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ABSTRACT This paper investigates the problem of mixed far-field (FF) and near-field (NF) source
localization using a linear electromagnetic-vector-sensor array with gain/phase uncertainties. Firstly, several
special fourth-order cumulant matrices are constructed, such that the shift invariance structure in the
cumulant domain can be derived to estimate the DOA and polarization angles of each source at two
electromagnetic vector sensors (EMVSs). Then, by computing the determinant of the coefficient matrix,
the sources types can be classified with the prior knowledge of the number of both the FF and NF sources.
On this basis, the range of NF sources and the DOAs of mixed sources at the phase reference point are
captured subsequently. Finally, these estimates can be employed to generate the unknown gain/phase errors.
Compared to the existing methods, the proposed one exploits both the spatial and polarization information of
sources and provides a satisfactory parameters estimation performance under unknown phase/gain responses.
Moreover, it does not need to perform any spectral search and not impose restriction on EMVSs placement,
as well as realizes a more reasonable classification of the signal types. Simulations are carried out to verify
the effectiveness of the proposed method.

INDEX TERMS Mixed source localization, direction-of-arrival (DOA), polarization, gain/phase
uncertainties.

I. INTRODUCTION
In recent years, the problem of measuring spatial and polar-
ization information of electromagnetic signals using vector
sensor array has attracted increasing research, and numerous
algorithms [1]–[8] have been developed for parameters esti-
mation of far-field (FF) sources, whose wavefront is assumed
to be a plane wave. However, when a source is located in
the near-field (NF) region of an array, the wavefront must
be characterized by both the DOA and range. The above-
mentioned methods based on the far-field assumption are
not applicable to this situation. Currently, a few methods
have been developed to estimate the DOA, range and polar-
ization parameters of near-field (NF) sources in [9]–[10].
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However, in some practical applications, such as locating
specific items in warehouses by using radio-frequency iden-
tification (RFID) tags [11], each item may be in the near-
field or far-field of the RFID reader antenna array, and hence
both FF and NF sources may coexist in such environment.
In this case, the aforementioned algorithms [1]–[10] may fail
to distinguish and locate the mixed sources.

To cope with this issue, some algorithms have been
recently presented. In [12], a two-stage MUSIC (TSMUSIC)
algorithm was firstly developed to localize mixed sources.
However, it has a high computational complexity. Motivated
by the shortcoming, He and Swamy [13] proposed a
MUSIC-based one dimensional search (MBODS) method so
as to obtain a lower computational cost than TSMUSIC algo-
rithm. However, to distinguish the NF sources from themixed
sources, the MBODS algorithm resort to oblique projection
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technique, which would yield additional estimation errors.
In [14], Xie et al. proposed an efficient mixed sources
localization algorithm without estimating the source number,
which can avoid the performance deterioration induced by
erroneous source number estimation. In [15], a rank reduction
(RARE) based algorithm formixed sources localization in the
presence of unknown mutual coupling was presented, which
is effective for the classification and localization of mixed
sources under unknown mutual coupling. In [16], [17], a two
stage matrix differencing algorithm (TSMDA) was proposed,
which achieves a more reasonable classification of the source
types, alleviates the array aperture loss, as well as enhances
the estimation accuracy of NF sources. In research [18],
the use of hybrid second- and fourth-order statistics using
the MUSIC technique has been considered, which offers a
reasonable classification of the source types. However, it sets
strict limits on the DOA intervals of the signals. In [19],
a new subspace-based method called LOFNS was proposed
for localization of the mixed FF and NF signals imping-
ing on a symmetrical uniform linear arrays (ULA), which
avoids the eigendecomposition and pair-matching processes.
In [20], a novel localization algorithm via cumulant matrix
reconstruction for mixed sources scenario was proposed,
it avoids DOA search for NF sources and achieves a more
reasonable classification of the source types. [21] investigates
the localization of multiple near-field narrowband sources
with a symmetric uniform linear array, and a new linear
prediction approach based on the truncated singular value
decomposition (LPATS) was proposed by taking an advan-
tage of the anti-diagonal elements of the noiseless array
covariance matrix. By exploiting the noncircular information
of the signals, [22] proposed a novel localization method
for mixed NF and FF sources using a symmetric uniform
linear array (ULA). In [23], a new algorithm for mixed
sources localization based on cross-cumulant was devised,
which involves no DOA search and exhibits a higher local-
ization accuracy. However, it still requires 1D-range search
and suffers array aperture loss. Moreover, these methods
in [12]–[23] restrict the array configurations to be ULA with
inter-sensor spacing be within λ

/
4 [12]–[22] or λ

/
8 [23].

Inspired by the idea of nonuniform array, [24] proposed a
localization algorithm for mixed sources using a symmetric
double nested array (SDNA), which extends the array aper-
ture and improves the localization accuracy. However, these
mixed source localization methods [12]–[24] can only mea-
sure the spatial information of the reflected signals, whereas
the polarization of electromagnetic signal is not taken into
account.

Note that the above methods [1]–[24] are derived based
on the assumption that the array is exactly known with-
out uncertainties. However, the antenna arrays in practice
are usually suffering from various uncertainties such as the
unknown gains and phases caused by, say, the differences
among the receivers utilized to demodulate and digitize the
RF signals from the array elements [25]–[30]. This will
results in significant distortion of the amplitude and phase

of the signals received from the array, which will lead to a
serious degradation of estimation accuracy or even failure
of the methods in [1]–[24]. Recently, many methods have
been proposed to discuss the problem of DOA estimation
with unknown inter-sensor gain/phase responses [31]–[37].
In [33], a direction-of-arrival (DOA) estimation method for
the uniform-circular array (UCA) in the presence of gain-
phase errors was proposed. Later, aiming at solving problems
in the Hadamard product-based method proposed specially
for the UCA [33], a novel two-stage dimension reduction
method (DRM) for the DOA estimation with the channel
phase inconsistency was presented in [34]. In [35], an iter-
ative algorithm was presented to estimate the DOAs and
the gains/phases of the uncalibrated elements in partly cali-
brated array. Compared to [35], a computationally more effi-
cient ESPRIT-like method was presented in [36] and further
investigated in [37] by examining the conditions ensuring
the uniqueness of DOA estimates and identifiability (i.e.,
the maximum number of sources that can be resolved), it has
been verified in [37] that a partly calibrated ULA with M
sensor elements is able to identify up to L = M − 2 DOAs.
Note that these algorithms in [25]–[37] are efficient only in
the FF source scenario with traditional scalar-array, while
the problem of mixed source localization with polarization
sensitive array under unknown gain/phase uncertainties has
not been well investigated so far.

In view of the previous analyses, most existing algo-
rithms face the following difficulties: 1) measuring the spatial
and polarization parameters of mixed sources; 2) localizing
the mixed sources successfully with polarization sensitive
array in the presence of gain/phase errors; 3) classifying
the FF and NF sources reasonably; 4) avoiding spectral
search.

