
Received May 7, 2020, accepted May 11, 2020, date of publication May 29, 2020, date of current version August 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.2998581

Efficiency Improvement of Function Point-Based
Software Size Estimation With Deep
Learning Model
KUI ZHANG 1, XU WANG 2, (Member, IEEE), JIAN REN 1, AND CHAO LIU1, (Member, IEEE)
1State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2China Ship Research and Development Academy, Beijing, China

Corresponding author: Jian Ren (renjian@buaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602021, in part by the State Key
Laboratory of Software Development Environment under Grant SKLSDE-2019ZX-10, and in part by the Beijing Municipal Science and
Technology Commission under Grant 20191111845496.

ABSTRACT Software cost estimation is crucial to software management, which has received considerable
attention from both industry and academia. Software size is an important metric that forms the cornerstone
of software cost estimation. The function point has been proven to be a useful software size unit for size
estimation and has been successfully implemented inmany countries. However, in current practice, the rule of
function point sizemethod is complicated and performedmanually. Consequently, it is costly in both time and
resources spent to apply these methods, especially in the scenario of large-scale software development in the
industry. In this paper, a deep learning-based named entity recognition (NER)model was designed in place of
manual function point recognition. In particular, a BiLSTM-CRF model was trained on previously labeled
requirements in the industry to classify the function point type of new requirements in the same domain.
The proposed method was verified on 29 real projects provided by our industry partner. A comparative
experiment was designed for the quantitative evaluation of efficiency improvement of the proposed NER
model aided function point estimation. The result suggests that, for the NER model, the precision and F1 of
the BiLSTM-CRF-based function point analysis on test samples achieved 94.5% and 80.3%, respectively.
Moreover, the improvement in the efficiency of the software size estimation process achieved an average
of 38.6%, which is a significant enhancement for the function point-based software size estimation.

INDEX TERMS Software size estimation, BiLSTM-CRF, function point, NER.

I. INTRODUCTION
Software cost estimation (SCE) has been recognized as one
of the most important tasks in software project management.
During software project management, the manager needs to
balance development efficiency, software quality, and the
cost of software development to achieve successful software
development. The underestimation of software development
costs causes overbudget and schedule delays. In contrast,
the overestimation causes a waste of resources and further
loss of investment opportunities for the organization. There-
fore, the manager must estimate the budget, schedule, and
resource expenses accurately during software development
under a given software quality and schedule to obtain an
executable plan.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaochun Cheng.

Many models have been proposed to estimate software
cost, where an accurate estimation of SCE needs to take
many factors into consideration in both software and organi-
zation related aspects. For example, the size of software [1],
the complexity of software [2], the reliability requirement of
software [3], the maturity of software development organiza-
tion [4], and the effect of misleading information provided by
the software developer [5]. Expert judgment is one of themost
traditional techniques since the very beginning of the estima-
tion problem raised [6]. However, it relies too much on expert
experience, which can be subjective and lacks standardiza-
tion. Therefore, model-based estimation attempts to bridge
this gap by constructing an estimation model from the histor-
ical metric data of software. The model-based estimation can
be further classified into parametric and nonparametric mod-
els. COCOMO is a famous parametric model that was first
proposed in 1981 byBoehm et al. [7]. After that, many variant

107124 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8784-2184
https://orcid.org/0000-0002-3612-2734
https://orcid.org/0000-0001-7924-9586

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

extensions have been proposed, such as COCOMOII [8] and
COSYSMO [9]. Similarly, SLIM, PUTNAM [10], PRICE-S,
SEER, and ESTIMACS can also be classified into this kind
of model. To obtain a more precise and portable estimation
model, a nonparametric model such as machine learning
techniques is applied to the estimation model by training on
historical project data, such as a neural network (NN) and its
extension [11]–[14]. The accuracy of themodel, asmentioned
above, has been proven to reach an acceptable level with
the careful instruction of the model construction guideline,
whereas little focus has been on the efficiency of the estima-
tion process. A significant barrier to obtaining an efficiency
estimation is the accurate metric for the software within an
acceptable limit time.

Software size is an essential metric of software, which is
also the primary input of the estimation model and lies on
the critical path of the SCE process. The time consumed on
this procedure has a critical impact on the total estimation
time consumed. Many software size units have been pro-
posed to estimate the software scale under different scenar-
ios, such as the source lines of code (SLOC) and function
point (FP) methods for the size estimation of information
systems [15], story points developed for agile software devel-
opment [16], and use case points (UCPs) for model-based
development [17], [18]. In particular, function point metrics
are one of the most accurate and useful metrics and have been
proven successful in many areas. Compared with the SLOC,
the FPAmethod can be applied in the different phases of soft-
ware development life cycle(SDLC). It can be helpful to reach
a common view on the software effort spent between the sup-
plier and vendor and thus improve the management ability of
SDLC. As illustrated in Fig. 1, the primary process of the FPA

FIGURE 1. Deep learning-based FPA process.

metric can be divided into three steps: the first step is the user
interface function point and its complexity analysis to obtain
the unadjusted function point(UFP) size; In the second step,
the consultant needs to evaluate the complexity adjustment
factors(CAF)(e.g., distributed communication, performance
requirement), which can execute parallel with the first step
when working through the requirement document; The last
step is the combination of the results of the previous two steps

to obtain the adjusted function point (AFP), which is the final
software size.

The methods were further developed into many func-
tion point-based variation size methods and standardized
into many ISO standards, such as IFPUG [19] MKII [20],
NESMA [21], and COSMIC [22].

However, themethodsmentioned above are primarilyman-
ually executed, which is too slow and costly to apply to
large-scale software projects (e.g., 10,000 function points in
size). Consequently, there are two common difficult chal-
lenges in current industry practice. The first is the steep learn-
ing curve; the rule for extracting the FP from the requirement
is complicated, and the learner needs to thoroughly under-
stand the rules and their variants according to the scenarios
defined in the guideline book in which nearly a thousand
rules are defined. Furthermore, for certification, the learner
needs to practice over 50,000 function points to completely
master the rule before applying them into practice in the
industry. The second is the effort used to extract the FP unit
(e.g., EI, EO, EQ, ILF, EIF) from requirement or design. Take
IFPUG FP analysis as an example. A certified function point
consultant can proceed at speeds between 400 and 600 func-
tion points per day, according to the study of Jones [23].
In large-scale software, the number of pages in requirement
documents can quickly reach over a thousand, filled with
terminology and logic. It is difficult for a consultant to under-
stand all the terminology and give a correct classification
according to the rules in a short time (e.g., 10,000 function
points would require 20 days and cost $30,000), which is
unacceptable in practice.

