
Received January 3, 2020, accepted January 17, 2020, date of publication February 4, 2020, date of current version March 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.2971630

Efficient Auditing Scheme for Secure Data Storage
in Fog-to-Cloud Computing
XINGJUN ZHANG AND WEI SI
School of Computer Science and Technology, Department of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Corresponding author: Xingjun Zhang (xjzhang@xjtu.edu.cn)

ABSTRACT Fog-to-cloud computing has now become a new cutting-edge technique along with the rapid
popularity of Internet of Things (IoT). Unlike traditional cloud computing, fog-to-cloud computing needs
more entities to participate in, including mobile sinks and fog nodes except for cloud service provider
(CSP). Hence, the integrity auditing in fog-to-cloud storage will also be different from that of traditional
cloud storage. In the recent work of Tian et al., they took the first step to design public auditing system for
fog-to-cloud computing. However, their scheme becomes very inefficient since they uses intricate public
key cryptographic techniques, including bilinear mapping, proof of knowledge etc. In this paper, we design
a general and more efficient auditing system based on MAC and HMAC, both of which are popular private
key cryptographic techniques. By implementing MAC and HMAC, we give a concrete instantiation of our
auditing system. Finally, the theoretical analysis and experiment results show that our proposed system has
more efficiency in terms of communication and computational costs.

INDEX TERMS MAC, homomorphic MAC, cloud storage, fog-to-cloud computing.

I. INTRODUCTION
Fog computing, which is first proposed by Bonomi et al.
in 2012 [6], has now been a popular technique for kinds of
industrial fields based on Internet-of-Things (IoT) devices
[15], [16], [19], [32]. As a middleware between IoT devices
and clouds, fog computing nodes have their own basic com-
puting, storage as well as resources to achieve the require-
ments for data preprocessing and transmission. Therefore,
the model of fog-to-cloud computing emerges as an attrac-
tive solution for data storage in some resource-constraint
large-scale industrial applications.

However, fog-to-cloud computing has also to face some
classical problems appeared in traditional cloud computing.
One of the most famous concerns is how to ensure the
integrity of stored in cloud service provider (CSP). The rea-
son is as follows. Some CSP may try to conceal the fact
that some important data of IoT devices or fog nodes has
been lost or corrupted due to kinds of internal or external
attacks [25]. Hence, developing efficient auditing techniques
for secure data storage in fog-to-cloud computing are also
very necessary and significant just like in traditional cloud
computing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

Although, in past years, many auditing schemes are pre-
sented for traditional cloud storage [12], [22], [25], [26], [31],
[33], including many private and public auditing schemes, all
of them are not directly applicable to fog-to-cloud computing
for two main reasons [23], [24]. The first one is that the
data from IoT is generated by various devices and hence
it is inadvisable for those users (or data owners) to first
retrieve these data and generate corresponding authenticators
before outsourcing. The second one, which is also more
important, is that the existing auditing systems do not involve
fog computing nodes, which are rather crucial entities for
fog-to-cloud computing because those nodes can help to
efficiently process and rapidly transmit for large-scale of IoT
data. Hence, it is urgent to develop new auditing techniques to
ensure data’s integrity for fog-to-cloud computing. In recent
work of [23], Tian et al. took the first step to this direction and
try to fill this gap. In fact, they designed a privacy-preserving
public auditing system based on bilinear mapping and the
so-called tag-transforming strategy. In addition, they also
evaluated the performances of their scheme by theoretical
analysis and comprehensive experiments.

It is well-known that, in public auditing scheme, the task
to verify the integrity of users’ data is suitable to be out-
sourced to another authorized third-party auditor (TPA),
which may have more professional knowledge on auditing
and more computational resources. However, it should also

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 37951

https://orcid.org/0000-0003-1118-7109

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

be noted that, generally speaking, public auditing systems
have lower efficiencies than private ones. Just as Zhang et al.
illustrated in [33], for a same data file, the time consump-
tions for proving, verifying and outsourcing in public audit-
ing scheme are hundreds (or even thousands) of times of
the corresponding process in their private scheme. Hence,
in some pursuing-efficiency scenarios, especially for the
resource-constrained mobile sinks in fog-to-cloud comput-
ing, we believe the private auditing system may be more
popular. Therefore, it is also necessary and significant to
design efficient private auditing schemes for the fog-to-cloud
computing.

In this paper, we try to take the step to this direction.
More specifically, we propose a new auditing system based
on private authentication techniques: message authentication
code (MAC) [14] and homomorphic MAC (HMAC) [2],
[8]–[10] schemes, both of which are important primitives in
cryptography. TheMAC technique is used in the transmission
process betweenmobile sinks and fog nodeswhile theHMAC
scheme is used to verify the integrity of data blocks stored in
CSP. Since a common private key is needed for the parties in
MAC or HMAC when generating or verifying the tags, this
model is not suitable to introduce TPA into it.

Moreover, we give a concrete instantiation of the system
by instantiating the hash-based MAC scheme in [14] and the
efficient HMAC scheme designed by Agrawal and Boneh
in [2].

Finally, we also analyze the performances of our proposed
system and compare them with that of Tian et al. as well
as two related traditional cloud auditing schemes in [20]
and [18]. The experiment results show that our system
outperformed Tian et al.’s system in terms of communication
costs and computational efficiency. Moreover, our protocol
is suitable for fog-to-cloud computing and hence prior to the
two schemes in [18], [20].

