connected area analysis
refers to finding and marking each connected area in an
image and then further calculating the coordinates of the
center point and other attributes. The output of the network
is accompanied by a large amount of noise. However, a large
amount of salt and pepper noise can be removed through the
designed post-processing algorithm (Fig. 4).

The intensity of tumor cell immunohistochemical staining
is determined by analyzing the Red, Green, Blue (RGB)

values of the image. However, this method requires a seg-
mentation algorithm to segment the area where the cell
nucleus or cell membrane is located from the image. When
non-deep learning methods are used in some staining or
in cases of unevenness, segmentation fails resulting to fail-
ure of the intensity grading algorithm. On the other hand,
when deep learning-based segmentation algorithm is used,
the edge data of the segmentation target needs to be labeled
for training. However, the labeling method used is time-
consuming. Despite this, the classification algorithm based
on deep learning can automatically extract the features of the
cells to be classified for learning. Moreover, the model can
automatically obtain the features of the data to be classified
for classification under the training of differently labeled
data. Herein, DenseNet was chosen as the backbone network
for the classificationmodel [24]. The cells were cropped from
the image into small fields of view and then resized to a
fixed size based on the detected cell nuclear center points.
The fields of view were then fed into the classification model
(Fig. 5).

The performance of a model is evaluated from the perspec-
tive of nuclear detection and positive grading. The positive
classification task is defined as a multi-class classification
problem. The confusion matrix is first solved and then the
model precision and f1 measure calculated. The detection
task is then defined as a nuclear center point detection prob-
lem. The input of the task is an image while the output are the
coordinates of the center point of all the nuclei on the image.
The Hungarian algorithm is then used to match each detected
nuclear center point with a manual annotation for each image.
Recall, precision and f1-measure are then calculated using
formula (2), (3) & (4) respectively.

precision =
TP

TP+ FP
(2)
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FIGURE 4. The output and post-processing results of HER-2 stained sections by this model.

FIGURE 5. The input and output of DenseNe network [24]. The input is the patch where each cell is located, the output is the
corresponding category, and DenseNet is the backbone network of the hierarchical model.

recall =
TP

TP+ FN
(3)

f1measure =
2TP

2TP+ FP+ FN
(4)

where TP refers to all points that match the manual anno-
tation, FP refers to a point that does not match the manual
annotation and FN refers to the residual point in the manual
annotation that does not match the prediction result.

The model was implemented in python using a system
for large-scale machine learning: TensorFlow. It was trained
with the Adam algorithm at a learning rate of 0.0001and
evaluated on a machine with an Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz CPU, and an NVIDIA GTX1080Ti
GPU. All the images were processed to RGB channels while
the ground truth was given as a set of coordinates of dot
annotations (one dot near cell centroid). 512× 512× 3 image
patches were randomly cropped and used as the training data
to prevent over-fitting. Moreover, a threshold of 0.5 was set
during the processing of the feature map using threshold seg-
mentation. 5 pixels were used as the structural element size
to process noise using median filtering and morphological

open operation. The maximum hit distance was set at 11 pix-
els to calculate the performance of the Hungarian algorithm.

IV. RESULTS ANALYSIS
A. NUCLEAR DETECTION
The prediction results of the model used in nuclear detec-
tion are shown in figure 6. The center point (nucleus) of
most tumor cells were detected by the model. The F1-scores
reached 0.8450, 0.8553 and 0.7962 for the different staining
scenes of Ki-67, ER/PR and HER-2 respectively (Table 3).
The F1-scores of the nuclear staining were higher compared
to those of cell membrane staining. As the training pro-
gressed, the model could converge in less than 20 epochs
under different staining scenarios of Ki-67, ER/PR and
HER-2 (Fig. 7).

B. CELL STAINING CLASSIFICATION
The classification results after nuclear detection are shown
in Fig. 6 (a’)-(e’). For HER-2, the blue center points repre-
sent a negative result, the orange center points represent for
category 2 (scoring 2+), and the red center points represent
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FIGURE 6. The nuclear detection and classification results of the proposed approach in the three different scenarios of HER-2,
Ki-67 and ER/PR.

FIGURE 7. The performance of nuclear detection and classification
results of the proposed approach in the three different scenarios of
HER-2, Ki-67 and ER/PR.

TABLE 3. The prediction results of our model in nuclear detection.

for category 3 (scoring 3+); For Ki-67, the red center points
represent for category 2 (positive result), and the blue center
points represent for category 1 (negative result); For ER/PR,
the red center points represent for category 4, the purple cen-
ter points represent for category 3, the orange center points
represent for category 2, and the blue center points represent
for category 1. The F1-score of Ki-67 negative and positive
cell classification was the highest at 0.9776. It was followed
by the F1-score of HER-2 1+, 2+ and 3+ three-class classifi-
cation at 0.9573 while that of the four intensity classifications
of ER/PR was the lowest at 0.8306. These differences were
attributed to the fuzzy classification of the model between 1+
and 2+ (see the results in Table 4).