Considering the FPA method is costly both in terms of
time and money, the main motivation of this research is to
reduce the time consumed on this procedure to bridge the
gap between the FPA method and industry practice. This
research study presents a deep learning-based FPA model
for mitigating the challenge mentioned above, as shown
in Fig. 1. A deep learning model for function point recog-
nition replaced the traditional analysis of the user inter-
face function point. Specifically, a BiLSTM (bidirection
long short-term memory)-based deep neural network (DNN)
combined with conditional random field (CRF) layer called
BiLSTM-CRF model was applied for the NER model train-
ing. The model was then used for FP recognition; in that
case, the consultant only needs to check the result given
by the model rather than thoroughly working through the
requirement. An industry case was conducted to validate the
efficiency improvement of the proposed method. An exper-
iment with three senior certified function point consultants
as participants was designed for the quantitative evalua-
tion of efficiency improvement. The result shows that the
accuracy of the model can be comparable with the certi-
fied function point consultant, and efficiencies can be sig-
nificantly improved with the help of a deep learning-based
FPA model.

The contribution of this research study is twofold: the first
contribution is the presentation of a deep learning-based NER

VOLUME 9, 2021 107125

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

model for FPA. The second contribution is the improvement
evaluation of efficiency by comparing the time consumption
of the FPA process with and without the help of the previous
NER model. To the best of our knowledge, this is the first
study on the improvement of the FPAmethod by constructing
a learning model to consolidate the experience of a certi-
fied function point consultant. Moreover, we make a quan-
titative evaluation of efficiency improvement in an industry
scenario.

The remainder of the paper is organized as follows.
Section II describes the related work, while Section III will
define the problem. The research methodology used in the
research study is explained in Section IV. Section V explains
the experiments and our interpretation, and a discussion on
the research analysis is also be discussed in section VI.
Finally, Section VII summarizes our conclusions and high-
lights future directions.

II. RELATED WORK
A. SOFTWARE SIZE METRIC
Generally, software size is the number of units that can be
used to decompose the software. Many works look into the
artifact of the software to determine the indicator of the
software size. The first widely used metric is an estimation
by SLOC (source lines of code) [15], and then Halstead was
applied to the SLOC size method to improve the precision.
SLOC focuses on the metric of the code, but it cannot be
simply applied in the early phase of software development.
Moreover, the number of lines of code depends mainly on the
programming language, which can vary if the same software
is developed in different languages [24].

To address the software size problem in different phases
and with different developed languages, many other software
size methods have also been proposed. Function point is
a size unit that can be applied in the early phases of the
software life cycle. Story point is a size unit for the task
within an agile project that can represent the quantity of
work, and the velocity differs from team to team [25]. The
case point was first introduced by Karner [26] to estimate
the software size in the early phases and has been applied
widely in model-based development, such as UML-based
software development [27], [28]. CC (full object-oriented
metric) was proposed to estimate object-oriented system
software size [29]. OO-HFP (object-oriented hypermedia
function points) [30] is an extension of OO-H [31] for
model-driven web application size estimation that complies
with the FPA method. The TEF (testing-effort function) is
a software development & test effort curve with excellent
predictive capability [3].

B. FUNCTION POINT
Function point analysis (FPA) was first formally proposed by
Albrecht [15], in which the FP was defined in five elements,
ILF, EIF, EI, EQ, EO, and it proved to be a better size metric
compared with SLOC.

1) FUNCTION RECOGNITION
According to the Albrecht study [15], the FPA pro-
cess decomposes the system into these five functional
components.
1) External Input Type (EI): Count each unique user data or

user control input type that enters the external boundary
of the application being measured and add or change
data in a logical internal file type.

2) External Output Type (EO): Count each unique user data
or control output type that leaves the external boundary
of the application being measured.

3) Internal Logical File Type (ILF): Count each major
logical group of user data or control information in the
application as a logical internal file type.

4) External Interface File Type: (EIF): Files passed or
shared between applications should be counted as exter-
nal interface file types within each application.

5) External InQuiry Type: (EQ): Count each unique
input/output combination, where an input causes and
generates an immediate output, as an external inquiry
type.

2) FUNCTION POINT COUNTING
After the preliminary function recognition, the function needs
to be analyzed for the further function point size under the
complexity consideration, as shown in Table 1.

TABLE 1. Function complexity (FC) count.

The complexity is defined according to the number of data
elements that need to deal with and also operations on the
data, the detail definition can be seen in [15], [32], [33].
To obtain the unadjusted function point (UFP) number of each
user interface function, the consultant needs to understand the
software requirements and also evaluate the complexity of the
function according to the rules defined by given FPAmethod.

3) ADJUST FUNCTION POINT SIZE
The UFP needs to be adjusted under specific software to
obtain the final software size. In the IFPUG, the software
characteristics that may have an effect on the AFP are defined
in Table 2.

The weight of each characteristic can be the number
range [0, 5] according to its influence on the software effort,
which relies on the judgment of the consultant. Consequently,
the adjusted function point size (AFP) can be reached by
multiplying the UFP by the adjustment factors as defined in
the following equation:

AFP = UFP ∗ CAF (1)

107126 VOLUME 9, 2021

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

TABLE 2. Characteristic definition.

where CAF is the complexity adjustment factor defined as:

CAF = 0.65+ 0.01 ∗
∑

Fi, (1 ≤ i ≤ 14) (2)

Fi is the weight of the characteristics.

C. IMPROVEMENT FOR THE FUNCTION POINT METHOD
The improvement for functional size measurement (FSM)
methods can be classified into two categories: the first is
the evolution of the software size metric methods into a new
method. In contrast, the second is the efficiency improvement
of the existing software size method with other techniques.

1) FSM METHOD EVOLUTION
For the first category, after the FP proposed by Albrecht and
Gaffney [15] in 1979, several variants have been proposed
to make the FPA estimation more accurate and suitable for
different scenarios. The FPA metric was first standardized by
the International Organization for Standardization (ISO) as
IFPUG [32]. NESMA FP fixes the disparity that the IFPUG
FPmethod cannot be used for early estimation of the informa-
tion system and extends the application scenario to software
maintenance projects. NESMAFPA varies little from IFPUG,
which has been established as a measurement unit and an
ISO standard [33]. The MK II function point method was
published by Charles Symons [20]. The essential improve-
ment of this method is that its unit improved IFPUG by
considering the internal complexities of data handling, which
is the key feature of the business system. The Common Soft-
wareMeasurement International Consortium (COSMIC) was
established in 1998. The COSMIC function points, which
represent the 2nd generation FSM method, were proposed
to find a measurement unit capable of being successfully
applied to the highest possible number of software types.
COSMIC function points solve the problem that the NESMA
FP cannot be directly used in the embedded system and are
considered to be the second generation of the FPmethod [34].
After that, a COSMIC FFP (full function point) method
was proposed for the improvement of COSMIC FP by the
application scenario [35].

2) EFFICIENCY IMPROVEMENT
The mentioned evolution of FSM methods has made consid-
erable contributions to the widespread use of software size
methods. The cost and time consumption of thesemethods are
still essential obstacles for their wide acceptance by industry.
To address this problem, a simplified FP named the simple

function point (SiFP), which requires much less time and
effort than IFPUG FPA and is fully compatible with IFPUG,
was proposed in 2011 [36]. Capers Jones in 2013 [37] pro-
posed a method based on pattern matching of high-speed
function point counting. It can size different applications in
less than two minutes and can predict application growth
during development and for five years after release. To make
the evaluation process more rapid, a CRF named entity recog-
nition (NER) model named ESSE was applied to extract
features from the requirement and construct the regression
model to predict the software size [38] An ontology model
base COSMIC FP was also proposed to eliminate effort and
subjectivity coming from manual measurement [39]. With
the development of DNN, a prediction model based on a
combination of deep learning architectures was also applied
for story point-based estimation [40].