To solve these difficulties, we propose a novel algorithm
for mixed source localization using a linear EMVS array with
gain/phase uncertainties. By designing several special fourth-
order cumulants and using the shift invariance properties in
the cumulant domain, the estimation of DOA and polarization
angles of each source at two EMVSs can be achieved. Then
the signal types can be distinguished according to the deter-
minant of coefficient matrix, and the location parameters of
these sources can be calculated by least square method. After
deriving the closed-form parameters estimation of the mixed
sources, the array steering vectors can be estimated, which
can be utilized to further estimate the gain/phase uncertain-
ties. Our main contributions are listed as follows:

1) To the best of our knowledge, this is the first time
that the DOA and polarization parameters of mixed sources
are estimated using a linear EMVS array with unknown
gains/phases uncertainties. The proposed algorithm is robust
to the gain/phase errors and can estimate the unknown
gains/phases as well.

2) The proposed algorithm can estimate the DOA and
polarization angles of mixed sources as well as unknown
gains/phases without knowing the position of each EMVS
and has no restriction on EMVSs placement.
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FIGURE 1. Linear EMVS array configuration.

3) The computational complexity of the proposed algo-
rithm is analyzed, and the CRBs of the linear EMVS array
with gain/phase uncertainties are derived as well.

The rest of the paper is organized as follows: Section 2
introduces the signal model. The proposed method is
described in Section 3. In Section 4, simulations are
conducted to validate the performance of our method.
Section 5 draws the conclusion.

In the paper, the (·)T , (·)∗, (·)H and ⊗ denote the trans-
pose, conjugate, conjugate transpose and kronecker product,
respectively. 6 {·} denotes the argument of a complex number
and diag{·} denotes a diagonal matrix. ‖·‖ and × denote the
2-norm and cross product, respectively.

II. SIGNAL MODEL
Consider K (NF or FF) narrowband and independent sig-
nal sources, including a mixture of K1 FF sources and
K − K1 NF sources, impinging on a linear array with M
EMVSs, each EMVS is composed of three identical, but
orthogonally oriented, electrically short dipoles, plus three
identical but orthogonally oriented magnetically small loops-
all spatially collocated in a point-like geometry, as shown
in Fig.1. We assume that all the EMVSs lie on the y-axis with
their locations being D1,D2, . . . ,DM . We first formulate the
received signal for an ideal array without considering the
unknown gain/phase uncertainties. With the qth EMVS being
the phase reference point, the array output can be modeled
as [12]:

X (t) = AS (t)+ w (t) (1)

where X (t) =
[
x1,1 (t) , x1,2 (t) , x1,3 (t) , x1,4 (t) , x1,5 (t) ,

x1,6 (t) , . . . , xM ,6 (t)
]T is the array output vector, S (t) =

[s1 (t) , . . . , sK (t)]T is the vector of the signal waveforms,
w (t)=

[
w1,1 (t) ,w1,2 (t) ,w1,3 (t) ,w1,4 (t) ,w1,5 (t) ,w1,6 (t) ,

. . . ,wM ,6 (t)
]T is the array noise output vector. A is the

6M×K array steeringmatrix of themixedNF and FF sources,

which is given by:

A

= [a (θ1, γ1, η1, r1) , . . . , a (θK , γK , ηK , rK )] (2)

a (θk , γk , ηk , rk)

=

[[
ej
(
D1αk+D1

2βk
)
⊗ c1k

]T
,

. . . ,
[
ej
(
DMαk+DM 2βk

)
⊗ cMk

]T]T
(3)

αk

=
−2π sin θk

λ
, βk =

πcos2θk
λrk

(4)

where αk and βk are called as the electric angles, λ is the
signal wavelength, θk ∈ [0, π ] and rk are the DOA and the
range of the kth signal at the phase reference point. clk denotes
the response of the kth source at the lth EMVS, which can be
represented by the 3 × 1 electric field vector and the 3 × 1
magnetic-field vector hlk :

clk =
[
elk
hlk

]

=


c1 (θlk , γk , ηk)
c2 (θlk , γk , ηk)
c3 (θlk , γk , ηk)
c4 (θlk , γk , ηk)
c5 (θlk , γk , ηk)
c6 (θlk , γk , ηk)



=


0 −1

cos θlk 0
− sin θlk 0
−1 0
0 − cos θlk
0 sin θlk


︸ ︷︷ ︸

2(θlk )

[
sin γkejηk
cos γk

]
︸ ︷︷ ︸

g(γk ,ηk )

(5)

where θlk denotes the DOA at the lth EMVS, γk ∈
[
0, π2

)
and ηk ∈ [−π, π) are the auxiliary polarization angle and
polarization phase difference angle. It is noted that when the
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kth source is a FF one, βk is approximated by zero since the
range approaches to∞ (see [12] for details).
Taking the unknown inter-sensor gain/phase uncertainties

into account, the steering vector should be rewritten as

ā (θk , γk , ηk , rk) =
[[
g1ej

(
D1αk+D1

2βk
)
⊗ c1k

]T
, . . . ,[

gMej
(
DMαk+DM 2βk

)
⊗ cMk

]T]T
= G̃a (θk , γk , ηk , rk) (6)

where gm = ρmejϕm (m = 1, . . . ,M) denotes the unknown
gain/phase of the mth EMVS. ρm and ϕm are the gain and
phase uncertainties, respectively. G̃ is a 6M × 6M diagonal
matrix representing the gains/phases of the whole array and
is given by

G̃ = blkdiag {g1I6, . . . , gM I6} = diag
{
g̃
}

(7)

where I6 denotes the 6×6 identity matrix and blkdiag {·} con-
structs a block diagonal matrix from the bracketed matrices.
g̃ is the sensor gain/phase vector of the linear EMVS array

g̃ = [g1, . . . , g1, g2, . . . , g2, . . . , gM , . . . , gM ]T (8)

Let the qth EMVS be the reference one, we have

gq = 1 (9)

Consequently, the steering matrix is given by

Ā = G̃A = [ā (θ1, γ1, η1, r1) , . . . , ā (θK , γK , ηK , rK )]
(10)

Therefore, the array output vectorX (t) under unknown inter-
sensor gain/phase responses can be modeled as

X (t) = G̃AS (t)+ w (t) (11)

III. PROPOSED ALGORITHM
A. DOA AND POLARIZATION ESTIMATION OF ALL
SOURCES AT THE mth EMVS
Firstly, the proposed algorithm begins with the fourth-order
cumulant of the array outputs. By constructing several fourth
order cumulant matrices, the shift invariant structure among
the components of the mth EMVS in the cumulant domain
can be derived, from which the estimation of DOA and
polarization parameters of each source at the mth EMVS can
be achieved. Define um,i,k = ci (θmk , γk , ηk) ej