A. RELATED WORKS
One of the earliest work to consider the integrity of data
stored in remote clouds is proof of retrievability (PoR) sug-
gested by Jues and Kaliski [13]. In PoR, one can combine
error-correcting code with spot-checking of data blocks to
ensure the data’s integrity. But this technique only supports
a limited number of verification operations. At the same
time, Ateniese et al. proposed provable data possession (PDP)
based RSA-homomorphic authenticators, which can support
both unlimited number of challenges and public auditing [3].
Subsequently, many works focused on the improvement of
communication efficiency [4], [7], [11], [20]. Some other
researches considered the dynamic update of PDP schemes
[12], [22], [26], [28]. To support data dynamics, kinds of
authenticated data structures are widely introduced into the
public auditing schemes. For example, in 2011, Wang et al.
presented the Merkle-hash-tree-based public auditing for
dynamic data [26]. Later, Zhu et al. proposed a new data
structure, called index hash table, to achieve data dynamics
[34]. In 2017, Tian et al. further suggested a two-dimensional

data structure, named dynamic hash table, to achieve both
public auditing and dynamic data updating [22]. At the same
year, Shen et al. proposed another novel structure, which
includes a doubly linked info table and a location array,
to achieve dynamic data [21].

However, few of them can be directly extended to achieve
efficient and secure verification for data storage in the
fog-to-cloud based IoT scenarios, although there are fruit-
ful schemes suggested in the traditional cloud storage. The
two main reasons are as follows. First, in fog-to-cloud case,
the data are usually generated by various IoT devices, instead
of the data owners themselves. Second, some new entities,
like fog nodes, are introduced and also play important roles
for processing and transmission in fog-to-cloud scenario. But
in the traditional cloud storage, they are never considered.
Therefore, in the recent works, Tian et al., [23] and Kashif
and Mohammed [18] respectively filled this gap in the pub-
lic auditing setting based on different techniques. Neverthe-
less, the more efficient private key auditing schemes are not
considered in both papers.

As for the fog-computing, we note that, in the recent
work [27], Wu et al. proposed a fog-computing-enabled
cognitive network functions virtualization approach for an
information-centric future Internet and also designed a com-
munication scheme between the fog nodes and the future
Internet Nodes for the forwarding process.

B. ORGANIZATIONS
The organizations of this paper are as follows. In Section 2,
we introduce the background of fog-to-cloud computing as
well as some preliminaries, including basic notations and
primitives. In Section 3, we presented our proposed auditing
system. The security analysis can be found in Section 4.
In Section 5, we give a concrete instantiation of the general
system presented in Section 3 and discuss the problem of key-
distribution. Then we evaluate our system’s performances
from the aspects of communication and computational costs.
Finally, conclusions can be found in Section 7.

II. BACKGROUND AND PRELIMINARIES
A. SYSTEM MODEL
As shown in Fig. 1, a highly modernized company consists
of many workshops, each of which is equipped with a large
number of sensors, gathering the related environmental data,
such as humidity, temperature as well as brightness etc..
Moreover, in each workshop, many mobile sinks are also
pre-arranged at proper sites, whose actions are to collect the
environment data from the sensors and transmit them to fog
nodes.

Generally speaking, every fog node is a local server cluster
and is able to conduct some data processing and analysis. The
the original data from mobile sinks and the ‘‘new’’ generated
ones are transmitted to CSP for cost-efficient storage.

In order to ensure the integrity of data, each mobile sink
should compute and generate the authenticatable metadata
(i.e. tag), which is bound to the original data. Then the pair of

37952 VOLUME 9, 2021

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

FIGURE 1. System model.

data-tag is sent to the corresponding fog node. After receiving
the pair from the mobile sink, the fog node first verifies it.
If it can pass the verification, then accept the original data as
one block that will be stored to CSP. Otherwise, drop it and
require the mobile sink to resubmit it.

Similarly, the fog node also needs to compute authenti-
cated tags for the data blocks from mobile sinks and the
pre-processed data from itself so that it is able to audit the
integrity of those data after transmitting all the data and their
tags to CSP.

B. BASIC NOTATIONS
In the whole paper, we denote by λ the security parameter of

algorithms. For a set X , the symbol x
$
←− X means that ran-

domly choose element x from X . For a positive number q, |q|
denotes its binary length and [q] denotes the set {1, 2, . . . , q}.
The symbol 〈·, ·〉 means that the inner-product operation of
two vectors. PPT is an abbreviation of probabilistic poly-
nomial time. A function f (λ) is called negligible if, for any
c > 0, there exists a λ0 ∈ Z such that for any λ > λ0, it holds
that f (λ) < λ−c.

Now, we list other symbols appeared in this paper as well
as their definitions in Table 1.

C. PSEUDORANDOM FUNCTIONS
Now, we recall the notion of pseudorandom function (PRF).
In particular, consider a set of functions from K × D to R.
Denote by func(D,R) all the functions from D to R. Then

f
$
←− func(D,R) means that, for x ∈ D, the value f (x) is

random in R. Randomly choose a K from K and let O0 =

F(K , ·) be an oracle, which will compute and output the
value F(K , x) when given the input x. Finally, for a PPT
adversary A, who can make queries to the oracle O0 or f (·),
it is computational indistinguishable to decide which one it
is interacting with. Since the performance of F looks like a
truly random function f , we call the set consisting of F is a
pseudorandom function set.

TABLE 1. Symbols and the corresponding definitions.

D. MESSAGE AUTHENTICATION CODE
Amessage authentication code (MAC)MAC consists of three
PPT algorithms MAC-KeyGen,MAC, and MAC-Verify,
which have the following forms.

• MAC-KeyGen : For the input λ, this algorithm

randomly chooses a key k
$
←− {0, 1}λ and output it.

VOLUME 9, 2021 37953

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

• MAC : Take some key k and a message m ∈ {0, 1}∗ as
inputs. Then compute a tag t for m and output it.

• MAC-Verify :Take some key k , a messagem and a tag
t as inputs. This algorithm will output a bit b ∈ {0, 1}.
If b = 1, then accept t as a valid tag for m. Otherwise, t
is not a valid tag for m.

The correctness requires that, for any λ, every k ∈ {0, 1}λ

and all m ∈ {0, 1}∗, it holds that
1← MAC-Verify(k,m,MAC(k,m)).

The security requires that, any PPT adversary can generate
a valid tag on a ‘‘new’’ message (i.e., a message not
sent by the communicating parties) with at most negligible
probability.