D. NAMED ENTITY RECOGNITION
Name entity recognition (NER) is a subtask of natu-
ral language processing (NLP). With the development of
NLP, the NER model was also developed from the rule-
based approach or statistical machine learning approach to
today’DNN models. Most research regards the NER task
as a sequence labeling task. The model for modeling this
task includes maximum entropy (ME) [41], support vector
machine (SVM) [42], hiddenMarkovmodel (HMM) [43] and
conditional random field (CRF) algorithms [44].

With the rapid development of deep learning neural net-
works in NLP tasks outperform previous statistical algo-
rithms. The recurrent neural network (RNN) is an outstanding
NN model for sequence labeling that learns long-distance
dependencies better than CRF, which utilizes features found
in a specific context window [45]. As an extension of RNN,
long short-term memory (LSTM) and its updated bidirec-
tional recurrent neural network (BRNN) [46], [47] have
proven to be efficient in modeling sequential text. BRNN
can consider an effectively infinite amount of context on both
sides of a word and eliminate the problem of limited context
that applies to any feedforward model. Convolutional neural
networks (CNN) have also been investigated for extract-
ing character-level features for use in NER and POS tag-
ging [48]. However, the LSTM-CRF obtains state-of-the-art
performance in the NER task in four languages (English,
Dutch, German, and Spanish) [49]

Chinese named entity recognition (CNER) is more compli-
cated in Chinese (e.g., the lack of word boundaries, the com-
plex composition forms, the uncertain length). There are
mainly three kinds of named entities (NE), namely, loca-
tions, persons, and organizations in CNER research. The
abovementioned models also achieve similarly good results
in Chinese [50], [51].

III. PROBLEM DEFINITION
Generally, the procedure of SCE can be divided into three
parts: estimating software size, establishing the software
effort estimation model and finally constructing a software

VOLUME 9, 2021 107127

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

cost model. FPAs have been established as ISO standards and
are widely used in industries that integrate the three parts
mentioned above into a whole. In the estimation model of
software development in the early phase, five types of FP
(EI, EO, EQ, ILF, EIF) are used. Therefore, software cost esti-
mation task is transferred into an accurate estimation of the
size of the function point. However, in most research studies,
software size data are obtained from an existing dataset, such
as the COCOMO dataset, NASA dataset, or ISBSG dataset.
To the best of our knowledge, little work has discussed
obtaining software size accurately and efficiently. Moreover,
in practice, the software size needs to be estimated toward a
given artifact (e.g., requirement or design document) accord-
ing to a given standard FPA procedure (e.g., early estimation
in NESMA, COSMIC FFP). With the development of the
software design (detail design), more information is needed
for the more accurate estimation (e.g., data element type,
record element type), and the estimation accuracy needs to
reach 85% of the actual result to get an valid cost estimation.
A static provide by Jones and Bonsignour [52] can be seen
in Table.3

TABLE 3. The FP and requirement(REQ) quality.

As shown, with the increase in the size of the soft-
ware, the length of requirement increases while the integrity
decreases, which means that more effort will be used to
recognize the function point. Moreover, during the software
life cycle, the estimation activity should be repeated two to
three times. If two many person-days of measurement effort
is required, even if it is only a small fraction of the total cost,
many managers will not accept this apparently ‘‘nonproduc-
tive’’ cost in the project budget, thus, efficiency is the key
to practice. Therefore, our research questions can be stated
as follows while the fundamental research hypotheses is that
all the requirement document will be translated into natural
language for the further analysis:

A. RESEARCH QUESTIONS
RQ1 (Sanity Check): Is the proposed method suitable for
estimating the function point? This sanity check requires us
to compare efficiency improvement with the manual FPA as
a baseline benchmark. In current practice, a manual analysis
procedure implies function point recognition, removing the
redundancy, and then evaluating the factors that have an effect
on the software effort. The output of the NER-based learning
model is a probabilistic classification that cannot be directly
used as the final result. It is evident that themodel cannot sim-
ply substitute the manual procedure in practice, which needs
to be inspected manually. Therefore, the NER model needs

to be combined into the traditional procedure in which the
function point recognition is replaced with NER recognition
and manual inspection. Therefore, in this scenario, whether
the efficiency can be improved by this new revised method
compared with pure manually FPA is the question that needs
to be answered in this research study.

RQ2 (Accuracy of the Model): How does the accuracy
of the proposed model compared with manual FPA? In
industry, the ISO standard provides a method for identifying
the function point type in the given context. Nevertheless,
the requirement is specified in natural language, which can
be ambiguous between different domains and depend on the
understanding of the consultant. However, many function
point analysis works have been performed, and the rule for
identifying these function points is the same in the determined
FPA model, so whether the rules can be extracted from these
labeled documents and to what extent the recognition accu-
racy can reach are also questions that need to be answered.

RQ3 (Efficiency Improvement with the Model): How
much efficiency improvement can be achieved by the
proposed model? As described in RQ1, compared with
the traditional method, the output of the model needs to be
inspected by the consultant. Therefore, the improvement of
the efficiency needs to be evaluated against the same input
under different scenarios (with and without the help of the
NER model). Moreover, the efficiency needs to be evalu-
ated against two indexes, which are the correction and time
consumed. The number of correctly recognized functional
points and the time consumption of the experiment need
to be recorded for further quantitative analysis. Therefore,
the quantitative evaluation of the improvement in efficiency
is the third research question that needs to be answered.

IV. METHODOLOGY
The objective of this research study is to answer the research
questions raised in the previous section. The research involves
constructing a deep learning-based NER model to replace
the manual function point analysis (FPA) and evaluating the
improvement on the efficiency with the help of the NER
model. A BiLSTM-CRF model was applied for the NER task
in the FPA process, and a case from our industry partner
was designed to validate the efficiency improvement of the
proposedmodel. The process for the deep learning-based FPA
can be seen in Fig. 2.

FIGURE 2. Deep learning-based NER model.

As shown, from the left side, the already analyzed require-
ment documents, domain dictionary, and wiki in Chinese
were used as the input of the data preprocessing process.
Specifically, the historical requirement documents were used
as the raw input for data preprocessing and then segmented

107128 VOLUME 9, 2021

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

by word segment. The wiki content was added for the train-
ing of the word2vec model, while the domain dictionary
was used to improve the accuracy of the word segment.
After that, the requirement needed to be labeled for fur-
ther training. In this study, in addition to manual labeling,
an edit distance-based similarity word labeling method was
introduced to label the existing requirement automatically.
Sequentially, the content of requirement and its label was
converted into word vector and one-hot vector, which was
used for the BiLSTM-CRF model training. As a result of
BiLSTM-CRFmodel training, the unlabeled requirement was
automatically classified into five given function types for
further estimating software size. The detailed description of
each part of the methodology is illustrated in the following
paragraph.