(
Dmαk+Dm2βk

)
,

then we have

cum
(
xm,i (t) , x∗n,o (t) , xp,h (t) , x

∗
q,v (t)

)
= cum


K∑
k=1

gmum,i,ksk (t) ,

(
K∑
k=1

gnun,o,ksk (t)

)∗

,

K∑
k=1

gpup,h,ksk (t) ,

(
K∑
k=1

gquq,v,ksk (t)

)∗

=

K∑
k=1

gmum,i,k
(
gnun,o,k

)∗gpup,h,k(gquq,v,k )∗c4,sk
(m, n, p, q = 1, 2 . . . ,M; i, o, h, v = 1, 2, 3, 4, 5, 6)

(12)

where k denotes the index associated with the kth incident
source, c4,sk = cum

{
sk (t) , s∗k (t) , sk (t) , s

∗
k (t)

}
is the kurto-

sis of the kth signal. Based on the above observation, the fol-
lowing cumulant matrices can be constructed.

R1 =

6∑
o=1

cum
{
xm,1 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9991

(
G̃A

)H
R2 =

6∑
o=1

cum
{
xm,2 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9992

(
G̃A

)H
R3 =

6∑
o=1

cum
{
xm,3 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9993

(
G̃A

)H
R4 =

6∑
o=1

cum
{
xm,4 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9994

(
G̃A

)H
R5 =

6∑
o=1

cum
{
xm,5 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9995

(
G̃A

)H
R6 =

6∑
o=1

cum
{
xm,6 (t) ,

(
xn,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
9996

(
G̃A

)H
(13)

where

999 i=diag

{
6∑

o=1

gmum,i,1
(
gnun,o,1

)∗ c4,s1 , . . . ,
6∑

o=1

gmum,i,K
(
gnun,o,K

)∗ c4,sK
}

(14)

Based on the subspace theory, the 36M × K signal subspace
matrix ESL of R =

[
RT
1 ,R

T
2 ,R

T
3 ,R

T
4 ,R

T
5 ,R

T
6

]T can be
expressed as

ESL =



G̃A9991

G̃A9992

G̃A9993

G̃A9994

G̃A9995

G̃A9996


T (15)
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with T being a K × K invertible matrix, and ESL is com-
posed of the eigenvectors corresponding to the K largest
singular values of R. Let E(i)SL be the submatrice of ESL from
6(i− 1)M + 1 row to 6iM row, andE(h)SL be the partion ofESL
from 6(h−1)M+1 row to 6hM row. From Eq. (15), we have

E(i)SL = J(i)ESL = G̃A999 iT

E(h)SL = J(h)ESL = G̃A999hT = G̃A999 iH(i,h)T (16)

where999 i and999h are two diagonal matrices related to H(i,h),
which is essentially the rotational invariant factor between the
ith and hth components of themth EMVS. J(i) = ei⊗I6 is the
selection matrix, in which ei is a 1×6 row vector with the ith
entry being 1 and 0 elsewhere. and H(i,h) is of the following
form:

H(i,h)= diag


6∑

o=1
gmum,h,1

(
gnun,o,1

)∗ c4,s1
6∑

o=1
gmum,i,1

(
gnun,o,1

)∗ c4,s1 , . . . ,
6∑

o=1
gmum,h,K

(
gnun,o,K

)∗ c4,sK
6∑
s=1

gmum,i,K
(
gnun,o,K

)∗ c4,sK


= diag

{
ch (θm1, γ1, η1)
ci (θm1, γ1, η1)

, . . . ,
ch (θmK , γK , ηK )
ci (θmK , γK , ηK )

}
(17)

Furthermore, since E(i)SL and E(h)SL have full column rank,
a unique non-singular matrix �(i,h) exists such that

E(h)SL = E(i)SL�
(i,h) (18)

It can be easily derived from Eq. (16) that E(h)SL =

E(i)SLT
−1H(i,h)T. Accordingly, we have

�(i,h) = T−1H(i,h)T (19)

which means that �(i,h) and H(i,h) are similar matrices, they
have the same eigenvalues ch(θm1,γ1,η1)

ci(θm1,γ1,η1)
, . . . ,

ch(θmK ,γK ,ηK )
ci(θmK ,γK ,ηK )

.
This implies that H(i,h) can be obtained once �(i,h) is avail-
able.�(i,h) can be solved by the least squares algorithm from
Eq. (18) as

�(i,h) =
(
E(i)HSL E(i)SL

)−1
E(i)HSL E(h)SL (20)

From Eq. (5) and Eq. (17), we can see that the polarization
components of clk satisfies the following relationship

cs (θlk , γk , ηk)=c1 (θlk , γk , ηk)·
[
H(1,s)

]
k

(s=2, . . . , 6)

(21)

where [H(1,s)]k represents the kth diagonal element ofH(1,s).
It can be seen from (19) that H(1,s) can be calculated by
performing eigendecomposition of�(1,s). Then, based on the
Maxwell equation, H(1,s) can be utilized to obtain the

pointing vector 000mk as follows

emk × hmk

= ‖c1 (θmk , γk , ηk)‖2

 1[
H(1,2)

]
k[

H(1,3)
]
k


︸ ︷︷ ︸

fmk

×


[
H(1,4)

]
k[

H(1,5)
]
k[

H(1,6)
]
k


︸ ︷︷ ︸

gmk

(22)

000mk =

 ûmk
v̂mk
ŵmk

 =
 0
sin θ̂mk
cos θ̂mk


=

emk × hmk
‖emk‖ · ‖hmk‖

=
fmk × gmk
‖fmk‖ · ‖gmk‖

(23)

where ‖·‖ and× denote the 2-norm and cross product, respec-
tively. According to Eq. (23), the DOA estimation of the kth
signal at the mth EMVS can be derived as

θ̂mk = arctan
{
v̂mk
ŵmk

}
(24)

According to Eq. (5), we can get

ĝ (γmk , ηmk) =
[
2H

(
θ̂mk

)
2
(
θ̂mk

)]−1
2
(
θ̂mk

)
cmk

(25)

Then, by substituting θ̂mk into the above equation, the corre-
sponding polarization parameters can be estimated as

γ̂mk = arctan

{[
ĝ (γmk , ηmk)

]
1[

ĝ (γmk , ηmk)
]
2

}
η̂mk = 6

[
ĝ (γmk , ηmk)

]
1 −
6
[
ĝ (γmk , ηmk)

]
2 (26)

B. DOA AND POLARIZATION ESTIMATION OF ALL
SOURCES AT THE nth EMVS
Similarly, in order to construct the rotational invariant struc-
ture among the components of the nth EMVS in the cumulant
domain, several cumulant matrices can be designed firstly,
then the rotational invariant relationship among the elements
of the nth EMVS can be derived, and hence the DOA and
polarization parameters of the incident sources at the nth
EMVS can be calculated. In specific, the fourth-order cumu-
lant matrices can be designed as follows

