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ABSTRACT Motivated by energy-saving efforts in the quartz manufacturing industry, this study investigates
a single-machine rescheduling problem for a set of newly arrived rework jobs. The original jobs have release
times, and the rework jobs need to be separated in a schedule already in progress. The objective is to
achieve energy savings by minimizing the total waiting time. A mixed-integer linear programming model
is formulated and its NP-hardness is proved. Properties of the optimal solution are derived and used to
design the subsequent algorithms. A pseudo-polynomial optimal algorithm for a special case, a heuristic
algorithm and a genetic algorithm with an adaptive local search mechanism for general problems are
developed and tested. Numerical simulations show that the genetic algorithm yields high-quality solutions
under various conditions. A case study suggests that significant energy savings can be achieved with the
proposed rescheduling methodology.

INDEX TERMS Rescheduling, waiting time, mixed-integer linear programming, heuristics, rule-guided
adaptive genetic algorithm, NP-hard.

I. INTRODUCTION
Optimal planning, management, and use of energy are critical
because energy sources are scarce and energy generation
processes can have significantly adverse impact on the envi-
ronment. The manufacturing industry is one of the main con-
sumers of energy in the world; hence, optimizing the use of
energy in manufacturing is always concerned by enterprises.
The industries of energy intensive processes are of particular
interest from this perspective. Many of these industries are
characterized by manufacturing processes subject to working
conditions (e.g., temperature and pressure) that are very dif-
ferent from ambient conditions. Examples of these industries
are steel mills, glass/quartz manufacturing, and hot metal
forming and rolling.

The associate editor coordinating the review of this manuscript and
approving it for publication was Nicola Andriolli.

Optimizing the use of energy in hot processes is of particu-
lar significance in the case of China given its size and growth
inmanufacturing, and its low energy utilization rate relative to
other developed countries. In China, the energy costs of hot
processing account for 25%–40% of total production costs.
The annual electricity consumption is approximately 500
kW/h in hot processing, and the energy consumption ratio
is 500–1000 kW/ton. The utilization of professionals for hot
processing is approximately more than 80% in industrialized
countries, while it is approximately 20% in China. Owing to
the urgent need of reducing energy consumption and related
adverse environmental impacts, it is important to improve the
level of professionalism in production management.

This study is inspired by a process occurring in the
quartz manufacturing industry. Quartz glass products are
widely used in architecture, chemistry, medical treatment,
electronics, aerospace, etc. Quartz products are assembled
using three sequential manufacturing processes: preheating,
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FIGURE 1. Rescheduling problem for quartz manufacturing.

welding, and annealing. Welding involves localized heating
of the joint surfaces to temperatures near the melting point
of 1600–1700◦C and preheating of the whole component to
at least 800–820◦C is necessary to avoid cracking during
the welding process. After welding, the product is annealed
to eliminate any internal stresses caused by the welding
process. Annealing involves heating the product to approx-
imately 1025◦C for a pre-specified amount of time. Parts
are preheated and must wait in queue before welding; how-
ever, products flow directly without queuing from welding
to annealing. An opportunity for energy savings occurs in the
queue between preheating and welding. Preheated parts in the
queue when they are cooling down and waiting to be welded.
The longer the wait time, the more energy needed to heat
the parts to annealing temperature. Hence, the energy will be
saved by minimizing the total waiting time in this queue.

This study considers a rescheduling problem rather than
a scheduling problem. Quartz products are particularly frag-
ile and are also subject to high quality requirements. Parts
with defects after annealing can be fixed by a rework pass
through welding and annealing. Hence, a set of rework parts
joins the sequence of original jobs to form the input queue
of welding. The rescheduling problem is to decide how to
schedule each rework job with the original job sequence such
that the total waiting time is minimized. Fig. 1 illustrates the
rescheduling problem under consideration. The rescheduling
problem widely exists in discrete manufacturing industry
with heat treatment process, e.g., semiconductor processing
and ceramic products.