A. DATA PREPROCESSING
In most supervised NLP tasks, the first and most important
work is data cleaning and labeling. In this research study,
data preprocessing is also a preset task before model training.
A stop-word list was used for the preliminary data cleaning,
and the high-frequency words that appeared in the require-
ment were extracted into a domain dictionary, which was
used to improve the accuracy of the word segment in the
next step. After transforming traditional Chinese to simplified
Chinese, removing non-UTF8 chars and unifying different
styles of punctuation, open-source Chinese word segment
software was then applied to separate the requirements into
words.

After the word segment, the words need to be combined for
further labeling. However, in practice, the function point item,
which represents the feature of the function point, is extracted
from the original requirement text, and the content of a similar
function point item is slightly different from simple word
combination. In this study, an edit distance algorithm [53]
was applied to bridge this gap by labeling the similar function
point item automatically. The word edit distance algorithm
recognizes two similar words by defining a value of edit
distance, which counts the number of operations by convert-
ing one word to the other. Two main parameters of the edit
distance algorithm are word length and edit distance, which
is defined in the specific case.

The BIO label was chosen for further single word labeling,
and the sequence label is illustrated in Fig.3:

FIGURE 3. BIO sequence label.

As illustrated, the function point item can be classified into
six types, which are EI, EO, EQ, ILF, EIF, and F, in which F
means that it is not the function point item. For the function
point item labeling, the function point type can be further

decomposed into B (Begin), I (Interval), and O (Out of scope)
labels. A simple example of BIO labeling according to the
NESMA FPA rules can be seen in Table 4:

TABLE 4. An example with BIO sequence label.

As shown, the function point item in the requirement is
〈information manage system〉, which can be identified as an
EIF so that the word can be labeled into B-EIF and I-EIF
sequentially, and the unrelated word is labeled as O.

B. WORD EMBEDDING
The function point item needs to be converted into a low-
dimensional, continuous, and real-valued vector because the
input of the neural network is vectors. However, traditional
one-hot coding will give a vector with a high dimension
and discard the relationship between similar words. In this
study, a skip-gram-based word2vec model was used for
word embedding training. A GenSim package that contains
a Python version implementation of word2vec was applied.

The skip-gram structure uses the center word as input while
adjusting the neural network weight by backpropagation of
the word in a given window size. This structure is more
suitable for the text corpus that consists of more domain
words. The training process is described in Section V.

C. BiLSTM-CRF BASED FP SIZING
Different from traditional NLP techniques, DNN becomes
a better solution for NER [49], which relieves the heavy
labor work of feature engineering. In this research study,
a BiLSTM-CRF model was applied for function point recog-
nition, which combined RNN-based BiLSTM (bidirectional
long short-term memory) neural network and CRF (condi-
tional random field) model to process different parts of the
prediction model. The structure and a simple example of the
model can be seen in Fig. 4.

As shown, in the bottom part, the input of the model is
the word vectors obtained from the word embedding. The
BiLSTM is trained and used to predict the label type of every
single word. The output of the BiLSTM is the score of the
input word regarding each label type (e.g., B-EI), which is
the input of the CRF model. The CRF model is trained on the
input of the BiLSTM for further named entity prediction.

Here, we briefly introduce the BiLSTM and CRF models.

1) BiLSTM
LSTM is a variant of RNN (recurrent neural network) archi-
tecture designed to fix the vanishing gradient problem with
long short-term memory units as hidden units [54]. BiLSTM
is a deep neural sequence model that considers an effectively
infinite amount of context on both sides of a word. A for-
ward long short-term memory (LSTM) layer and a backward
LSTM layer are incorporated to eliminate the problem of

VOLUME 9, 2021 107129

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

FIGURE 4. BiLSTM-CRF-based FP recognition.

limited context that applies to any feedforward model [55].
As shown in Fig. 4, one LSTM processes the sequence from
left to right, and the other processes the sequence from right to
left. At each time step t , a hidden forward layer with hidden
unit function

−→
h is computed based on the previous hidden

state
−−→
ht−1. The input at the current step xt and a hidden back-

ward layer with hidden unit function
←−
h is computed based

on the future hidden state
←−−
ht+1. After target extraction by

BiLSTM, all given sentences are classified into BIO labeled
EI, EO, EQ, EIF, ILF, according to the number of targets
extracted from them. As illustrated in Fig. 4, the BiLSTM
is designed for label prediction, which uses two LSTMs to
learn each token of the sequence based on both the past and
the future context of the token. The forward and backward
context representations, generated by

−→
ht and

←−
ht , respectively,

are concatenated into a long vector. The combined outputs are
the predictions of the given target label of each word.

2) CRF TAGGING MODEL
Despite the success of the BiLSTM model’in problems such
as POS tagging, its independent classification decisions are
limiting when there are strong dependencies across output
labels. As shown in the example, if simply combining the
highest score of the label, the prediction result of successive
labels can be B-EI, B-EQ, which is not correct. Therefore,
the BiLSTM can only predict the relation between the word
and its label but cannot predict the relation between labels.
In that case, the CRF model is designed to bridge this gap.
Conditional random fields (CRFs) are a type of discrimina-
tive undirected probabilistic graphical model that represents
a single log-linear distribution over structured outputs as a
function of a particular observation input sequence. A transi-
tion matrix models the relation between labels.

Given observations variables X

X = (x1, x2, x3, . . . , xn) (3)

Consider P to be the matrix of scores output by the BiL-
STM network. P is of size n ∗ k , where k is the number of
distinct tags, and Pi,j corresponds to the score of the jth tag
of the ithword in a sentence. The random variables Y , whose
values require the model to predict,

Y = (y1, y2, y3, . . . , yn) (4)

σ (X , y) is the score function defined as follows:

σ (X , y) =
n∑
i=0

Ayi,yi+1 +
n∑
i=1

Pi,yi (5)

where A is a matrix of transition scores and Ayi,yi+1 repre-
sents the score of a transition from tag yi to yi+1. n is the
length of a sentence, P is the matrix of scores output by the
BiLSTM network, and Pi,yi is the score of the ytih tag of
the ith word in a sentence. A softmax over all possible tag
sequences gives a probability for the sequence y as defined in
Equation (6).

p(y|X) =
eσ (X , y)∑
ỹ∈YX e

σ (X ,̃y) (6)

Maximize the log-probability of the correct tag sequence
during training:

log(p(y|X)) = σ (X , y)− log(
∑
ỹ∈YX

eσ (X ,̃y))

= σ (X , y)− logadd̃y∈YX (σ (X , ỹ)) (7)

where YX represents all possible tag sequences for a sen-
tence X . The output of the sequence that obtains the maxi-
mum score is given by:

y∗ = argmax̃y∈Yσ (X , ỹ) (8)

V. INDUSTRY CASE STUDY
The purpose of the case study is to validate the proposed
methodology and evaluate the efficiency improvement quan-
titatively and to answer the research question raised in
Section III. The NER model proposed in Section IV was
applied for FP counting in place of manual recognition. Three
groups of experiments with three senior consultants as partic-
ipants were designed and carried out to validate the efficiency
improvement of FP recognition with the aid of the proposed
model.