C1 =

6∑
o=1

cum
{
xn,1 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8881

(
G̃A

)H
C2 =

6∑
o=1

cum
{
xn,2 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8882

(
G̃A

)H
C3 =

6∑
o=1

cum
{
xn,3 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8883

(
G̃A

)H
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C4 =

6∑
o=1

cum
{
xn,4 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8884

(
G̃A

)H
C5 =

6∑
o=1

cum
{
xn,5 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8885

(
G̃A

)H
C6 =

6∑
o=1

cum
{
xn,6 (t) ,

(
xm,o (t)

)∗
,X (t) ,XH (t)

}
=

(
G̃A

)
8886

(
G̃A

)H
(27)

where

888i=diag

{
6∑

o=1

gnun,i,1
(
gmum,o,1

)∗ c4,s1 , . . . ,
6∑

o=1

gnun,i,K
(
gmum,o,K

)∗ c4,sK
}

(28)

Then, the 36M × K signal subspace matrix ESR of C =[
CT
1 ,C

T
2 ,C

T
3 ,C

T
4 ,C

T
5 ,C

T
6

]T can be expressed as

ESR =



G̃A8881

G̃A8882

G̃A8883

G̃A8884

G̃A8885

G̃A8886


T (29)

Following the procedure of parameters estimation of the kth
source at themth EMVS, the Poynting vector of the kth signal
at the nth EMVS can be achieved according to the following
equations

J(h)ESR = J(i)ESR333(i,h) (30)

333(i,h) = T−1Q(i,h)T (31)

333(i,h) =

[(
J(i)ESR

)H
J(i)ESR

]−1(
J(i)ESR

)H
J(h)ESR

(32)

000nk =

 ûnk
v̂nk
ŵnk

 =
 0
sin θ̂nk
cos θ̂nk



=

 1[
Q(1,2)

]
k[

Q(1,3)
]
k

×

[
Q(1,4)

]
k[

Q(1,5)
]
k[

Q(1,6)
]
k


∥∥∥∥∥∥
 1[

Q(1,2)
]
k[

Q(1,3)
]
k

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

[
Q(1,4)

]
k[

Q(1,5)
]
k[

Q(1,6)
]
k

∥∥∥∥∥∥
(33)

where

Q(i,h)= diag


6∑

o=1
gnun,h,1

(
gmum,o,1

)∗ c4,s1
6∑

o=1
gnun,i,1

(
gmum,o,1

)∗ c4,s1 , . . . ,
6∑

o=1
gnun,h,K

(
gmum,o,K

)∗ c4,sK
6∑

o=1
gnun,i,K

(
gmum,o,K

)∗ c4,sK


= diag

{
ch (θn1, γ1, η1)
ci (θn1, γ1, η1)

, . . . ,
ch (θnK , γK , ηK )
ci (θnK , γK , ηK )

}
(34)

Note thatQ(i,h) can be estimated by performing eigendecom-
position of333(i,h). Therefore, the DOA of the kth source at the
nth EMVS can be achieved as

θ̂nk = arctan
{
v̂nk
ŵnk

}
(35)

From Eq. (5), we can get

ĝ (γnk , ηnk)=
[
2H

(
θ̂nk

)
2
(
θ̂nk

)]−1
2H

(
θ̂nk

)
cnk (36)

Then the corresponding polarization parameters can be
obtained as

γ̂nk = arctan

{[
ĝ (γnk , ηnk)

]
1[

ĝ (γnk , ηnk)
]
2

}
η̂nk = 6

[
ĝ (γnk , ηnk)

]
1 −
6
[
ĝ (γnk , ηnk)

]
2 (37)

C. PARAMETERS PAIR MATCHING
Note that there may exist mismatch between the parameters
estimates of the kth source at the mth EMVS and nth EMVS,
thus the match pairing operation needs to be conducted. It is
known that the DOAs of the kth source at the mth EMVS
and nth EMVS are distinct, while the polarization param-
eters at the two sensors are approximately the same. This
fact can be easily utilized to pair θ̂mk , θ̂nk , γ̂mk , γ̂nk , η̂mk , η̂nk
successfully. Furthermore, since several independent eigen-
decompositions are performed in this section, which may
lead to mismatch of the eigenvalues obtained from differ-
ent eigendecomposition. In specific,

[
H(i,h)

]
k or

[
Q(i,h)

]
k

(i, h = 1, 2, . . . , 6) in different H(i,h) or Q(i,h) may not cor-
respond to the same target, but their is no mismatch between[
H(i,h)

]
k and its corresponding eigenvector, as well as[

Q(i,h)
]
k and its corresponding eigenvector. Herein, we take

the kth row of TH (i,h) and TQ(i,h) as the the eigenvec-
tors related to

[
H(i,h)

]
k and

[
Q(i,h)

]
k , respectively. Thus,

different
[
H(i,h)

]
k or

[
Q(i,h)

]
k can be paired for the same

source by pairing the orthogonal rows of TH (i,h) or TQ(i,h).
Take, for example,

[
H(1,2)

]
k and

[
H(1,3)

]
k . Let k denotes the

row index of the matrix element with the largest absolute
value in the f th column of the matrix

{
TH (1,2)

[
TH (1,3)

]−1}
.
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Then the kth row of TH (1,2) must correspond to the
f th row of TH (1,3). Now,

{[
H(1,2)

]
k , k = 1, . . . ,K

}
and{[

H(1,3)
]
k , k = 1, . . . ,K

}
have been correctly paired. In a

similar way,
[
H(i,h)

]
k and

[
Q(i,h)

]
k can all be paired success-

fully. For more details of the pair matching operation, please
refer to [3].

D. LOCATION ESTIMATES OF MIXED SOURCES AT PHASE
REFERENCE POINT AND CLASSIFICATION OF
SIGNAL TYPES
In this subsection, the main goal is to distinguish the signal
types and locate the mixed sources. Based on the DOA esti-
mation of the kth source at themth and nth EMVSs, the signal
types can be classified by computing the determinant of the
coefficient matrix, and the location estimates can be obtained
by the least square method subsequently.

With the DOA estimation of the kth source at the mth and
nth EMVSs, the following equations hold according to the
array geometry in Fig. 1.

rmk sin θ̂mk − rnk sin θ̂nk = Dn − Dm
rmk cos θ̂mk − rnk cos θ̂nk = 0 (38)

Write in matrix form, Eq. (38) can be rewritten as[
sin θ̂mk − sin θ̂nk
− cos θ̂mk cos θ̂nk

]
︸ ︷︷ ︸

555k

[
rmk
rnk

]
︸ ︷︷ ︸

Rk

=

[
Dn − Dm

0

]
︸ ︷︷ ︸

ϒk

(39)

where555k is the coefficient matrix, which is composed of the
DOAs of the kth target at the mth and nth sensors. Rk is the
unknown range matrix of the kth source.