E. HOMOMORPHIC MAC
Informally, a homomorphicMAC scheme is an authentication
technology, which allows ‘‘legal’’ users to verify the correct-
ness of the generated tag t for a message v, which in fact is
an (n + s)-dimensional vector in some finite field Fq, and
recompute a new tag on a combined message.

Formally, a (q, n, s) homomorphic MAC scheme consists
of four PPT algorithms HMAC-KeyGen, HMAC, HCombine
and HVerify, which have the following forms.
• HMAC-KeyGen : For the input λ, this algorithm
generates and outputs a secret key K .

• HMAC : Take as inputs of a secret key K , an identifier id ,
an augmented vector v ∈ Fn+sq , and j ∈ [s] indicating
that v is the the j-th basis vector of the vector space
identified by id . This algorithm will output a tag T for v.

• HCombine : For the inputs of ` (` < s) constants
r1, . . . , r` ∈ Fq, vectors v1, . . . , v` ∈ Fn+sq and the
corresponding tags T1, . . . ,T`, this algorithm outputs a
tag T for the combined vector y :=

∑`
i=1 rivi ∈ Fn+sq .

• HVerify : For the inputs of a secret keyK , an identifier
id , a vector y ∈ Fn+mq and a tag T , this algorithm
outputs 0 (reject) or 1 (accept).

The correctness requires that, for any secret key K ,
r1, . . . , r` ∈ Fq,

Tj = HMAC(K , id, vj, j),

it holds that
1← HVerify

×

K , id,∑̀
j=1

rjvj,HCombine
({

(rj, vj,Tj)`j=1
}) .

The security requires that any PPT attacker, obtaining the
signatures on arbitrary vector spaces of its choice, is not able
to give a valid triple (id, y,T), where id is new, or equals
to some identifier idi that it had obtained the corresponding
signature but y does not belong to the space identified by idi.

III. THE PROPOSED AUDITING SYSTEM
In this section, we present our general auditing system for
fog-to-cloud computing based on a MAC scheme

MAC= (MAC-KeyGen,MAC,MAC-Verify)

and a (q, n, s) homomorphic MAC scheme

HMAC= (HMAC-KeyGen,HMAC,HCombine,HVerify).

In fact, the whole system mainly includes six PPT
algorithms: a key-generation algorithm KeyGen, a
tag-generation algorithm for mobile sinks TagGenMS,
a tag-generation algorithm for fog nodes TagGenFN,
a challenge-generation algorithm ChalGen, a
proof-generation algorithm ProofGen and a verification
algorithm Verify. All the entities are equipped with those
algorithms as follows.

• A key generation center (KGC)1 runs the key-generation
algorithm to obtain some keys and distributes them to the
entities in the system, including s1 mobile sinks, f fog
nodes and CSP.

• After obtaining a distributed key ki,j (1 ≤ i ≤ f , 1 ≤
j ≤ s1) from KGC, each mobile sink MSi,j runs the
algorithm TagGenMS, which in fact consists of the
authentication algorithm of a MAC scheme, to generate
an authenticated tag ti,j for its data block mi,j ∈ Fnq and
transmits the pair (mi,j, ti,j) to its fog node Fi.

• Then the fog node Fi will first check the correctness
of the transmitted pair (mi,j, ti,j) by using the verifica-
tion algorithm MAC-Verify of the sameMAC scheme
based on the common key ki,j, which is also distributed
by KGC. If it can not pass the verification, then drop
it and require the mobile sink to resubmit a new pair.
Else, discard the tag ti,j and only save the data block
mi,j. Meanwhile, the fog node is also allowed to make
analysis on the data blocks collected from all the mobile
sinks and hence generates new data blocks denoted
by mi,s1+1,mi,s1+2, . . . ,mi,s. For all the data blocks
mi,1,mi,2, . . . ,mi,s, the fog node Fi binds them into an
intact file with filename IDi, and respectively computes
tags for each block by runningTagGenFN, which in fact
is a homomorphicMAC algorithm, based on another key
Ki, and submits all the data-tag pairs to CSP for secure
storage.

• If some fog node wants to check the integrity of its
data blocks, it can run ChalGen to obtain a challenge
message chal and gives them to CSP.

• Now, CSP can run ProofGen to get a related proof 0
based on the storage data blocks and returns it to the fog
node.

• Finally, the fog node can check the response 0 by
running Verify based on the same key Ki, which is
also distributed by KGC.

Specifically, the six algorithms included in the above
system are described as follows.

• KeyGen : The key generation algorithm takes the
security parameter λ as its input and will generate
keys for all the entities except for CSP in the system.

1Here, we remark that, the KGC must be honest and cannot be compro-
mised, just as the basic assumptions in [29], [30].

37954 VOLUME 9, 2021

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

Run f · s1 times MAC-KeyGen(λ) to get the MAC-keys{
{k1,1, . . . , k1,s1}, . . . , {kf ,1, . . . , kf ,s1}

}
,

which is denoted by
{
k1, . . . , kf

}
. Then run f times

HMAC-KeyGen(λ) to get HMAC-keys

K1, . . . ,Kf .

The j-th mobile sink MSi,j for the i-th fog node Fi, who
gets the keys ki and Ki, will obtain the key ki,j. That is,
all the keys of the mobile sinks corresponding to some
fog node are also shared by this fog node. 2

• TagGenMS : The tag generation algorithm for mobile
sinks takes data block and a MAC-key as inputs, and
will output a tag under the MAC-key for this data block.
Concretely, for the data block mi,j ∈ Fnq collected by the
mobile sink MSi,j, this algorithm computes

ti,j← MAC(ki,j,mi,j),

and outputs it.
• TagGenFN : This algorithm is run by fog nodes, which
takes a HMAC-key Ki, an identifier IDi, data block
mi,j ∈ Fnq and an index j as inputs, and will output a
tag under the HMAC-key of some fog node for this data
block. Specifically, for the data blockmi,j, this algorithm
first augments it as

vi,j =

mi,j, j︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

s

 ∈ Fn+sq .