With respect to the concerned rescheduling problem in this
paper, firstly, an optimization model of mixed-integer linear
programming (MILP) is formulated and its NP completeness
is proved. some useful properties of the optimal solution
are deduced for the subsequently developed algorithms. And
then a special case is discussed as NP-hard in the ordinary
sense and solved by the designed pseudo-polynomial opti-
mal algorithm. For general problems, a heuristic algorithm
is developed, and its optimality is testified by five special
problem cases. A genetic algorithmwith adaptive local search
scheme (GAA) for the general problem is designed. Numer-
ical experiments show GAA obtains satisfactory solutions
effectively. With respect to practical issues in the industry,
a case study suggests that significant energy savings can be
achieved with the proposed rescheduling methodology.

II. LITERATURE REVIEW
Early works on rescheduling is credited to Leon [1] and
Wu et al. [2] Actual workshop production tends to be

disturbed by unpredictable events. Vieira et al. [3] and
Herrmann et al. [4] show the taxonomy of rescheduling
literature.

This study investigates a single-machine rescheduling
problem to incorporate rework jobs into a given existing
schedule to minimize the total waiting time of all jobs.
Unal et al. [5] investigated a similar problem consider-
ing sequence-dependent family setup times to minimize
deviations of the jobs from their original due dates while
minimizing the makespan of new jobs.

Hall et al. [6] solved single-machine rescheduling prob-
lems by polynomial time algorithms or discussing their
NP-hardness. In each problem, the objective function con-
tains a function of the completion time and a function of costs
by disrupted. The degree of changes between the original
and rescheduling schedules is defined in terms of sequence
disruptions and time disruptions. Then they [7] studied a
single-machine rescheduling problem with multiple disrup-
tions and developing branch-and-bound algorithm. In a sim-
ilar line of work, Yuan et al. [8] considered a single-machine
problem tominimize themakespan subject to the constraint of
disruption criterion bounded by a given value, release times,
and the assumption that the original sequence is optimal.
Hoogeveen et al. [9] solved a single-machine problem aiming
at minimizing total setup time by polynomial time algorithms
or NP-hardness proofs. They also studied a rescheduling
problem to minimize the disruption cost and total setup times.

Yang [10] considered a single-machine problem by deter-
mining the order of rework jobs and their actual processing
times to minimize the convex combination of the total costs
of compression, disruption criterion, and classic scheduling
criterion. Zhao et al. [11] considered the deteriorating jobs
problem with processing times of the jobs depending on
their starting time. Guo et al. [12] studied a single-machine
rescheduling problem for original jobs with release times to
minimize the total waiting time and proposed a heuristic algo-
rithm. Liu et al. [13] studied a singlemachine problem tomin-
imize cost considering unavailable time period for machine.
Le et al. [14] considered a rescheduling problem to minimize
the maximum lateness subject to an upper bound on the total
sequence disruption. A two-stage heuristic algorithm and an
exact branch-and-bound algorithm were developed to solve
this problem. Zhao et al. [15] considered a single machine
rescheduling problem to minimize the maximum lateness
under the sequence disruptions of schedule. They showed that
the three problems and an extension problem were equivalent
and can be solved in polynomial time. Guo et al. [16] stud-
ied a single-machine rework rescheduling to minimize the
maximumwaiting-time. They proposed a heuristic algorithm,
which assumes that the rework jobs have short processing
times (i.e., less than the minimum regular processing time) in
their problem.Wang et al. [22]–[24] considered a set of single
machine rescheduling problems, considering machine break-
down and deterioration effect, preventive maintenance for the
new jobs, with dynamic multiple objectives. Gao et al. [25]
discussed the scheduling and rescheduling problem as a case
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of reprocessing problemswith increasing processing time and
new job arrival. The rescheduling problems in flowshop and
parallel-machine environment were studied respectively by
Kunkun,Wang and Yin et al. [26]–[28]. Jiang et al. [29]–[31]
considered some job shop scheduling problems about the
energy saving issue in the manufacturing system.