A. DESCRIPTION OF INDUSTRY CASE
The case is from our industry partner, State Grid, which
is the largest electricity operator in China. In the company,
many software programs need to be designed, developed,
updated, or maintained each year to support the efficient
operation of the business and organization. Therefore, a total
of an average of three billion CNY budgets for software
need to be divided into different projects according to the
requirements from the various business departments. How-
ever, the proposed requirement from these departments needs
to be evaluated and then divided according to the estimation

107130 VOLUME 9, 2021

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

TABLE 5. Requirement(REQ) sample from industry∗.

result in a short time, which is only three months. Therefore,
it is an urgent and critical task for both the budget sector
and software supplier to settle down mature. The function
point-based NESMA standard has been used for consistent
and accurate evaluation progress and has been established
as a national standard (NS) in China. However, even with
enough experienced consultants, it is still difficult for the
company to complete the work adequately in such a short
time. Moreover, the accuracy of the result can vary between
consultants without enough discussion, so how to make this
procedure more efficient and more consolidated is a crucially
important issue in the industry.

In this case study, the deep learning model proposed
in Section IV was introduced to address this problem.
Twenty-nine real project requirement documents were pro-
vided by our partner in the format of a spreadsheet for model
training. However, the raw data of requirements is confiden-
tial so that it can not be accessed by the public. As shown
in Table.5, each requirement was decomposed into several
columns for further analysis. The second column is the orig-
inal requirement proposed by the business sector, while the
third column labels the requirement with New or Add by
comparing the requirement with the existing system. The
fourth column is the extension of the requirement, which is
provided by the requirement analyst and provides a technical
explanation of the requirement. The next two columns are
the function point item and its type given by the consultant,
in which the function point item is the feature of the function
point type extract from the requirement description. As seen
in the table, the description of the first and second require-
ments is the same while the function description is not; in
this case, this single requirement needs to be decomposed into
different functions and further into different function points.

B. DATA PREPROCESSING
As required by the proposed BiLSTM-CRF model, the input
of the training sample needed to be clean and transferred
into a low-dimensional, real-value vector. The data clean-
ing process included stop-word elimination which include
1396 english and Chinese stop words, case transition, and
traditional to simple Chinese conversion. Then, the require-
ment was segmented into words, and the redundant word was
removed. As a result, a whole 81,966 characters of require-
ments in which 3,457 unique words with wiki Chinese were
added for the word2vec training to improve the accuracy of
the word embedding model training and reduce the unknown

word number. The requirement and its label were separately
embedded and transferred into one-hot, which will then be
padded for further training.

The total sample was divided into training and testing sets
for training the BiLSTM-CRF model. After the sample set
was generated, which consisted of 7,785 labeled requirement
items, cross-validation was used to obtain the training set
and validation set, which obtained 5,000 training samples and
2,785 test samples.

C. EXPERIMENTAL DESIGN
1) MODEL CONSTRUCTION AND TRAINING
For construction of the model, the first step is transfer
the requirement and its label into vector, which have been
described in previous. After this three layers were defined
as described in Section IV, which represented the embedding
layer, BiLSTM layer, and CRF layer. The model structure in
this study can be seen in Table 6.

TABLE 6. Model structure.

As shown, the total number of parameters that were trained
was 471,754. The training set was first padded into a 50∗300
array, while the label needed to be coded into a one-hot vector,
which was combined according to each training sample. The
input of the embedding layer was the data after the padding
operation, while the output dimension in this study was
defined as 200. Thus, the input number of neural networks
in the BiLSTM was the same as the output dimension of the
embedding layer, in which the backpropagation and forward
propagation were 100. As described in Section IV, 11 labels
were defined for recognition so that the output dimension of
the CRF should be the same as the number of labels. In the
learning process, some super parameters need to be defined.
The maximum length of a single sentence was used for the
definition of the recursive time step value, which is set to
624 in this case. Moreover, sentences in which the length is
less than the step value were masked by 0. The epoch was set
to 100, while the batch size was 16.

As the traditional evaluation of effectiveness, the quality of
themodel was evaluated in three indexes: precision, recall and

VOLUME 9, 2021 107131

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

F1 value. These indexes were defined as follows:

Precision =
Correctnum
Predictnum

∗ 100% (9)

Recall =
Correctnum
Labelednum

∗ 100% (10)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

∗ 100% (11)

A PC with an 8-core CPU (Intel i7 9700), 16 GB DDR
1667 Memory, 1 TB HDD, an Nvidia RTX2070s GPU was
used to execute the experiments. The software environment of
the experiment was an Ubuntu 16.04 LTS system, and Python
3.6, Keras with TensorFlow-GPU-1.15 backend.

2) EFFICIENCY IMPROVEMENT EVALUATE EXPERIMENT
Adesigned experiment conducted a quantitative evaluation of
efficiency. Three groups of FP recognition tests were carried
out. Each group was set to compare the time consumption
under three different scenarios, of which the difference was
with and without the aid of the NER model.

TABLE 7. Experiment design.

As illustrated in Table 7, these three scenarios are tradi-
tional manual FP recognition with no suggestion (No Sugg),
FP recognition with only FP item suggestion (Half Sugg),
and FP recognition with FP item and corresponding FP type
suggestion (Full Sugg). Moreover, the difference between
these groups is the information provided in the requirement,
as shown in Table 8.

TABLE 8. Interpretation for the Feature.

In the no suggestion group, only the original requirement
was provided, while in the half suggestion, the FP entity was
provided; furthermore, in the full suggestion group, the FP
entity and its type were provided. Moreover, each require-
ment was evaluated under different scenarios while keeping
them independent of the test within the group. Each group
consisted of three different types of quiz and included three
different requirement documents (e.g., REQ1, REQ2, REQ3)

The quiz was designed for the experiment, which contained
the requirement from different software within the same
domain. The content of the quiz is described in Table 9.

As shown, each quiz contained 100 requirement items. The
number of characters varying from groups is listed in Table 9.
The distribution of FP types in these three requirement docu-
ments is presented in Fig. 5.

TABLE 9. Description of the designed quiz.

FIGURE 5. Function point distribution within quiz.

As shown in Fig. 5, EI, EO, and EQwere far more than ILF
and EIF types in all three requirements. Moreover, the pre-
diction given by the NER model gave one prediction for one
given requirement in a single request. Therefore, the instruc-
tion for the quiz was predefined as below to obtain a correct
evaluation:
1) Finish the quiz as fast as possible.
2) One FP for each requirement item and if the multitype of

FP can be conducted in the requirement, EI, EQ, EO for
the priority.

Finally, the experiments were conducted with three senior
software cost estimation consultants separately, and the time
consumption was recorded in the accuracy of seconds.

TABLE 10. Prediction result sample∗.