Then compute and output the tag

Ti,j← HMAC(Ki, IDi, vi,j, j).

• ChalGen : This algorithm generates the challenge
messages for each fog nodes. In particular, for the input
of parameter `, it randomly chooses ` different indices
1 ≤ j1 < j2 < · · · < j` ≤ s as well as coefficients
r1, . . . , r` ∈ Fq. Denote by chal the set of challenge
messages

{(j1, r1), . . . , (j`, r`)}

and output it.
• ProofGen : Once receiving the challenge chal from
the i-th fog node Fi, the CSP first parses chal as

{(j1, r1), . . . , (j`, r`)} .

Then run

(v,T)← HCombine
(
{(rτ , vi,jτ ,Ti,jτ)}

`
τ=1

)
.

Denote by 0 the proof of (v,T) and return it to the
corresponding fog node Fi.

2In this case, if some of themobile sinks are compromised or revoked, then
it does not affect the key’s security of other mobile sinks. However, if the i-th
fog node is compromised or revoked from the system, then the secret keys
of MSi,1, . . . ,MSi,s1 are all exposed hence need to be updated.

• Verify :When receiving the returned proof 0, the fog
node Fi first parses 0 as (v,T) and runs

b← HVerify(Ki, IDi, v,T).

If b = 1, then it thinks that its original data blocks are
still securely stored in CSP. Else if b = 0, then the
integrity of those blocks is broken.

IV. SECURITY ANALYSIS
In this section, we analyze the security of our proposed
system in Section III, which can be divided into two cases:
data security from mobile sinks to fog node and data integrity
from fog node to CSP.

A. DATA SECURITY FROM MOBILE SINKS TO FOG NODE
Theorem 1: If MAC is a secure MAC scheme, then the
transmission of data blocks from mobile sinks to fog node
is secure.

Proof: For the i-th fog node Fi, who has the MAC-key

ki = {ki,1, . . . , ki,s1},

it shares the key ki,j (1 ≤ j ≤ s1) with the j-th mobile
sink MSi,j. Consider a PPT adversary A, who does not know
the key ki,j but intends to denote MSi,j and submit a forged
message-tag pair (m, t) to the fog node Fi. If it can pass the
verification of fog node, that is,

1← MAC-Verify(ki,j,m, t),

then this (m, t) is just a successful forgery for the MAC
scheme MAC . Therefore, according to the security of MAC ,
we know that any ‘‘illegal’’ PPT adversary can not generate a
valid message-tag pair with non-negligible probability. That
is, the transmission process of data blocks from mobile sinks
to the corresponding fog node is secure.

B. DATA INTEGRITY FROM FOG NODE TO CSP
Theorem 2: If HMAC is a secure HMAC scheme, then the
data integrity (stored in CSP) for the system presented in
Section III can be guaranteed.

Proof: To respond to the challenge message

chal = {(j1, r1), . . . , (j`, r`)}

from the i-th fog node, the CSP needs to compute the proof
0 as

(v,T)← HCombine
(
{(rτ , vi,jτ ,Ti,jτ)}

`
τ=1

)
. (1)

Therefore, we only need to consider the unforgeability of
0. If some block mi,j0 (or its augmented vector vi,j0) is
not securely stored in CSP, then the randomly chosen `
indices j1, j2, . . . , j` include j0 with probability `/s. Mean-
while, CSP can also not generate a correct proof 0 from (1).
Hence, the CSP has to return a forged proof 0′ = (v′,T ′)
without using mi,j0 (or vi,j0). According to the security of
HMAC , we know that the forged proof 0′ can pass the
verification of HVerify with at most negligible probability.

VOLUME 9, 2021 37955

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

As a result, the fog node Fi accepts this proof (i.e. running
Verify(Ki, v′,T ′) and obtaining the output 1) with also
negligible probability. Hence, the data integrity from fog node
to CSP for our proposed system is hold if the underlying
HMAC scheme HMAC is secure.

V. A CONCRETE INSTANTIATION AND SOME
DISCUSSIONS
A. A CONCRETE INSTANTIATION
In this subsection, we give a concrete instantiation for our
proposed system presented in Section III by instantiating
the MAC and HMAC schemes. In particular, we choose the
hash-based MAC scheme in [14] and the HMAC scheme
proposed by Agrawal and Boneh in [2]. Then the concrete
instantiations of the six algorithms are as follows.
• KeyGen′ : The key generation algorithm takes the
security parameter λ as its input. Randomly choose(

k1,1, . . . , k1,s1 , . . . , kf ,1, . . . , kf ,s1
) $
←− {0, 1}λfs1 ,

and set ki as
(
ki,1, . . . , ki,s1

)
for 1 ≤ i ≤ f . Then

randomly choose ui
$
←− Fn+sq and bi,j

$
←− Fq for 1 ≤

i ≤ f , 1 ≤ j ≤ s. Set

Ki =
(
ui, bi,1, . . . , bi,s

)
.

The j-th mobile sink MSi,j for the i-th fog node Fi, who
gets the keys ki and Ki, will obtain the key ki,j.

• TagGenMS′ : For the data block mi,j ∈ Fnq collected by
the mobile sink MSi,j, this algorithm computes

ti,j=H
(
IV ||(ki,j ⊕ opad)||H

(
IV ||(ki,j ⊕ ipad)||mi,j

))
,

in whichH is a standard hash function, IV is an arbitrary
fixed initial vector, opad is formed by repeating the byte
36 in hexadecimal as many times as needed and the
string ipad is formed in the same way using the the byte
5C. Output ti,j as the tag of the data block mi,j.

• TagGenFN′ : This algorithm is run by fog nodes, which
takes a HMAC-key

Ki =
(
ui, bi,1, . . . , bi,s

)
,

an identifier IDi, data block mi,j ∈ Fnq and an index j
as inputs. For the data block mi,j, this algorithm first
augments it as

vi,j =

mi,j, j︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

s

 ∈ Fn+sq .