III. MILP MODEL AND PROBLEM COMPLEXITY
The section presents a MILP model for a Single-machine
Rescheduling problem with Release times for Original
jobs (SRRO) and analyzes the problem complexity.

In the quartz manufacturing described above, the welding
and annealing processes are considered as a single-machine
process since the parts flow continues between the two pro-
cesses. As previously mentioned, the rescheduling problem
is to optimize the reheating energy for annealing by mini-
mizing the total waiting time of jobs in the input queue of
the welding process. Some important technical assumptions
include:

a) Preheating leads to conflicting release times for all
original jobs, while the release times of rework jobs are
zero as they do not need re-preheating.

b) Science typecast products of quartz glass were com-
bined with original jobs according to a certain logical
sequence; a right-shift control policy is used when
inserting rework jobs into the original sequence such
that the original sequence is maintained.

c) The waiting times of the original jobs are subjected to
a threshold, because the time in which any original job
can wait in the queue is limited to the time it takes for
its temperature dropping to the minimum preheating
temperature of 800–820 ◦C.

A. PROBLEM FORMULATION
Let Jo = {1, · · · , no} be the set of original jobs with
distinct release times, which is scheduled for processing
non-preemptively on a single machine. The original schedule
v of jobs in Jo is known, hence, the start time sj of each
original job denoted by sj(v), j ∈ Jo is known. A set of new
rework jobs JR = {no + 1, · · · , no + nR} is released at time
0 and needs to be scheduled by inserting them into the original
schedule. Let J = JR

⋃
Jo and n = |J | = no + nR. Each job

j in J can be scheduled at its release time rj and requires a
processing time pj, both rj and pj are nonnegative integers.
The SRRO is to produce a feasible rescheduling denoted by
σ , and let σ ∗ denote its optimal solution which minimizes
the total waiting time

∑
wj(σ ), where wj(σ ) = sj(σ ) − rj

for jobs in J . sj(σ ), j ∈ J are decision variables. Note
that for technical consideration in manufacturing process,
when the original jobs are rescheduled, it is required that the
relative sequence between jobs in v should preserve and the
maximum waiting time of the original jobs is bounded by
a threshold value K . (Technical assumption(c) requires the
waiting time of each original job is subjected to a threshold
Ki, i ∈ Jo, without loss of generality, the boundary is applied
as the commonmaximumwaiting time for the convenience of
modeling.)

Among all job permutations of σ or σ ∗, the feasible
rescheduling is defined as an active schedule which dom-
inates all others, where each job is processed as early as
possible once the processing order is determined. xij and si
are decision variables, where xij equals to 1 implies that job
i precedes job j and zero otherwise; si indicates the starting
time of job i.

Based on the mixed integer programming denotation pro-
posed by Nemhauser et al. [17], the mathematical model of
SRRO is formulated as follows:

(SRRO) : min
n∑
i=1

wi(σ ) (1)

s.t. xij + xji = 1 i, j ∈ J , i < j (2)

xij + xjk + xki ≤ 2 i, j, k ∈ J , i 6= j 6=k (3)

sj(σ ) ≥ si(v)xij +
∑

k<i,k 6=j

pk (xik + xkj − 1)

+

∑
k≥i,k 6=j

pkxkj i, j ∈ J (4)

si(v) = 0 i ∈ JR (5)

xjj = 1 j ∈ J (6)

sj(σ ) ≥ sj(v) j ∈ Jo (7)

xij = 1 i, j ∈ Jo, i < j (8)

sj(σ )− rj ≤ K j ∈ Jo (9)

xij ∈ {0, 1} i, j ∈ J (10)