VI. RESULT ANALYSIS AND ANSWER TO RQs
The sample of the prediction result can be seen in Table 10.
As shown, each column included two parts. The first part
showed the originally labeled data, while the second part
showed the prediction result given by the NER model. The
originally labeled data included the description of the require-
ment, the function point item, and the label given by the
consultant. As seen in Table 10, the prediction result gave
the predicted function point item and its type. The prediction
result of all the samples used for the testing can be seen
in Table 11.
As shown in Table 11, the number of labeled and predicted

sample sets was the same at 2,785, while the accurately
predicted label was 2,313. It can be seen that the predicted
number was equal to the labeled number, which means that

107132 VOLUME 9, 2021

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

TABLE 11. Statistical result of prediction.

themodel predicted each sample, but not every predictionwas
correct. As shown, the prediction sample number of EIF was
much less than the other function point types, and the labeled
EIF was only 16, while the prediction result was 352, which
was not correct. The result of the evaluation index defined in
Equation (9), Equation (10), and Equation (11) can be seen
in Table 12.

TABLE 12. Result analysis.

In addition to the EIF type, the precision of other types
of function point recognition achieved a sound performance
compared with the manual work by the consultant. The preci-
sion of the other four types of FP reached over 94.25%, while
the F1 value achieved over 80%. Furthermore, the reason for
the overfitting of EIF prediction is that the number of labeled
EIFs was too small for training.

As illustrated, the improvement in the efficiency of
learning-based FPA is remarkable, reaching an average
of 38.6%. Moreover, the time consumption in REQ2 and
REQ3 is less than that in REQ1, and less improvement can be
observed between the half suggestion and the full suggestion
version. The efficiency of the proposed method evaluates
the time consumption in a given requirement under different
scenarios. The improvement of the efficiency can be defined
as Equation (12):

φimprove =
TimeNoSugg − TimeFullSugg

TimeNoSugg
∗ 100% (12)

The time consumption is recorded in seconds. The result is
illustrated in Fig. 6:

As shown, there is an apparent trend of decreasing time
consumption in the no suggestion, half suggestion and full
suggestion groups in REQ1, REQ2 and REQ3. Moreover,
the time consumption of REQ1 is higher than that of
REQ2 and REQ3 in every scenario.

Therefore, several conclusions can be reached from these
experiments. First, the FP type distribution of the requirement
may have an impact on the time spent. For that, in REQ2,
the EO type takes over 52% while the number increases
to 76% in REQ3, which can save much time for switching
between the different FPA rules. The second is that the most

FIGURE 6. Efficiency improvement.

time-consuming work during the experiment is the correct
identification of the feature in the FP entity. If the feature
was given, then the FP type classification was a relatively
simple operation compared with finding the FP entity in the
requirement document.

Considering the final accuracy of the FPA process with
the aid of the NER model, the description of the function
is derived from the requirement so that the difference of FP
type recognition can be argued under a different interpreta-
tion of the assumption context by the consultant. Moreover,
the classification of FP type is simple for the senior software
consultant because they only need to determine which kind
the FP type is and do not need to determine if there exists
an FP. Under this design, the worst different result between
the consultant is 10. In that case, each group can obtain over
90% accuracy under a different scenario. Consequently, with
the help of the proposed methodology, the conclusion can
be reached that the consultant can conduct the FPA more
efficiently without the reduction in accuracy.

A. ANSWER TO RESEARCH QUESTIONS
Three research questions accompanied the objective of this
study. After the experiment on the proposed learning model
and implementation of research objectives, we are now ready
to respond to the answers to research questions.

RQ1 (Sanity Check): Is the proposed method suitable
for estimating the function point? Traditional FP recogni-
tion is conducted manually by the consultant. In this research
study, an NER-based FP recognition model substitutes in
this part, as illustrated in Fig. 1. The deep learning NER
model learns from the historic labeled data and predicts the
FP item and its type for each sentence of the requirement.
The combination of the output of the NER model and the
consultant inspection performed much more effectively with
less time consumed according to the experiment in the case
study. As seen in Table 13, the result shows that the newly
proposed FPA process makes FP recognition more efficient.
Therefore, the proposed method in this paper outperforms
manual FP recognition, thus passing the sanity check required
by RQ1.

RQ2 (Accuracy of the Model): How does the accu-
racy of the proposed model compare with manual FPA?
According to our research study, a domain NER model was

VOLUME 9, 2021 107133

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

TABLE 13. Efficiency improvement result analysis∗.

constructed for FP prediction. The accuracy here can be
divided into two parts: the first is the accuracy of the model,
while the second is the accuracy of the proposed FPA process
with the aid of the NERmodel. The performance of the model
is shown in Table. 11 and Table 12, which achieved approxi-
mately 94.25%precision, and the F1 value achieved over 80%
in addition to the EIF type. The total accuracy was obtained
from the result of the prediction result in Table 11, which
was over 83%. Moreover, compared with manual labeling,
the final accuracy of the FPA process with the aid of the NER
model achieved at least over 90% accuracy.

RQ3 (Efficiency Improvement with the Model): How
much efficiency improvement can be achieved by the
proposed model? In this research study, the proposed FPA
method replaces the manual FP recognition process with a
deep learning-based NER model. Consequently, the reading
requirement procedure, recognizing the FP item, and then
classifying them into five types was tested under a compara-
tive experiment. Through the validation of the industry case,
the proposed NERmodel aided procedure achieved over 90%
accuracy, as conducted in RQ2, and an average efficiency
improvement reached 38.6%, as shown in Table 13, which
can be a significant enhancement for the FP base function
point software size estimation.

VII. CONCLUSION AND FURTHER WORK
Considerable work has been done on software effort esti-
mation toward the improvement of accuracy and applicable
scenarios [14], [56], [57]. However, most of the proposed
methods construct the effort prediction model on the given
metric of the software or even on the existing datasets, such
as ISBSG and NASA. In the industry scenario, these metric
datasets are generally not already available, especially the
metric data for SCE. Software size is a fundamental metric
for the SCE, which is costly and time consuming according to
practice. It becomes a barrier to the widespread existing SCE
model, which is the primary concern in this research study.

In this paper, a novel approach was presented to improve
the efficiency of sentence-level function point analysis via a
deep learning-based function point type classification model.
The approach adopts BiLSTM-CRF to extract function point
features in given sentences and classifies them into different
types according to the FPA standard. A case from our indus-
try partner was conducted to validate the proposed method
and evaluate the efficiency improvement quantitatively. The
empirical results show that our approach performs state-of-
the-art performance on function point analysis and can sig-
nificantly enhance the efficiency of FP-based software size
estimation.

However, there are still several problems that remain,
which can be a direction for further research. According to the
experiment, the readability and interpretation speed are cru-
cial for accuracy and efficiency, so what and how to make the
output of the learning model more suitable for the FPA con-
sultant is also an interesting research aspect. Moreover, in this
research study, the provided sentence already contained the
FP item, which was derived from the original requirement
in advance. Therefore, this scenario can be extended into
extracting the FP item directly from the original requirement
document and evaluating the efficiency improvement, which
will significantly decrease the cost of the FPA. In addition
to the extension of the learning model to the original require-
ment, there are many SCE-related metrics defined in the SCE
model, such as the recognition of the data element type (DET)
and the adjustment factors, which are also important metrics
of the software. Therefore, how to integrate these elements
for a full automatic estimation is also a direction for future
research. Finally, the data used for training is domain-specific
and the accuracy of the recognition can be not as much higher
when a completely new requirement from a new domain,
therefore, how to combined different learning models from
different domains can be a future research direction.