Then compute and output the tag

Ti,j = 〈ui, vi,j〉 + bi,j ∈ Fq.

• ChalGen′ : Same as ChalGen.
• ProofGen′ : Once receiving the challenge chal from
the i-th fog node Fi, the CSP first parses chal as

{(j1, r1), . . . , (j`, r`)} .

Then compute

v =
∑̀
τ=1

rτ vi,jτ , T =
∑̀
τ=1

rτTi,jτ .

Finally, output the proof 0 = (v,T).
• Verify′ :When receiving the returned proof0, the fog
node Fi first parses 0 as (v,T) and computes

T ′i,j := 〈ui, v〉 +
s∑
j=1

(
vn+jbi,j

)
, (2)

where vn+j is the (n+ j)-th component of v. If T ′i,j = Ti,j,
then output 1. Otherwise, output 0.

In addition, we remark that the fog node Fi will check the
correctness of the pair (mi,j, ti,j) transmitted from the mobile
sink MSi,j as follows. Compute

t ′i,j = H
(
IV ||(ki,j ⊕ opad)||H

(
IV ||(ki,j ⊕ ipad)||mi,j

))
,

and check if ti,j = t ′i,j. If it is not, drop it and require the
mobile sink to resubmit a new pair. Otherwise, discard the
tag ti,j and continue to do the next steps.

B. KEY-DISTRIBUTION
Note that in the concrete instantiation presented in
Section V-A, each mobile sink owns a key ki,j ∈ {0, 1}λ.
But each fog node Fi will be distributed s1 MAC-keys
ki,1, . . . , ki,s1 and a HMAC-key

Ki = (ui, bi,1, . . . , bi,s) ∈ Fn+2sq .

Therefore, the distribution of keys for all the entities
(especially for fog nodes) becomes a heavy work in our
proposed system. In this subsection, we adopt cryptographic
PRF to change the situations and try to alleviate the heavy
task of key-distribution.
Concretely, let

F1 : K(1)
× {0, 1}∗ → Fq,

F2 : K(2)
× {0, 1}∗ → {0, 1}λ

be two families of PRFs. The i-th fog node Fi randomly
chooses k (1)i ∈ K(1) and k (2)i ∈ K(2). Then for 1 ≤ j ≤ s,
compute

bi,j← F1(k
(1)
i , j), (3)

and

ki,1← F2(k
(2)
i , 1), . . . , ki,s1 ← F2(k

(2)
i , s1).

Distribute ki,j to its j-th mobile sink (corresponding to Fi)
while keeping

Ki = (ui, bi,1, . . . , bi,s)

as its own HMAC-key.

37956 VOLUME 9, 2021

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

C. DYNAMIC UPDATE AND PREVENTING REPLAY ATTACKS
In this subsection, we discuss the problem of dynamic update
and security against replay attacks for our proposed proto-
col, which is based on the key-distribution technique dis-
cussed in Section V-B. Here, we adopt the map-version
table T , which is a small data structure on the verifier side
(i.e. fog nodes Fi’s) to record the update information and
proposed by Barsoum and Hasan in [5]. Concretely, the map-
version table consists of three columns: Serial number SN (i),
block number j, and block version BV (i). The serial number
is an indexing to the file blocks and indicating the physical
position of a block in a data file. The block number is a
counter used to make a logical indexing to the file blocks
and the block version indicates the current versions of the
file block. If a specific block is updated, then its BV (i) is
incremented by 1.

1) DYNAMIC UPDATE
To support dynamic update, the original key-generation in (3)
will be further changed as

bi,j← F1(k
(1)
i , j,BV (i)). (4)

When the i-th fog node Fi wanting to dynamic update the
outsourced blocks, it sends a request in the form:

〈IDi,BlockOp, j,m∗i,j,T
∗
i,j〉,

where IDi is Fi’s identity, BlockOp corresponds to block
modification (denoted by BM), block insertion (BI), or block
deletion (BD), and (m∗i,j,T

∗
i,j) is the new block-tag pair

computed as follows.
• Block Modification. First update BV (i)

= BV (i)
+ 1 in

the map-version table T and compute

T ∗i,j = 〈ui,m
∗
i,j〉 + bi,j

= 〈ui,m∗i,j〉 + F1(k
(1)
i , j,BV (i)). (5)

Upon receiving the request, the CSP replaces mi,j with
m∗i,j and Ti,j with T

∗
i,j.

• Block Insertion. If Fi wants to insert a new block m∗i
into the outsourced data file, it first defines SN =

SNmax + 1, BN = BNmax + 1, BV (i)
= 1, where SNmax

and BNmax are respectively current maximum of serial
and block numbers, and generates the tag T ∗i as in (5).
Upon receiving this request, the CSP adds (m∗,T ∗i) into
the data file outsouced by Fi.

• Block Deletion. The deletion request is the form
〈IDi,BD, j, null, null〉. The map-version table T is
updated by deleting the j-th item and the CSP deletes
the j-th data-tag pair.

When verifying the returned proof from CSP, which is
based on some challenge message chal, the fog node Fi looks
up T and finds out the block information (j1, . . . , j`) as well
as the block version (BV (i)

j1
, . . . ,BV (i)

j`
). Then re-compute bi,j

according to (4) and continue the next steps in the algorithm
Verify′.

Obviously, the additional operations to support dynamic
update only consist of an appended map-version table and an
additional input forF1. Therefore, in terms of communication
and computational costs, it does not affect efficiency.

2) PREVENTING REPLAY ATTACKS
Here, we discuss the security of preventing replaying attacks
for our concrete instantiation protocol in the above Subsec-
tion. Of course, in order to obtain security against replay
attack, we need further modify (4) as

bi,j← F1(k
(1)
i , j,BV (i),Timei,j), (6)

where Timei,j denotes the time stamp generating bi,j. Then we
have
Theorem 3: If H is a secure hash function, then the mod-

ified protocol of Section V-A (according to (6)) is secure
against replay attacks.