C. CORRELATION BETWEEN MODEL’S AUTOMATIC
SCORING AND EXPERT ANALYSIS IN Ki-67, ER/PR AND
HER-2 IMMUNOHISTOCHEMICAL STAINING SCENARIOS
The correlation between the model’s automatic score and
the pathologists score under different immunohistochemical
staining scenarios was studied to further optimize the model.
200 stained sections of Ki-67, ER/PR and HER-2 were ran-
domly selected for these comparative studies. The correlation
coefficients of the model’s automatic score and experts score
were 0.9279, 0.9712, and 0.8046 for Ki-67, ER/PR and HER-
2 respectively. Scatter plots of the model interpretation results
and expert interpretation results in different staining scenarios
were then plotted to analyze these results more intuitively
(Fig.8a-c). The red dots indicated that the absolute errors
between the model interpretation and expert interpretation
were greater than 10% and 20% respectively. The interpre-
tation of Ki-67 and ER/PR immunohistochemical staining
models was positively correlated with that of the experts.
However, there were differences in IHC staining models and
expert interpretation in HER-2. Expert interpretation only
gave three types of results: negative (0/1 +), uncertain (2+)
and positive (3+). On the other hand, themodel calculated the
proportion of various types of cells and then multiplied them
by the various scores [1], [3]. This gave the output as a con-
tinuous result as opposed to definite results. The continuity
results were further plotted in a scatter plot (Figure 8c). The
green points indicated that the absolute value of error between
the expert reading and the model interpretation was less than
0.5 while the yellow and red points indicated that the absolute
error value was greater than 0.5 and 1 respectively.

V. DISCUSSION
Automated analysis of pathology images has been in use
for more than 20 years [25]. Unlike traditional machine
learning algorithms that require manual design of feature
extraction operators, deep learning-based models can learn
feature expressions automatically in specific tasks [26]. Deep
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TABLE 4. The Precision, Recall and F1-score of the classification results after nuclear detection by the model in the three different scenarios of HER-2,
ER/PR and Ki-67.

FIGURE 8. Correlation between model’s automatic scoring and expert analysis in Ki-67, ER/PR and HER-2 immunohistochemical
staining scenarios.

learning-based model was used in a multi-center study of
multiple immune markers for breast cancer. This study
included 8267 breast cancer patients thusmaking it the largest
research done using this model [27]. In that study, a single
tuned algorithm was used to score nuclear (ER, PR), mem-
branous (HER-2, EGFR) and cytoplasmic (CK5/6) markers
in tumor cells using the Ariol system based on tissue microar-
rays (TMA) [27]. For ER, PR and HER-2, the scores were
lower than previously reported. This was attributed to the
greater variability in TMA preparation in relation to speci-
men sources compared with whole tissues. Herein, a small
large-scale evaluation of the performance of automated image
analysis in scoring of breast carcinoma biomarkers based on
whole tissue sections was done. This better reflected the real
situation of tumor cells. The fully convolutional networks
was chosen as the nuclear detection backbone network in this
study, and the DenseNet was used as the backbone network
of the classification model to recognize both nuclear and cell
membrane staining results. The validity of the method was
first verified on the Ki-67, ER and PR scenes of nuclear
staining and then extended to the HER-2 scene of membrane

staining. The saliency detection method could also locate
the center point (nucleus) of tumor cells with HER-2 stain-
ing. Further post-processing and use of classification models
achieved accurate analysis at the cell level. Compared with
some existing methods that directly grade fixed-size visual
fields or segment cell membranes, this method strictly fol-
lows the guidelines for quantitative analysis at the cell level.
Moreover, the results of the model were positively correlated
(0.8046) with those of expert’s interpretation.

Immunohistochemical staining positive signals of ER and
PR are located in the nucleus, results of immunohistochem-
istry are scored based on two important factors: staining
intensity and percentage [4], [28]. Positive immunohisto-
chemical staining of Ki-67 is also detected in the nucleus, and
it regulates cell cycle as it is expressed at varying levels across
G1, S, G2, and M phases. Numerous studies have shown that
the combination of Ki-67, ER, PR and other tumor molec-
ular markers provide better prognosis prediction for breast
cancer and can guide the application of adjuvant treatment
after tumor surgery [15], [29]–[31]. Up to nowadays, there
are several machine learning approaches have been reported