When the kth source is a FF one, θmk is approximately
equal to θnk , that is to say, 555k almost becomes a singular
matrix. Thus, the following equation holds for FF source

det (555k) ≈ 0 (40)

Therefore, the FF sources can be determined by selecting
the signals corresponding to the K1 minimum values of
|det (555k)| (k = 1, . . . ,K ). For the kth FF source, let the
range r̂k be∞, its DOA and polarization parameters can be
estimated as

θ̂k =
θ̂mk + θ̂nk

2
, γ̂k =

γ̂mk + γ̂nk

2
, η̂k =

η̂mk + η̂nk

2
(41)

When the kth source is a NF one, i.e., θmk 6= θnk ,555k would be
a a full rankmatrix, thus the remaining sources corresponding
to the largest K −K1 values of |det (555k)| (k = 1, . . . ,K ) are
regarded as the NF ones, and the range matrix of the kth NF
source can be estimated as

R̂k =

[
r̂mk
r̂nk

]
=555k

−1ϒϒϒk (42)

Define {xk , yk} as the location of the kth NF source, it is
obvious that the following equation holds.

xk = r̂nk sin θ̂nk + Dn = r̂mk sin θ̂mk + Dm
yk = r̂nk cos θ̂nk = r̂mk cos θ̂mk (43)

Thus, the location of the kth NF source can be computed by

x̂k =

(
r̂nk sin θ̂nk + Dn

)
+

(
r̂mk sin θ̂mk + Dm

)
2

ŷk =
r̂nk cos θ̂nk + r̂mk cos θ̂mk

2
(44)

From Eq. (44), the DOA, range and polarization parameters
of the kth NF source at the phase reference point can be
obtained as

θ̂k = arctan
{
ŷk
x̂k

}
, r̂k =

√
x̂2k + ŷ

2
k

γ̂k =
γ̂mk + γ̂nk

2
, η̂k =

η̂mk + η̂nk

2
(45)

E. UNKNOWN GAIN/PHASE ESTIMATION
Now we perform EVD on the covariance matrix Rx =

E
{
X (t)XH (t)

}
:

Rx = Us6sUH
s + Un6nUH

n (46)

where 6s ∈ CK×K and 6n ∈ C(6M−K )×K are the diagonal
matrices containing the K largest and (6M − K ) smallest
eigenvalues of Rx , respectively. Us ∈ C6M×K and Un ∈

C6M×(6M−K ) are composed of the eigenvectors of Rx corre-
sponding to the K largest and (6M − K ) smallest eigenval-
ues, respectively.

With the DOA, range, and polarization angles estimation
of the mixed sources, the orthogonality between the noise
subspace Un and steering vectors ā

(
θ̂k , γ̂k , η̂k , r̂k

)
(k =

1, . . . ,K ) can be utilized to get the gain/phase estimation.
Then we have

UH
n G̃a

(
θ̂1, γ̂1, η̂1, r̂1

)
...

UH
n G̃a

(
θ̂K , γ̂K , η̂K , r̂K

)
 =

 06M−K ,1
...

06M−K ,1

 (47)

G̃a
(
θ̂k , γ̂k , η̂k , r̂k

)
could be reformulated as

G̃a
(
θ̂k , γ̂k , η̂k , r̂k

)
= diag

{
a
(
θ̂k , γ̂k , η̂k , r̂k

)}
g̃ (48)

Thus, Eq. (47) can be transformed as
UH
n diag

{
a
(
θ̂1, γ̂1, η̂1, r̂1

)}
...

UH
n diag

{
a
(
θ̂K , γ̂K , η̂K , r̂K

)}


︸ ︷︷ ︸
W

g̃

=

[
W1

...W2
...W3

] g̃1
16
g̃3


=

[
W1

...W3

]
︸ ︷︷ ︸

W13

[
g̃1
g̃3

]
+W216 = 0K (6M−K ),1 (49)
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where 16 is a 6 × 1 vector with all ones and 0K (6M−K ),1
denotes a K (6M − K ) column vector with all zeros.W1 and
W3 are composed of the left 6 (q− 1) columns and right
6 (M − q) columns of W, respectively. W2 consists of the
middle six columns ofW. Then we can obtain the least square
solution of Eq. (49) as

g̃13 = −
(
W13

HW13

)−1
W13

HW216 (50)

As a result, the array gains/phases can be estimated as

ĝn =



6∑
l=1

g̃13 (6 (n− 1)+ l)

6
n < q

6∑
l=1

g̃13 (6 (n− 2)+ l)

6
n > q

(51)

F. IMPLEMENTATION OF THE PROPOSED ALGORITHM
In this subsection, the proposed algorithm is summarized.
In the previous subsections, we use true covariance matrices
and their corresponding subspace matrices for simplicity.
However, in practice, the covariance matrix Rx is usually
unavailable. In cases of finite snapshots, the array covariance
matrix can be approximately computed by

R̂x =
1
L

L∑
l=1

x (tl) xH (tl) (52)

where L is the total number of snapshots. Consequently,
the presented method for mixed sources localization using
linear EMVS array with gain/phase uncertainties is summa-
rized as follows.
Step 1: Construct the fourth-cumulant matrices according

to Eq. (13) and Eq. (27).
Step 2: Estimate the DOAs and polarization parameters of

the mixed sources at the mth EMVS and nth EMVS from
Eq. (16)-Eq. (26) and Eq. (30)-Eq. (37), respectively.
Step 3: Pair the parameters estimates at the mth and nth

EMVSs for the same target.
Step 4: Classify the signal types by computing the coeffi-

cient matrix of Eq. (39).
Step 5: Estimate the parameters of the mixed sources at the

phase reference point according to Eq. (41)-Eq. (43).
Step 6: Estimate the covariance matrix R̂x by Eq. (52).
Step 7: Eigendecompose R̂x to generate its noise

subspace Ûn.
Step 8: Obtain the unknown gain/phase errors from

Eq. (49)-Eq. (51).

G. COMPUTATIONAL COMPLEXITY
The main computations of the proposed method include:
(a) construction of twelve 6M × K fourth-order cumulant
matrices Ri and Ci (i = 1, . . . , 6) with O(12 · 9(6M)2L)
flops, (b) eigendecomposition to obtain ESL and ESR with
O( 83 (36M)

3) flops, (c) estimation of H(1,2), H(1,3), H(1,4),
H(1,5), H(1,6), Q(1,2), Q(1,3), Q(1,4), Q(1,5) and Q(1,6) with

O(20K 2 (6M)+10
(
4
3K

3
)
) flops, (d) construction of covari-

ance matrix R̂x with O((6M)2L) flops, (e) eigendecomposi-
tion of R̂x withO( 43 (6M)

3) flops. Overall, the major compu-
tational load of the proposed algorithm is O(12 · 9(6M)2L +
8
3 (36M)

3
+ 20K 2 (6M)+ (6M)2L + 4

3 (6M)
3) flops.