where (1) is the objective function of the total waiting time
of all jobs in rescheduling. (2) is a set of conflict constraints
to ensure either job j being processed before job i or job i
is processed before job j. (3) is the transitivity constraints
that ensure a linear order between the three jobs, such that,
if job i is processed before job j and job j is processed before
job k , and the k is processed after j, i.e., the linear order is
fixed as i, j and k . In the original schedule, (4) to (7) arrange
the jobs in non-increasing order of the starting times. The
original jobs with release time required by assumption (a) are
constrained with the linear ordering variables. (8) ensures
the original sequence being maintained in rescheduling as
the requirement of assumption (b), whereas (9) implies the
waiting times of the original jobs are subjected to a threshold
as the requirement of assumption (c). Finally, (10) denotes
the integrality constraints.

B. COMPLEXITY ANALYSIS
In this section, we provide the proof that SRRO is NP-
Complete.
Theorem 1: SRRO is NP-Complete.
Proof: The proof of NP-Complete is by reduction

from the classic NP-Complete problem: Even-Odd Parti-
tion Problem [18], i,e., given a set {a1, · · · , a2t } of posi-
tive integers, where ai > aij for 1 ≤ i ≤ 2t − 1 and∑2t

i=1 ai = 2A, whether there exists a partition of the index
set S = {1, · · · , 2t} into disjunct subsets S1 and S2, such that∑

i∈s1 ai =
∑

i∈s2 ai = A, and that each contains exactly one
of the indices 2i− 1 and 2i for i = 1, · · · , t .
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If there exists a solution to a given case of the Even-Odd
Partition Problem, then we let δ1, · · · , δt denote such a par-
tition, where δi = 0 if 2i − 1 ∈ S1 and δi = 1 if 2i ∈ Si
for i = 1, · · · , t , i.e,

∑t
i=1 a2i−1(1 − δi) +

∑t
i=1 a2iδi =∑t

i=1 a2i−1δi +
∑t

i=1 a2i(1− δi)
Consider the following case of SRRO:

no = 8t, nR = 2t,

For original jobs:

pi =

{
2Bd i/2e + 2ai i = 1, · · · , 2t
2Bt i = 2t + 1, · · · , 8t

ri =



∑i−1

j=0
(2Bd j/2e + 2aj)+

∑i+8t−1

j=8t

(Bd j−8t/2e + aj−8t ) i = 1, · · · , 2t

(i− 1)Bt +
∑t

j=1
(24(t − j)+ 15)Bj +

∑2t

j=1

(12t − 6j)aj + 9A i = 2t + 1, · · · , 8t

For rework jobs:
pi = Bd i−8t/2e + ai−8t , for i = 8t + 1, · · · , 10t;
B = tA3;K = 0;
g(v) =

∑8t
i=1 wi(v), for i = 1, · · · , 8t, v =

{j1, j2, · · · , j8t };
D =

∑t
j=1(60t−24j+11)B

j
+(16t2−3t)Bt+

∑2t
j=1(30t−

9j)aj + 5A;
∑10t

j=1 wj(σ ) ≤ D.
It is proved that there exists a feasible rescheduling for this

case of SRROwith
∑10t

j=1 wj(σ ) ≤ D if and only if there exists
a solution to the Even-Odd Partition Problem.

(Sufficiency)

r1 = 0; p1 = 2B+ 2a1, r2 = 2B+ 2a1 + B+ a1;

p2 = 2B+ 2a2, · · · , r2t =
∑2t−1

j=0
(2Bdj/2e + 2aj)

+

∑10t−1

j=8t
(Bd(j−8t)/2e + aj−8t ); p2t=2Bt+2a2t ,

r2t+1 =
∑t

j=1
(24(t − j)+ 15)Bj +

∑2t

j=1
(12t−6j)aj+9A;

p2t+1 = 2Bt , · · · , r8t = (8t−1)Bt+
∑t

j=1
(24(t−j)+15)

×Bj +
∑2t

j=1
(12t − 6j)aj + 9A; p8t = 2Bt ,

According to a known optimal rescheduling, all origi-
nal jobs are processed at their release times immediately.
Hence, 2t idle times of the machine come into being,
namely,

[2B+ 2a1, 2B+ 2a1 + B+ a1], . . . , [2Bt + 2a2t ,∑t

j=1
(24(t − j)+ 15)Bj +

∑2t

j=1
(12t − 6j)aj + 9A].