ACKNOWLEDGMENT
The authors would like to thank Prof. Chao Liu, who unfor-
tunately passed away just before this article was submitted
for publication. Prof. Liu served in an essential role in the
research described herein and he is greatly missed by all of us.

REFERENCES
[1] T. E. Hastings and A. S. M. Sajeev, ‘‘A vector-based approach to software

size measurement and effort estimation,’’ IEEE Trans. Softw. Eng., vol. 27,
no. 4, pp. 337–350, Apr. 2001.

[2] S. Grimstad and M. Jørgensen, ‘‘A framework for the analysis of software
cost estimation accuracy,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng., 2006, pp. 58–65.

[3] C.-Y. Huang and M. R. Lyu, ‘‘Optimal release time for software systems
considering cost, testing-effort, and test efficiency,’’ IEEE Trans. Rel.,
vol. 54, no. 4, pp. 583–591, Dec. 2005.

[4] M. A. Yahya, R. Ahmad, and S. P. Lee, ‘‘Effects of software process
maturity on COCOMO II’s effort estimation from CMMI perspective,’’ in
Proc. IEEE Int. Conf. Res., Innov. Vis. Future Comput. Commun. Technol.,
Jul. 2008, pp. 255–262.

[5] M. Jørgensen and G. Stein, ‘‘Avoiding irrelevant and misleading informa-
tion when estimating development effort,’’ IEEE Softw., vol. 25, no. 3,
pp. 78–83, May/Jun. 2008.

[6] R. T. Hughes, ‘‘Expert judgement as an estimating method,’’ Inf. Softw.
Technol., vol. 38, no. 2, pp. 67–75, Jan. 1996.

[7] B. W. Boehm, Software Engineering Economics, vol. 197.
Upper Saddle River, NJ, USA: Prentice-Hall, 1981,

[8] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. J. Reifer, and B. Steece, Cost Estimation With Cocomo II.
Upper Saddle River, NJ, USA: Prentice-Hall, 2000.

[9] R. Valerdi, B. W. Boehm, and D. J. Reifer, ‘‘COSYSMO: A constructive
systems engineering cost model coming of age,’’ in Proc. INCOSE Int.
Symp., vol. 13, no. 1. Hoboken, NJ, USA: Wiley, 2003, pp. 70–82.

[10] L. H. Putnam, ‘‘A general empirical solution to the macro software sizing
and estimating problem,’’ IEEE Trans. Softw. Eng., vol. SE-4, no. 4,
pp. 345–361, Jul. 1978.

[11] Y. Singh, P. K. Bhatia, and O. Sangwan, ‘‘ANN model for predicting
software function point metric,’’ACMSIGSOFT Softw. Eng. Notes, vol. 34,
no. 1, pp. 1–4, Jan. 2009.

107134 VOLUME 9, 2021

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

[12] I. F. de Barcelos Tronto, J. D. S. da Silva, and N. Sant’Anna, ‘‘An
investigation of artificial neural networks based prediction systems in
software project management,’’ J. Syst. Softw., vol. 81, no. 3, pp. 356–367,
Mar. 2008.

[13] K. V. Kumar, V. Ravi, M. Carr, and N. R. Kiran, ‘‘Software development
cost estimation using wavelet neural networks,’’ J. Syst. Softw., vol. 81,
no. 11, pp. 1853–1867, Nov. 2008.

[14] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, ‘‘An effective
approach for software project effort and duration estimation with machine
learning algorithms,’’ J. Syst. Softw., vol. 137, pp. 184–196,Mar. 2018, doi:
10.1016/j.jss.2017.11.066.

[15] A. Albrecht, ‘‘Software function, source lines of code, and development
effort prediction,’’ IEEE Trans. Softw. Eng., vol. SE-9, no. 6, pp. 83–92,
Nov. 1979.

[16] M. Salmanoglu, T. Hacaloglu, and O. Demirors, ‘‘Effort estimation for
agile software development: Comparative case studies using COSMIC
functional size measurement and story points,’’ in Proc. ACM Int. Conf.
Proc., 2017, pp. 41–49, doi: 10.1145/3143434.3143450.

[17] P. Mohagheghi, B. Anda, and R. Conradi, ‘‘Effort estimation of use
cases for incremental large-scale software development,’’ Softw. Process
Improvement, pp. 309–326, May 2006.

[18] V. Saxena and M. Shrivastava, ‘‘Performance of function point analysis
through UMLmodeling,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 34, no. 2,
pp. 1–4, Feb. 2009.

[19] Function Point CPM IFPUG. Release. 4.1., IFPUG, Westerville, OH,
USA, 1999.

[20] C. R. Symons, Software Sizing and Estimating: MK II FPA (Function Point
Analysis). Hoboken, NJ, USA: Wiley, 1991.

[21] F. Niessink and H. Van Vliet, ‘‘Predicting maintenance effort with function
points,’’ in Proc. Int. Conf. Softw. Maintenance, 1997, pp. 32–39.

[22] R. Meli, A. Abran, V. T. Ho, and S. Oligny, ‘‘On the applicability of
COSMIC-FFP for measuring software throughout its life cycle,’’ in Proc.
11th Eur. Softw. Control Metrics Conf., 2000, pp. 18–20.

[23] C. Jones, ‘‘A new business model for function point metrics,’’ Capers Jones
Associates LLC, Tech. Rep., 2008.

[24] C. Jones, Software Assessments, Benchmarks, and Best Practices. Boston,
MA, USA: Addison-Wesley, 2000.

[25] S. Kang, O. Choi, and J. Baik, ‘‘Model-based dynamic cost estimation and
tracking method for agile software development,’’ in Proc. IEEE/ACIS 9th
Int. Conf. Comput. Inf. Sci., Aug. 2010, pp. 743–748.

[26] G. Karner, ‘‘Metrics for objectory. No. LiTH-IDA-Ex-9344: 21,’’
Ph.D. dissertation, Univ. Linköping, Linköping, Sweden, Dec. 1993.

[27] M. Heričko and A. Živkovič, ‘‘The size and effort estimates in itera-
tive development,’’ Inf. Softw. Technol., vol. 50, nos. 7–8, pp. 772–781,
Jun. 2008.

[28] C. M. B. da Silva, D. S. Loubach, and A. M. da Cunha, ‘‘Applying the
use case points effort estimation technique to avionics systems,’’ in Proc.
IEEE/AIAA 27th Digit. Avionics Syst. Conf., Oct. 2008, p. 5.

[29] F. Fioravanti, P. Nesi, and F. Stortoni, ‘‘Metrics for controlling effort during
adaptive maintenance of object oriented systems,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance (ICSM) Softw. Maintenance Bus. Change, Aug. 1999,
pp. 483–492.

[30] S. Abrahão, J. Gómez, and E. Insfran, ‘‘Validating a size measure for effort
estimation in model-driven Web development,’’ Inf. Sci., vol. 180, no. 20,
pp. 3932–3954, Oct. 2010.