IV. SIMULATION RESULTS
In this section, simulations are conducted to validate the
performance of the proposed algorithm and the results
are compared with one representative existing approach
in [21] and the related Cramer-Rao bound (CRB). In our
simulations, we consider a linear array composed of
M = 6 EMVSs with D1 = −3λ,D2 = 0,D3 =

5λ,D4 = 5.5λ,D5 = 6λ,D6 = 6.25λ. For the
cross-cumulant based algorithm in [21], a 36-element ULA
composed of scalar sensors with spacing λ

8 is considered.
Hence, the number of sensor elements is the same for all
the two algorithms. The gain/phase vector is chosen as
g̃ =

[
0.8218ej

π
3 1T6 ,1

T
6 ,1.0413e

−j π4 1T6 ,0.7209e
j π5 1T6 ,1.2999

ej
π
6 1T6 , 0.5434e

−j π2 1T6
]T

. 100 Monte Carlo experiments are
conducted to obtain the results, and the following root mean
squard error (RMSE) is defined as

RMSE =

√
1

100K

∑K

k=1

∑100

j=1
E
[
(α̃k − αk)

2
]

where α̃k is the estimated αk , k denotes the source number
and j denotes the trial number.

In the first experiment, the proposed algorithm is used to
deal with one FF source and one NF source under gain/phase
uncertainties. The DOA, range and polarization parameters
(θ, r, γ, η) of the two sources are (20◦, 5λ, 40◦, 80◦) and
(50◦,∞, 45◦, 60◦), respectively.

A. RMSE VERSUS SNR
The number of snapshots is set as 1000. When the SNR
varies from 0dB to 40dB, the RMSEs of parameters esti-
mations versus SNR is shown in Fig. 2. As it can be seen,
the proposed algorithm significantly outperforms the cross-
cumulant based algorithm [21]. For the proposed method,
it can robustly estimate the DOA and range of mixed sources
under the gain-phase errors. However, owing to the exis-
tence of unknown gains/phases, the algorithm in [21] cannot
localize mixed sources effectively. Moreover, our method can
also accurately estimate the polarization angles and unknown
gains/phases. Note that the RMSE of the proposed method
does not approach the CRB effectively, the main reason is
that it only uses the information inside of the EMVS but does
not make use of the array aperture for parameters estimation.

B. RMSE VERSUS SNAPSHOTS
The SNR is fixed at 20 dB. When snapshot number varies
from 300 to 3000, the RMSEs of the parameters estimations is
shown in Fig. 3. Again, it is seen that the proposed algorithm
still has obvious advantages over the method in [21] for all
available snapshots.
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FIGURE 2. RMSEs of parameters estimates for one FF and one NF source versus SNR.

In the second experiment, we consider the situation where
two NF sources are impinging on the above array with

(θ, r, γ, η) being (20, 5λ, 40, 80) and (50◦, 9λ, 45◦, 60◦),
respectively.
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FIGURE 3. RMSEs of parameters estimates for one FF and one NF source versus snapshots.
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FIGURE 4. RMSEs of parameters estimates for two NF sources versus SNR.

1) RMSE VERSUS SNR
The RMSEs of parameters estimates using the proposed algo-
rithm is presented in Fig. 4. In addition, the cross-cumulant

based method [21] and the related CRB are also given for
comparison. We can see that in the pure NF scenario, the pro-
posed algorithm significantly outperforms the other method.
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FIGURE 5. RMSEs of parameters estimates for two NF sources versus snapshots.

On the other hand it can be seen that our proposed method is
robust to the unknown gains/phases in the estimation of DOA

and range, while there exists serious performance degrada-
tion for the cross-cumulant based method [21]. Moreover,
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it can be found that the proposed algorithm can well estimate
the polarization angles and unknown sensor gains/phases
as well. Additionally, it is worth noting that there exists a
gap between the RMSEs of the proposed method and the
corresponding CRBs, the reason is the same as that of the first
experiment.

2) RMSE VERSUS SNAPSHOTS
The SNR is fixed at 20dB. When the number of snapshots
varies from 300 to 3000, the RMSEs of parameters estima-
tions versus number of snapshots are plotted in Fig. 5. It can
be observed that the simulation results are similar to those of
Figs. 4 and the proposed method gains obvious advantages
over the cross-cumulant based method [21].

V. CONCLUSION
An efficient robust localization algorithm is proposed in this
paper to localize the mixed FF and NF sources using a linear
EMVS array with gain/phase uncertainties. Compared with
some existing methods, the proposed approach can measure
both the sources’ spatial and polarization information, and
is able to achieve high-accuracy estimation performance in
the presence of unknown inter-sensor gain/phase responses.
Moreover, it avoids the spectral search and has no restriction
on EMVSs placement, as well as realizes a more reasonable
classification of the signal types.

APPENDIX A
Considering a zero mean complex Gaussian vector X(t),
which has the following covariance matrix:

Rx = G̃ARsAH G̃H
+ σ 2I6M (53)

where G̃ is a 6M × 6M diagonal matrix representing the
gains/phases of the whole array, Ā is the steering matrix, Rs
is the covariance matrix of the incident signals.

The unknown parameter vector in Rx can be defined as

εεε =
[
θθθT , rT ,γγγ T ,ηηηT , gT ,ϕϕϕT

]T
(54)

where θθθ = [θ1, . . . , θK ]T , r =
[
rK1+1, . . . , rK

]T ,
γγγ = [γ1, . . . , γK ]T , ηηη = [η1, . . . , ηK ]T , ρρρ =

[ρ1, . . . , ρ1, . . . , ρM−1, . . . , ρM−1]T ∈ C6(M−1)×1, ϕϕϕ =
[ϕ1, . . . , ϕ1, . . . , ϕM−1, . . . , ϕM−1]T ∈ C6(M−1)×1. Suppose
that the number of snapshots is L, then the general form of
the (m, n)-th element in the Fisher information matrix (FIM)
can be written as [15]

Fmn = L · tr
{
R−1x

∂Rx

∂εm
R−1x

∂Rx

∂εn

}
(55)

A. DERIVATIVES WITH RESPECT TO DOA
The partial derivative of the covariance matrix with the DOA
θm is given by

∂Rx

∂θm
= G̃ȦθmRsAH G̃H

+ G̃ARsȦH
θm
G̃H (56)

where Ȧθm =
∂A
∂θm

. Substituting (56) into (55), we have

Fθmθn
= 2L · Re

{
tr
(
G̃ȦθmRsAH G̃HR−1x G̃ȦθnRsAH G̃HR−1x

)
+ tr

(
G̃ȦθmRsAH G̃HR−1x G̃ARsȦH

θn
G̃HR−1x

)}
(57)