The processing times of rework jobs with identical release
time of zero are p8t+1 = B+a1, p8t+2 = B+a2, · · · , p10t =
Bt +a2t respectively. In the formed rescheduling, the starting
time of any original job remains unchanged and each original
job is scheduled in the odd position, while 2t rework jobs are
processing in idle times of each original job and scheduled in

the even position. The total waiting time of jobs in the first
four positions is

(2B+ 2a1)+ (3B+ 3a1)+ (5B+ 3a1 + 2a2)

+ (6B+ 3a1 + 3a2)

= 16B+ 11a1 + 5a2
= 16B+ 21a1/2+ 11a2/2+ (a1 − a2)/2 (11)

Similarly, the total waiting times for all jobs
∑10t

i=1 wi(σ ) is

t∑
j=1

(60t − 24j+ 11)Bj + (16t2 − 3t)Bt

+

2t∑
j=1

(30t − 9j+ 5/2)aj +
∑
i∈S1

ai/2−
∑
i∈S2

ai/2 (12)

Since there exists a solution to the Even-Odd Partition
Problem,

∑
i∈S1 ai =

∑
i∈S2 ai = A, i.e.,

∑10t
j=1 wj(σ ) = D.

(Necessity) Consider a feasible rescheduling with k = 0
and

∑10t
j=1 wj(σ ) = D. In the rescheduling, each original job

is scheduled in an odd position and its starting time remains
unchanged, which inserts all rework jobs into machine idle
times or after the last scheduled original job. There exists 2t
idle times on the machine with respect to the given instance.
If a rework job is arranged behind the last scheduled original
job, then a computation similar to (10) and (11) shows that∑10t

j=1 wj(σ ) must be larger than D. Thus, the rework jobs
are processing in all idle times of the machine or at the
even positions of rescheduling with no idle time of machine.
According to the computation,∑10t

j=1
wj(σ ) =

∑t

j=1
(60t − 24j+ 11)Bj

+ (16t2 − 3t)Bt +
∑2t

j=1
(30t − 9j)aj

+ 5/2
∑2t

j=1
aj +

∑
i∈S1

ai/2

−

∑
i∈S2

ai/2

= D

=

∑t

j=1
(60t − 24j+ 11)Bj

+ (16t2 − 3t)Bt +
∑2t

j=1
(30t − 9j)aj + 5A∑

i∈S1 (ai) =
∑

i∈S2 (ai) = A is valid; thus, the Even-Odd
Partition Problem has a solution.

IV. PROPERTIES OF THE OPTIMAL SOLUTION
There are six properties of the optimal solution proposed
and proved in this section for the SRRO. First, a classical
scheduling rule is discussed, which is better to analyze the
model.

SPTRuleKnown as the Shortest Processing Time, the jobs
are sequenced in non-decreasing order of their processing
times. Smith [19] shows that the SPT rule provides an optimal
schedule for the classical problem 1‖

∑
Ci.

In a schedule ω (perhaps includes rework jobs), the maxi-
mum allowable delay time of job [i] is defined as 1[i](ω) =
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min{1[i], Ii+1 + 1[i+1](ω)} where 1[j] = K − {s[j](v) −
r[j]}, [j] ∈ Jo and for 1[j] = ∞, [j] ∈ JR, I[i+1] indicates
the machine idle time before the job [i+ 1]. Then a property
is derived as follows.
Property 1: A schedule ω′ is feasible if and only if pi ≤

I[i] +1[i](ω) for some j ∈ JR and [i] ∈ J , which inserts job j
into ω immediately before the job [i].