Proof. Recall that the replay attack means that a part
of the returned proof from CSP, which is based on some
challenge message

chal = {(j1, r1), . . . , (j`, r`)} ,

may be replaced by some previous data information. Without
loss of generality, we assume that the first block’s information
is replaced by its former block v∗i,j1 as well as the correspond-
ing tag T68i,j1 . In other words, the CSP computes its proof
0∗ = (v∗,T ∗) as

v∗ = r1v∗i,j1 +
∑̀
τ=2

rτ vi,jτ , T ∗ = r1T ∗i,j1 +
∑̀
τ=2

rτTi,jτ .

According to the equation (2) in the algorithm of Verify′,
we know that this 0∗ can pass the verification with at most
negligible probability if the time stamp is considered.

VI. PERFORMANCE EVALUATIONS
In this section, we make the performance analysis on our con-
crete instantiation for the system in Section V-A in terms of
communication and computational costs. In fact, we choose
three classical and related protocols: [20], [23], and [18], and
compare the performances of them with our proposed one.
We remark that, in [20], Shacham and Waters proposed one
private key protocol and another public key verification pro-
tocol for traditional cloud storage, respectively. Meanwhile,
the proposed protocol by Munir and Mohammed in [18]
is almost same as the public key verification one in [20].
However, as we said in the part of Introduction, the exist-
ing authentication protocols for traditional cloud storage can
not be directly used to fog-to-cloud computing and do not
consider how the mobile sinks securely transmit data to fog
nodes. For convenience to compare, the fog node is seen as
the data owner in traditional cloud auditing.

A. COMMUNICATION COSTS
1) MOBILE SINK TO FOG NODE (MStoFG)
In the process of transmission from mobile sink to fog node,
each mobile sink MSi,j needs to compute a MAC-tag ti,j for

VOLUME 9, 2021 37957

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

TABLE 2. The total comparisons of communication costs for our system and other ones.

its data block mi,j and transmit the data-tag pair (mi,j, ti,j)
to fog node. Hence, the communication overhead for this
process is the length of the tag ti,j (i.e. |ti,j|), which in fact
is the length of the chosen hash function H (denoted by |H |).
Accordingly, the tag ti,j in [23] consists of an element in the
basis groupG and hence, it communication overhead for this
process is |G|. In addition, since in the systems of [20] and
[18], the process of transmitting frommobile sink to fog node
is not considered, the communication costs from mobile sink
to fog node for both protocols are null.

2) FOG NODE TO CSP (FGtoCSP)
For the process of transmitting from fog node to CSP, each
fog node Fi needs to recompute HMAC-tag

Ti,1,Ti,2, . . . ,Ti,s1

for all the corresponding data blocks mi,1,,mi,2, . . . ,mi,s1
collected from its mobile sinks. In addition, it also needs to
compute the HMAC-tags

Ti,s1+1,Ti,s1+2, . . . ,Ti,s

for the data blocks mi,s1+1,mi,s1+2, . . . ,mi,s generated by
itself. Therefore, the communication overhead in our system
for this process is

|Ti,1| + |Ti,2| + · · · + |Ti,s| = s · |Fq|.

In turn, the communication overhead in [23] equals to

|Ti,1| + · · · + |Ti,s1 | + |Ti,s1+1| + · · · + |Ti,s|

= (2|G| + · · · 2|G| + |G| + · · · + |G|)
= (2s1 + (s− s1)) · |G|
= (s+ s1) · |G|.

If the fog nodes are seen as the data owners in tradi-
tional cloud storage, then for total s data blocks m1, . . . ,ms,
the communication overheads for [20] and [18] are also the
generated tags for all the data blocks, which respectively
equal to s · |Fq| and s · |G|.
3) CHALLENGE MESSAGES FROM FOG
NODE TO CSP (ChFGtoCSP)
In our system, if a fog node wants to check the integrity of its
stored data blocks, then it only needs to submits a challenge
message

chal = {(j1, r1), . . . , (j`, r`)}

to CSP. Hence, the communication cost for fog node equals
to

|chal| = |j1| + · · · + |j`| + |r1| + · · · + |r`|

= |s| + · · · + |s| + |Fq| + · · · + |Fq|
= ` · (|s| + |Fq|).

However, the corresponding challenge message in the system
[23] consists of

(j1, . . . , j`, r1, . . . , r`)

and another group elements φi ∈ G1, θ1, . . . , θs1 , ζ ∈ G as
well as a knowledge proof 3, where G1 is the codomain of
pairing from G. Hence, the communication cost will be

|chal| = |j1| + · · · + |j`| + |r1| + · · · + |r`|

+|φi| + |θ1| + · · · + |θs1 | + |ζ | + |3|

= ` · (|s| + |Fq|)+ |G1| + (1+ s1) · |G| + |3|
= ` · (|s| + |Fq|)+ (2+ s1) · |G| + |3|.

Similarly, both the communication costs from data owners in
[20] and [18] equal to equal to ` · (|s| + |Fq|).

4) RESPONSES FROM CSP TO FOG NODE (ReCSPtoFN)
After receiving a challenge message chal from fog node
(or TPA in [23]), the CSP will compute and return a proof 0
based on this chal as well as the stored data-tag pairs. Hence,
the communication cost in our system equals to the length
of 0 = (v,T) ∈ Fn+sq × Fq (i.e. |0| = (n + s + 1) · Fq).
Accordingly, the proof 0 in [23] consists of an element 2 ∈
G1 and hence its communication cost is |G1| = |G|. In
addition, we can compute the length of the responses from
CSP to the verifier (i.e. fog nodes or TPA) in [20] and [18]
respectively equal to 2 · |Fq| and |Fq| + |G|.
All the comparisons of communication costs for the four

protocols are summarized in Table 2, where ‘‘×’’ denotes the
corresponding item is not considered.