Observe that

Ȧθm = ȦθemeTm (58)

where the unit vector em is the mth column vector of the
identity matrix, and Ȧθ is the matrix of derivatives defined by

Ȧθ =
K∑
m=1

∂A
∂θm

(59)

using (58), equation (57) becomes

Fθmθn
= 2L ·Re

×

{
tr
(
G̃ȦθemeTmRsAH G̃HR−1x G̃ȦθeneTnRsAH G̃HR−1x

)
+ tr

(
G̃ȦθemeTmRsAH G̃HR−1x G̃ARseneTn Ȧ

H
θ G̃

HR−1x
)}

= 2L ·Re

×

{(
eTmRsAH G̃HR−1x G̃ȦθeneTnRsAH G̃HR−1x G̃Ȧθem

)
+

(
eTmRsAH G̃HR−1x G̃ARseneTn Ȧ

H
θ G̃

HR−1x G̃Ȧθem
)}
(60)

Hence,

Fθθθθθθ

= 2L ·Re
{(

RsAH G̃HR−1x G̃Ȧθ
)
�

(
RsAH G̃HR−1x G̃Ȧθ

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
θ G̃

HR−1x G̃Ȧθ
)T}

(61)

Herein, � denotes the Hadamard product.

B. DERIVATIVES WITH RESPECT TO RANGE
Let

Ȧr =

K∑
m=K1+1

∂A
∂rm

(62)

where K1 is the number of FF source, it can be similarly
obtained that

Frr

= 2L ·Re
{
H̄
[(

RsAH G̃HR−1x G̃Ȧr

)
�

(
RsAH G̃HR−1x G̃Ȧr

)T
(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
r G̃

HR−1x G̃Ȧr

)T]
H̄T
}
(63)
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where H̄ is a (K − K1) × K matrix with its (m, n)th entry
being [

H̄
]
m,n =

{
1, if n = K1 + m
0, otherwise

(64)

C. DERIVATIVES WITH RESPECT TO γγγ

Similarly we obtain

Fγγγγγγ

= 2L ·Re
{(

RsAH G̃HR−1x G̃Ȧγ
)
�

(
RsAH G̃HR−1x G̃Ȧγ

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
γ G̃

HR−1x G̃Ȧγ
)T}

(65)

where

Ȧγ =
K∑
m=1

∂A
∂γm

(66)

D. DERIVATIVES WITH RESPECT TO ηηη

In a similar way we obtain

Fηηηηηη

= 2L ·Re
{(

RsAH G̃HR−1x G̃Ȧη
)
�

(
RsAH G̃HR−1x G̃Ȧη

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
η G̃

HR−1x G̃Ȧη
)T}

(67)

where

Ȧη =
K∑
m=1

∂A
∂ηm

(68)

E. DERIVATIVES WITH RESPECT TO GAIN
Repeating the same set of considerations leading to (61) we
obtain

Fρiρj = 2L · Re
{
tr
(
˙̄AρiRsĀHR−1x

˙̄AρjRsĀHR−1x
)

+ tr
(
˙̄AρiRsĀHR−1x ĀRs

˙̄A
H
ρj
R−1x

)}
(69)

where

˙̄Aρj =
∂Ā
∂ρj
= ejeTj PA (70)

Here P is a diagonal matrix containing the exponents of the
sensors’ phases, which is of the following form

[P]6M×6M = diag
{
1, . . . 1, ejϕ1 , . . . , ejϕ1 ,

ejϕM−1 , . . . , ejϕM−1
}

(71)

Note that since the gain of the first EMVS is assumed
known and therefore 7 6 j 6 6M . We therefore define the
6 (M − 1)× 6M matrix[

Q̄
]
i,j =

{
1 if j = i+ 6
0 otherwise

(72)

Using Q̄ we can write

Fρρρρρρ

= 2L · Re
{
Q̄
[(

PARsĀHR−1x
)
�

(
PARsĀHR−1x

)T
+

(
PARsĀHR−1x ĀRsAHPH

)
�

(
R−1x

)T]
Q̄T
}

(73)

F. DERIVATIVES WITH RESPECT TO PHASE
Repeating the considerations leading to (60) we obtain

Fϕiϕj = 2L · Re
{
tr
(
˙̄AϕiRsĀHR−1x

˙̄AϕjRsĀHR−1x
)

+ tr
(
˙̄AϕiRsĀHR−1x ĀRs

˙̄A
H
ϕj
R−1x

)}
(74)

where

˙̄Aϕj =
∂Ā
∂ϕj
= jejeTj Ā (75)

Substituting (75) in (74) we obtain

Fϕϕϕϕϕϕ = 2L · Re
{
Q̄
[
−

(
ĀRsĀHR−1x

)
�

(
ĀRsĀHR−1x

)T
+

(
ĀRsĀHR−1x ĀRsĀH

)
�

(
R−1x

)T]
Q̄T
}

(76)

G. DERIVATIVES WITH RESPECT TO DOA-RANGE
CROSS TERMS
In an analogous manner, we can get

Fθθθr

= 2L ·Re
{[(

RsAH G̃HR−1x G̃Ȧr

)
�

(
RsAH G̃HR−1x G̃Ȧθ

)T
(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
r G̃

HR−1x G̃Ȧθ
)T]

H̄T
}
(77)

H. DERIVATIVES WITH RESPECT TO DOA-γγγ CROSS TERMS
In a similar way we obtain

Fθθθγγγ = 2L · Re
{(

RsAH G̃HR−1x G̃Ȧγ
)

�

(
RsAH G̃HR−1x G̃Ȧθ

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
γ G̃

HR−1x G̃Ȧθ
)T}
(78)

I. DERIVATIVES WITH RESPECT TO DOA-ηηη CROSS TERMS
In an analogous manner, we can get

Fθθθηηη

= 2L ·Re
{(

RsAH G̃HR−1x G̃Ȧη
)
�

(
RsAH G̃HR−1x G̃Ȧθ

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
η G̃

HR−1x G̃Ȧθ
)T}

(79)

VOLUME 9, 2021 132425



H. Ma et al.: Mixed FF and NF Source Localization Using a Linear EMVS Array With Gain/Phase Uncertainties

J. DERIVATIVES WITH RESPECT TO DOA-GAIN
CROSS TERMS
Similarly we get

Fθθθρρρ = 2L ·Re
{[(

RsĀH G̃HR−1x
)
�

(
PARsĀHR−1x G̃Ȧθ

)T
+

(
RsĀHR−1x ĀRsAHPH

)
�

(
R−1x G̃Ȧθ

)T]
Q̄T
}
(80)