[31] J. Gomez, C. Cachero, and O. Pastor, ‘‘Conceptual modeling of device-
independent Web applications,’’ IEEE MultimediaMag., vol. 8, no. 2,
pp. 26–39, Apr. 2001.

[32] IFPUG Counting Practices Committee et al., ‘‘Function point counting
practices manual,’’ Tech. Rep. 4.2.1, 2005.

[33] Counting Guidelines for the Application of Function Point Analysis, Defi-
nitions NESMA, Dordrecht, The Netherlands, 1997.

[34] A. Abran, J.-M. Desharnais, and F. Aziz, ‘‘3.5 measurement convertibility–
from function points to COSMIC FFP,’’ in Proc. Cosmic Function Points,
Theory Adv. Practices, 2016, p. 214.

[35] A. Abran, ‘‘FFP reléase 2.0: An implementation of COSMIC func-
tional size measurement concepts,’’ in Proc. FESMA, Amsterdam,
The Netherlands, Oct. 1999.

[36] R. Meli, ‘‘Simple function point: A new functional size measurement
method fully compliant with IFPUG 4. X,’’ in Proc. Softw. Meas. Eur.
Forum, Jun. 2011.

[37] C. Jones, ‘‘Function points as a universal software metric,’’ACMSIGSOFT
Softw. Eng. Notes, vol. 38, no. 4, pp. 1–27, Jul. 2013.

[38] C. Zhang, S. Tong, W. Mo, Y. Zhou, Y. Xia, and B. Shen, ‘‘ESSE: An early
software size estimation method based on auto-extracted requirements
features,’’ in Proc. 8th Asia–Pacific Symp. Internetware. New York, NY,
USA: Association for Computing Machinery, 2016, pp. 112–115, doi:
10.1145/2993717.2993733.

[39] S. Bagriyanik andA. Karahoca, ‘‘Automated COSMIC function point mea-
surement using a requirements engineering ontology,’’ Inf. Softw. Technol.,
vol. 72, pp. 189–203, Apr. 2016.

[40] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T.Menzies,
‘‘A deep learning model for estimating story points,’’ IEEE Trans. Softw.
Eng., vol. 45, no. 7, pp. 637–656, Jul. 2019.

[41] A. Borthwick and R. Grishman, ‘‘A maximum entropy approach to named
entity recognition,’’ Ph.D. dissertation, New York Univ., New York, NY,
USA, 1999.

[42] H. Isozaki and H. Kazawa, ‘‘Efficient support vector classifiers for named
entity recognition,’’ in Proc. 19th Int. Conf. Comput. Linguistics, vol. 1.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2002,
pp. 1–7.

[43] G. Zhou and J. Su, ‘‘Named entity recognition using an HMM-based chunk
tagger,’’ in Proc. 40th Annu. Meeting Assoc. Comput. Linguistics (ACL),
2001, pp. 473–480.

[44] A. McCallum and W. Li, ‘‘Early results for named entity recognition with
conditional random fields, feature induction andWeb-enhanced lexicons,’’
inProc. 7th Conf. Natural Lang. Learn. (HLT-NAACL), vol. 4. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2003, pp. 188–191.

[45] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur,
‘‘Recurrent neural network based language model,’’ in Proc. 11th Annu.
Conf. Int. Speech Commun. Assoc., 2010, pp. 1045–1048.

[46] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[47] J. Hammerton, ‘‘Named entity recognition with long short-term memory,’’
inProc. 7th Conf. Natural Lang. Learn. (HLT-NAACL), vol. 4. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2003, pp. 172–175.

[48] M. Labeau, K. Löser, and A. Allauzen, ‘‘Non-lexical neural architecture
for fine-grained POS tagging,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process., 2015, pp. 232–237.

[49] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and
C. Dyer, ‘‘Neural architectures for named entity recognition,’’ 2016,
arXiv:1603.01360. [Online]. Available: http://arxiv.org/abs/1603.01360

[50] W. Chen, Y. Zhang, and H. Isahara, ‘‘Chinese named entity recognition
with conditional random fields,’’ in Proc. 5th SIGHAN Workshop Chin.
Lang. Process., 2006, pp. 118–121.

[51] G. Fu and K.-K. Luke, ‘‘Chinese named entity recognition using lex-
icalized HMMs,’’ ACM SIGKDD Explor. Newslett., vol. 7, no. 1,
pp. 19–25, Jun. 2005.

[52] C. Jones and O. Bonsignour, The Economics of Software Quality. Reading,
MA, USA: Addison-Wesley, 2011.

[53] E. S. Ristad and P. N. Yianilos, ‘‘Learning string-edit distance,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522–532, May 1998.

[54] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[55] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[56] M. Shepperd and C. Schofield, ‘‘Estimating software project effort using
analogies,’’ IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[57] S. P. Singh, V. P. Singh, and A. K. Mehta, ‘‘Differential evolution using
homeostasis adaption based mutation operator and its application for soft-
ware cost estimation,’’ J. King SaudUniv.-Comput. Inf. Sci., vol. 33, no. 16,
pp. 740–752, Jun. 2018, doi: 10.1016/j.jksuci.2018.05.009.

KUI ZHANG received the master’s degree in
information management and information sys-
tems from the Beijing Institute of Technology,
Beijing, China, in 2010. He is currently pursu-
ing the Ph.D. degree with the Software Engi-
neering Institute (SEI), Beihang University. His
research interests include model-driven engineer-
ing, model-based real-time analysis, airworthi-
ness certification, model-based safety analysis,
and general model-based software engineering.

VOLUME 9, 2021 107135

http://dx.doi.org/10.1016/j.jss.2017.11.066
http://dx.doi.org/10.1145/3143434.3143450
http://dx.doi.org/10.1145/2993717.2993733
http://dx.doi.org/10.1016/j.jksuci.2018.05.009

K. Zhang et al.: Efficiency Improvement of Function Point-Based Software Size Estimation

XU WANG (Member, IEEE) received the bache-
lor’s degree in computer technology from Beihang
University. He is currently an Assistant Engi-
neer with the China Ship Research and Devel-
opment Academy. His research interests include
search-based software engineering, natural lan-
guage processing, and machine learning.

JIAN REN received the dual M.Sc. degree from
the Queen Mary University of London and King’s
College London and the Ph.D. degree in com-
puter science from University College London.
He is currently an Assistant Professor with the
School of Computer Science and Engineering,
Beihang University, Beijing. His research interests
include search-based software engineering, soft-
ware project planning and management, require-
ments engineering, and evolutionary computation.

CHAO LIU (Member, IEEE) received the M.S.
degree in computer software and theory and
the Ph.D. degree from Beihang University.
He was a Professor of software engineering
with Beihang University. His research interests
include software quality engineering, software
testing, model-driven software development, and
software process improvement. During the preced-
ing decade, he primarily focused on the modeling
and verification of safety-critical software and sys-

tems, including safety requirement modeling and analysis, evidence-based
software safety analysis and evaluation, software safety and reliability
analysis based on the software development process, and model-driven
software testing.

107136 VOLUME 9, 2021