B. COMPUTATIONAL COSTS
Now, we consider the computational costs of our system.
In particular, we set the parameter q as 28 so that each element
in Fq can be represented in 1 Byte. Let n = 1024 and
hence each data block mi,j has size of 1024 Bytes (i.e. 1 M).
In addition, we choose s1 = 100, s = 150, which means that
each fog node will obtain 100 data blocks from 100 mobile
sinks and it will generate 50 additional blocks.
Since Tian et al.’s system is based on different techniques

from ours, we can not instantiate them in a same frame. But
all the experiments are done based on the same hardwire
device. That is, a laptop with the configuration of Intel(R)
Core(TM) i7-7500 CPU 2.7GHz 2.9 GHz and 8 GB RAM.
The experiment on our system is run in Matlab with version
R2014a since all the computations consist of linear operations
of vectors. We also implement Tian et al.’s system within
the framework of ‘‘Charm’’ [1] and choose the 512-bit SS
elliptic curve from pairing-based cryptography library [17] as
the basis of whole scheme. Then the running time for all the

37958 VOLUME 9, 2021

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

TABLE 3. The comparisons of running time for our and other systems.

processes are listed in the Table 3. We remark that, in Table 3,
TagGenMS’ is the tag-generation algorithm for single data
block, which is run by mobile sink. TagGenFN′ is the
tag-generation algorithm for 150 data blocks. FG-Verify1
denotes fog node’s verification of data-tag pairs transmitted
from 100 mobile sinks while FG-Verify2 means the ver-
ification on the CSP’s response. In [23], the check of CSP’s
response is done by TPA. However, in our system, the fog
node verifies it. Finally, ChalGen′ and ProofGen′ are
respectively the generations of challenge messages for FG
(or TPA in Tian et al.’s scheme) and proof for CSP.

In addition, we also implement the two traditional auditing
schemes in [20] and [18] based on the same hardwire devices
and software platform, respectively. Still note that, there
are not mobile sinks in traditional cloud storage and hence
the running time of TagGenMS′ and FG-Verify1 is null,
which is denoted by ‘‘× ’’ in Table 3.
FromTable 3, we know that our proposed system obviously

outperforms that of Tian et al. in terms of computational
efficiency. Moreover, our protocol is suitable for fog-to-cloud
computing and hence prior to the two schemes in [18], [20],
which are designed only for traditional cloud storage.

VII. CONCLUSION
In this paper, we propose an efficient auditing system for
fog-to-cloud computing. Although our system is not public
auditing, it obviously outperforms the one proposed by Tian
et al. in terms of communication and computational effi-
ciencies. The simulation results illustrate the computational
efficiency. We believe that our proposed system must be an
interesting choice for securely storage of data in fog-to-cloud
computing.

REFERENCES
[1] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,

M. Green, and A. D. Rubin, ‘‘Charm: A framework for rapidly prototyping
cryptosystems,’’ J. Cryptogr. Eng., vol. 3, no. 2, pp. 111–128, Jun. 2013.

[2] S. Agrawal and D. Boneh, ‘‘Homomorphic MACs: MAC-based integrity
for network coding,’’ inApplied Cryptography andNetwork Security, (Lec-
ture Notes in Computer Science), vol. 5536. Berlin, Germany: Springer,
2009, pp. 292–305.

[3] G. Ateniese, R. Burns, R. Curtmola, Joseph Herring, L. Kissner,
Z. Peterson, and D. Song, ‘‘Provable data possession at untrusted stores,’’
in Proc. 14th ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA,
2007, pp. 598–609.

[4] G.Ateniese, S. Kamara, and J. Katz, ‘‘Proofs of storage from homomorphic
identification protocols,’’ in Advances in Cryptology. Berlin, Germany:
Springer, 2009, pp. 319–333.

[5] A. F. Barsoum and M. A. Hasan, ‘‘Provable multicopy dynamic data pos-
session in cloud computing systems,’’ IEEE Trans. Inf. Forensics Security,
vol. 10, no. 3, pp. 485–497, Mar. 2015.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., New York, NY, USA, 2012, pp. 13–16.

[7] K. Bowers, A. Juels, and A. Oprea, ‘‘Proofs of retrievability: Theory and
implementation,’’ in Proc. ACM Workshop Cloud Comput. Secur., 2009,
pp. 43–54.

[8] J. Chang, Y. Ji, M. Xu, and R. Xue, ‘‘General transformations from
single-generation to multi-generation for homomorphic message authenti-
cation schemes in network coding,’’ Future Gener. Comput. Syst., vol. 91,
pp. 416–425, Feb. 2019.

[9] J. Chang et al., ‘‘Secure network coding from secure proof of retrievabil-
ity,’’ Sci. China Inf. Sci., early access, Oct. 2020.

[10] J. Chang, H. Wang, F. Wang, A. Zhang, and Y. Ji, ‘‘RKA security for
identity-based signature scheme,’’ IEEE Access, vol. 8, pp. 17833–17841,
2020.

[11] Y. Dodis, S. Vadhan, and D. Wichs, ‘‘Proofs of retrievability via hardness
amplification,’’ in Proc. Theory Cryptogr. Conf., 2009, pp. 109–127.

[12] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, ‘‘Dynamic prov-
able data possession,’’ in Proc. CCS, 2009, pp. 213–222.

[13] A. Juels and B. J. Kaliski, ‘‘PORs: Proofs of retrievability for large files,’’
in Proc. 14th ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA,
2007, pp. 584–597.

[14] J. Katz and Y. Lindell, Introduction to Modern Cryptography. London,
U.K.: CRC Press, 2007.

[15] A. Kaswan, V. Singh, and P. K. Jana, ‘‘A multi-objective and PSO based
energy efficient path design for mobile sink in wireless sensor networks,’’
Pervasive Mobile Comput., vol. 46, pp. 122–136, Jun. 2018.