108448 VOLUME 9, 2021



M. Feng et al.: Advanced Automated Image Analysis Model for Scoring of ER, PR, HER-2 and Ki-67 in Breast Carcinoma

about automated ER/PR and Ki-67 image analysis, and most
of themwith a high concordance betweenmanual scoring and
digital image automated analysis [8], [14], [32], [33]. The
study by Mungle et al. (2017) characterized segmented ER
cells through machine learning employing Markov random
fields (MRF)and ANN methods were promising showing an
F-measure of 0.9626, which is relatively significant [34].
A centralised evaluation study of 8088 patients from 10 study
group also showed that automated image analysis may help
to streamline and standardize Ki-67 scoring [35]. However,
there are still two drawbacks in most methods of automated
image analysis, one is that the edges of the entire tumor cells
need to be labeled, and this polygon labeling is extremely
time-consuming. The other is that many methods are only
suitable for tumor cells with uniformly colored nuclei, ununi-
form staining images will cause an inaccurate result of a
scoring model that depends on segmentation results. In this
research, our model uses a post-processing algorithm com-
bined with connected domain analysis based on morphol-
ogy to accurately locate the position of the cell nucleus.
Notably, the subsequent grading algorithm does not rely on
the detected contours but directly takes blocks for classifica-
tion based on the position of the center point of the nucleus.
Unlike most of the existing algorithms, it isn’t extremely
dependent on the segmentation results. It can also be applied
to the case of uneven coloring. Detection of nucleus by our
model reveals that the F1-measures of Ki-67 and ER/PR are
0.844962 and 0.855311, respectively. We further analyzed
115 groups of slices using this digital nuclear classification
algorithm on a digital pathology workstation and compared
the automatic analysis results with manual interpretation.
Results show that our algorithm is highly adaptable for
images with different staining intensities, and the correlation
coefficient with the doctor’s reading is nearly 95%. The error
rate of automatic score and manual score in individual cases
exceeds 20%, we postulate that this may be caused by the
coexistence of tumor cells and lymphocytes in the interpre-
tation area. The model may interpret some lymphocytes as
negative tumor cells resulting in a low positive rate. In our
subsequent study, we will further classify negative cells and
remove the lymphocytes from the negative cells.

Unlike ER/PR, Ki-67 and other nuclear-biomarkers,
HER-2 is a membrane-positive biomarker which regulates
cell proliferation and cell growth. In practice, an expert
pathologist will report a score between 0 and 3+ and cases
scoring 0 or 1+ are classified negative whilst those scor-
ing 3+ are considered as positive. Cases with score 2+
are classified as equivocal and their samples are further
examined with FISH to test for gene amplifications [16].
However, in this process, the interpretation of tumor cell
membrane staining ‘‘integrity’’ is relatively subjective. Dif-
ferences in observations from different pathologists, differ-
ences in understanding of the testing and in specimen fixation
and production will significantly affect the scoring results.
The recommendations on HER-2 scoring systems show that
up to 20% of the HER-2 IHC results may contain inaccuracies

due to variations in the technical rigor and the subjective
nature of the scoring [16]. Currently, several software for
HER-2 scoring have been developed and some of them were
put on the market, such as the Automated Cellular Imaging
System III (ACIS III) and the HER-2-CONNECT, with accu-
racy of up to 82-98% [5], [6], [36]–[39]. To our knowledge,
most existing HER-2 automatic scoring algorithms, including
HER-2Net deep neural network, are mainly based on cell
membrane segmentation or small patch classification, which
can only compare pixel values, or perform fine-grained image
analysis. Automatic analysis of HER-2, that is, applying
the nuclear detection method based on saliency detection to
the cell membrane staining scene, reveals that the method
can detect the center point of each cell, and accurately cal-
culate the membrane staining intensity of each cell using
blocks that graded for staining intensity. Although the central
point detection algorithm we proposed is applied to the cell
membrane scene, the F1-measure is 0.79, which is slightly
lower than the nuclear staining scene, it strictly follows the
guidelines for quantitative analysis at the cell level and has
more than 80% consistency with expert interpretation results.
We further analyzed the reason why the F1-measure value is
lower in the HER-2 scoring scene, that may be because the
HER-2-negatively stained nuclei showed a light blue color,
which is similar to the background, resulting in omission of
these tumor cells during detection. Comparative analysis for
model scores and manual scores of 115 randomly selected
HER-2 immunohistochemical staining sections shows that
some 2+ cases judged by experts were very close to negative
after quantitative analysis by the model, like the results of
Koopman’s research [36]. The reduction in 2+ cases may
be due to that some equivocal cases which judged as 2+ by
experts in order to take FISH test were scoring as category
1 by the model. In the next step, we will take FISH test for
HER-2 2+ cases, and regard the FISH results as the gold
standard, in order to evaluate the model’s performance.

VI. CONCLUSION
In this study, we present a novel deep learning framework to
bring an efficient method without labeling each cell outline
and perform automatic scoring for nuclear (ER, PR, Ki-67)
and membranous (HER-2) markers. Compared with previous
algorithms, our method not only greatly reduces the work-
load of manual labeling, but also provide accurate analysis
for nuclear and cell membrane immunohistochemical stain-
ing. The method solves the problem of nuclear detection
and classification. This highlights the potential of Artificial
Intelligence (AI) techniques for examination of IHC slides
and accurate quantitation of immune staining. Nevertheless,
there are some unsatisfactory points in the results of nuclear
detection and staining intensity classification in our method,
we still have a lot of work to do in the next research.
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