K. DERIVATIVES WITH RESPECT TO DOA-PHASE
CROSS TERMS
Similarly, Fθθθϕϕϕ is given by

Fθθθϕϕϕ = 2L · Re
{[
j
(
RsAH G̃HR−1x

)
�

(
ĀRsĀHR−1x G̃Ȧθ

)T
−j
(
RsAH G̃HR−1x ĀRsĀH

)
�

(
R−1x G̃Ȧθ

)T]
Q̄T
}
(81)

L. DERIVATIVES WITH RESPECT TO RANGE-γγγ
CROSS TERMS
In a similar manner, Frγγγ can be derived as

Frγγγ

= 2L · Re
{
H̄
[(

RsAH G̃HR−1x G̃Ȧγ
)

�

(
RsAH G̃HR−1x G̃Ȧr

)T
(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
γ G̃

HR−1x G̃Ȧr

)T]}
(82)

M. DERIVATIVES WITH RESPECT TO RANGE-ηηη
CROSS TERMS
Similarly we get

Frηηη

= 2L · Re
{
H̄
[(

RsAH G̃HR−1x G̃Ȧη
)

�

(
RsAH G̃HR−1x G̃Ȧr

)T
(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
η G̃

HR−1x G̃Ȧr

)T]}
(83)

N. DERIVATIVES WITH RESPECT TO RANGE-GAIN
CROSS TERMS
Similarly, Frρρρ can be written as

Frρρρ

= 2L · Re
{
H̄
[(

RsAH G̃HR−1x
)

�

(
PARsAH G̃HR−1x G̃Ȧr

)T

(
RsAH G̃HR−1x G̃ARsAHPH

)
�

(
R−1x G̃Ȧr

)T]
Q̄T
}
(84)

O. DERIVATIVES WITH RESPECT TO RANGE-PHASE
CROSS TERMS
Similarly, Frϕϕϕ can be written as

Frϕϕϕ

= 2L · Re
{
H̄
[
j
(
RsAH G̃HR−1x

)
�

(
ĀRsĀHR−1x G̃Ȧr

)T
−j
(
RsAH G̃HR−1x ĀRsĀH

)
�

(
R−1x G̃Ȧr

)T]
Q̄T
}
(85)

P. DERIVATIVES WITH RESPECT TO γγγ -ηηη CROSS TERMS
Similarly, Fγγγηηη is given by

Fγγγηηη

= 2L ·Re
{(

RsAH G̃HR−1x G̃Ȧη
)
�

(
RsAH G̃HR−1x G̃Ȧγ

)T
+

(
RsAH G̃HR−1x G̃ARs

)
�

(
ȦH
η G̃

HR−1x G̃Ȧγ
)T}

(86)

Q. DERIVATIVES WITH RESPECT TO γγγ -GAIN CROSS TERMS
In a similar way, we obtain

Fγγγρρρ

= 2L ·Re
{[(

RsĀH G̃HR−1x
)
�

(
PARsĀHR−1x G̃Ȧγ

)T
+

(
RsĀHR−1x ĀRsAHPH

)
�

(
R−1x G̃Ȧγ

)T]
Q̄T
}
(87)

R. DERIVATIVES WITH RESPECT TO γγγ -PHASE
CROSS TERMS
Similarly, Fγγγϕϕϕ can be derived as

Fγγγϕϕϕ

= 2L · Re
{[
j
(
RsAH G̃HR−1x

)
�

(
ĀRsĀHR−1x G̃Ȧγ

)T
− j

(
RsAH G̃HR−1x ĀRsĀH

)
�

(
R−1x G̃Ȧγ

)T]
Q̄T
}
(88)

S. DERIVATIVES WITH RESPECT TO ηηη-GAIN CROSS TERMS
In a similar way, we get

Fηηηρρρ

= 2L · Re
{[(

RsĀH G̃HR−1x
)
�

(
PARsĀHR−1x G̃Ȧη

)T
+

(
RsĀHR−1x ĀRsAHPH

)
�

(
R−1x G̃Ȧη

)T]
Q̄T
}
(89)
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T. DERIVATIVES WITH RESPECT TO ηηη-PHASE
CROSS TERMS
In a similar way, Fηηηϕϕϕ is given by

Fηηηϕϕϕ

= 2L · Re
{[
j
(
RsAH G̃HR−1x

)
�

(
ĀRsĀHR−1x G̃Ȧη

)T
−j
(
RsAH G̃HR−1x ĀRsĀH

)
�

(
R−1x G̃Ȧη

)T]
Q̄T
}
(90)

U. DERIVATIVES WITH RESPECT TO PHASE-GAIN
CROSS TERMS
In a similar way, Fϕϕϕρρρ is given by

Fϕϕϕρρρ = 2L · Re
{[
j
(
ĀRsĀHR−1x

)
�

(
PARsĀHR−1x

)T
+ j

(
ĀRsĀHR−1x ĀRsĀHPH

)
�

(
R−1x

)T]
Q̄T
}
(91)

V. THE CRAMER-RAO LOWER BOUND FOR DOA, RANGE,
POLARIZATION PARAMETERS, GAIN AND PHASE
Taking the above components together, we can formulate the
FIM as the following expression

F =


Fθθθθθθ Fθθθr Fθθθγγγ Fθθθηηη Fθθθρρρ Fθθθϕϕϕ
Frθθθ Frr Frγγγ Frηηη Frρρρ Frϕϕϕ
Fγγγθθθ Fγγγ r Fγγγγγγ Fγγγηηη Fγγγρρρ Fγγγϕϕϕ
Fηηηθθθ Fηηηr Fηηηγγγ Fηηηηηη Fηηηρρρ Fηηηϕϕϕ
Fρρρθθθ Fρρρr Fρρργγγ Fρρρηηη Fρρρρρρ Fρρρϕϕϕ
Fϕϕϕθθθ Fϕϕϕr Fϕϕϕγγγ Fϕϕϕηηη Fϕϕϕρρρ Fϕϕϕϕϕϕ

 (92)

Subsequently, the CRBs can be defined as:

CRBθ =

√√√√ 1
K

K∑
i=1

[
F−1

]
ii (93)

CRBr =

√√√√ 1
K − K1

2K−K1∑
i=K+1

[
F−1

]
ii (94)

CRBγ =

√√√√√ 1
K

3K−K1∑
i=2K−K1+1

[
F−1

]
ii (95)

CRBη =

√√√√√ 1
K

4K−K1∑
i=3K−K1+1

[
F−1

]
ii (96)

CRBρ =

√√√√√ 1
K

4K−K1+6(M−1)∑
i=4K−K1+1

[
F−1

]
ii (97)

CRBϕ =

√√√√√ 1
K

4K−K1+12(M−1)∑
i=4K−K1+6(M−1)+1

[
F−1

]
ii (98)
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