[16] X. Lin, J. Li, J. Wu, H. Liang, and W. Yang, ‘‘Making knowledge trad-
able in edge-AI enabled IoT: A consortium blockchain-based efficient
and incentive approach,’’ IEEE Trans. Ind. Informat., vol. 15, no. 12,
pp. 6367–6378, Dec. 2019.

[17] B. Lynn. The Standard Pairing Based Crypto Library. Accessed:
Jul. 27, 2016. [Online]. Available: http://crypto.standford.edu/pbc

[18] M. Kashif and L. Mohammed, ‘‘Secure third party auditor (TPA) for
ensuring data integrity in fog computing,’’ Int. J. Netw. Secur. Appl., vol. 10,
no. 6, pp. 13–24, Nov. 2018.

[19] R. Roman, J. Lopez, and M. Mambo, ‘‘Mobile edge computing, Fog et al.:
A survey and analysis of security threats and challenges,’’ Future Gener.
Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

[20] H. Shacham and B.Waters, ‘‘Compact proofs of retrievability,’’ J. Cryptol.,
vol. 26, no. 3, pp. 442–483, 2013.

[21] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, ‘‘An efficient public
auditing protocol with novel dynamic structure for cloud data,’’ IEEE
Trans. Inf. Forensics Security, vol. 12, no. 10, pp. 2402–2415, Oct. 2017.

[22] H. Tian, Y. Chen, C.-C. Chang, H. Jiang, Y. Huang, Y. Chen, and J. Liu,
‘‘Dynamic-hash-table based public auditing for secure cloud storage,’’
IEEE Trans. Serv. Comput., vol. 10, no. 5, pp. 701–714, Sep. 2017.

[23] H. Tian, F. Nan, C.-C. Chang, Y. Huang, J. Lu, and Y. Du, ‘‘Privacy-
preserving public auditing for secure data storage in fog-to-cloud comput-
ing,’’ J. Netw. Comput. Appl., vol. 127, pp. 59–69, Feb. 2019.

[24] T. Wang, Y. Li, G. Wang, J. Cao, M. Z. A. Bhuiyan, and W. Jia, ‘‘Sus-
tainable and efficient data collection from WSNs to cloud,’’ IEEE Trans.
Sustain. Comput., vol. 4, no. 2, pp. 252–262, Apr. 2019.

[25] C. Wang, K. Ren, W. Lou, and J. Li, ‘‘Toward publicly auditable secure
cloud data storage services,’’ in IEEE Netw., vol. 24, no. 4, pp. 19–24,
Jul./Aug. 2010.

[26] Q.Wang, C.Wang, K. Ren,W. Lou, and J. Li, ‘‘Enabling public auditability
and data dynamics for storage security in cloud computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, May 2011.

[27] J. Wu, M. Dong, K. Ota, J. Li, W. Yang, and M. Wang, ‘‘Fog-computing-
enabled cognitive network function virtualization for an information-
centric future Internet,’’ IEEE Commun. Mag., vol. 57, no. 7, pp. 48–54,
Jul. 2019.

[28] Y. Wu, Z. L. Jiang, X. Wang, S. Yiu, and P. Zhang, ‘‘Dynamic data
operations with deduplication in privacy-preserving public auditing for
secure cloud storage,’’ in Proc. IEEE Int. Conf. Comput. Sci. Eng.
(CSE) IEEE Int. Conf. Embedded Ubiquitous Comput. (EUC), Jul. 2017,
pp. 21–24.

VOLUME 9, 2021 37959

X. Zhang, W. Si: Efficient Auditing Scheme for Secure Data Storage in Fog-to-Cloud Computing

[29] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, and G. Min,
‘‘Identity-based remote data integrity checking with perfect data privacy
preserving for cloud storage,’’ IEEE Trans. Inf. Forensics Security, vol. 12,
no. 4, pp. 767–778, Apr. 2017.

[30] Y. Yu, L. Xue, M. H. Au, W. Susilo, J. Ni, Y. Zhang, A. V. Vasilakos, and
J. Shen, ‘‘Cloud data integrity checking with an identity-based auditing
mechanism from RSA,’’ Future Gener. Comput. Syst., vol. 62, pp. 85–91,
Sep. 2016.

[31] J. Yuan and S. Yu, ‘‘Public integrity auditing for dynamic data sharing with
multiusermodification,’’ IEEE Trans. Inf. Forensics Security, vol. 10, no. 8,
pp. 1717–1726, Aug. 2015.

[32] T. Zhang. Fog Boosts Capabilities to Add More Things Securely
to the Internet. Accessed: Mar. 3, 2016. [Online]. Available:
http://blogs.cisco.com/innovation/fog-boosts-capabilities-to-add-more-
things-securely-to-the-internet

[33] R. Zhang, H. Ma, Y. Lu, and Y. Li, ‘‘Provably secure cloud storage for
mobile networks with less computation and smaller overhead,’’ Sci. China
Inf. Sci., vol. 60, no. 12, 2017, Art. no. 122104.

[34] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and C.-J. Hu, ‘‘Dynamic
audit services for outsourced storages in clouds,’’ IEEE Trans. Services
Comput., vol. 6, no. 2, pp. 227–238, Apr. 2013.

XINGJUN ZHANG received the Ph.D. degree
in computer architecture from Xi’an Jiaotong
University, China, in 2003. From January 2004 to
December 2005, he was a Postdoctoral Fellow
with the Computer School, Beihang University,
China. From February 2006 to January 2009,
he was a Research Fellow with the Department
of Electronic Engineering, Aston University, U.K.
He is currently a Full Professor and the Dean of
the School of Computer Science and Technology,

Xi’an Jiaotong University. His research interests include high-performance
computing, big data storage systems, and machine learning acceleration.

WEI SI received the master’s degree in manage-
ment from Changan University, China, in 2013.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Xi’an Jiaotong University, China. His research
interests include high-performance computing and
big data storage systems.

37960 VOLUME 9, 2021