Proof (Sufficiency): In an active schedule ω, pi ≤ I[i] +
1[i](ω) for some j ∈ JR and [i] ∈ J implies that for the job
[i] and all jobs after it, the sum of the maximum allowable
delay time and the machine idle time ahead of the job is not
less than pj, for all j ∈ JR; thus, the job j can be inserted into
ω immediately before the job i, and the obtained schedule ω′

is a feasible solution.
(Necessity) A schedule ω′ is feasible, which inserts the job

j into the schedule immediately before the job [i] is feasible
and, as there is no constraint for waiting time of rework
jobs, the constraint of wi(ω′) ≤ K is only required for all
l ∈ Jo. That is, in schedule ω for every original job after
the job [i], the sum of maximal delayable time and machine
idle time ahead of the original jobs must be not less than pi,
for all j ∈ JR; thus, pi ≤ I[i] + 1[i](ω) for some j ∈ JR
and [i] ∈ J .
Property 2: In an optimal rescheduling of SRRO, each

subsequence of consecutive rework jobs must be arranged in
non-descending order of processing times.

Proof: Proof by contradiction. In an optimal reschedul-
ing σ ∗, a new feasible rescheduling σ ′ can be obtained by
assuming that rework jobs [a+1] and [a] satisfying p[a+1] <
p[a] exist in a consecutive subsequence of rework jobs while
maintaining the original sequence of jobs by interchanging
[a + 1] and [a]. The waiting time of rework job [a + 1]
decreases by p[a], whereas the waiting time of rework job
[a] is increased by p[a+1]. Thus, the objective value of σ ′ is∑n

j=1 wj(σ
′) =

∑n
j=1 wj(σ

∗)+ p[a+1] − p[a].
∑n

j=1 wj(σ
′) ≤∑n

j=1 wj(σ
∗) because p[a+1] < p[a], i.e., p[a+1] − p[a] < 0,

which contradicts σ ∗ with being an optimal rescheduling
according to the supposition.
Property 3: In any optimal rescheduling, every machine

idle time must immediately be followed by an original job,
and every rework job followed an idle time must have a
processing time larger than that idle time,i.e.,0 ≤ r[i] −
C[i−1] < pj, i+ 1 ≤ j ≤ n, [j] ∈ JR.

Proof: There cannot be any idle time immediately pre-
ceding a rework job, since rework jobs have a release time
of 0, and shifting the job left to use that idle time would
reduce the total waiting time. In addition, it is reasonable to
suppose that there is a rework job with processing time less
than the idle time before it in an optimal rescheduling σ ∗; then
a new feasible rescheduling σ ′ would be obtained by inserting
this rework job in this idle time. In the rescheduling σ ′,
the waiting time of this rework job is reduced and the waiting
times of other jobs are unchanged; therefore,

∑n
j=1 wj(σ

′) <∑n
j=1 wj(σ

∗), which contradicts with the optimality of σ ∗.
Property 4: For SRRO with no idle time in the original

schedule, there exists an optimal rescheduling in which the

jobs of JR are sequenced in SPT order, and there is no idle
time between jobs.

Proof: The policy will always maintain the sequence for
original jobs in this study, i.e., the jobs of Jo are sequenced
as them in v. We only analyze the order for the jobs in JR.
Supposed that there is an optimal scheduling σ ∗ in which the
jobs of JR are ordered in non-SPT order. Let j ∈ JR be the
job with the smallest processing time that is the scheduled
for later in JR in σ ∗ than in SPT order of JR, and let j ∈ JR
be the last job of JR that precedes the job i in σ ∗ for pj > pi.
A new schedule σ ′ can be obtained from σ ∗ by interchanging
i and j, so that wj(σ ′) = wi(σ ∗)− pj + pi ≤ wi(σ ∗), and any
job between j and i is delayed by pj−pi units of time in earlier
σ ′ than in σ ∗. A straightforward computation shows that the
total waiting time does not increase due to the interchange.
If the position of j ∈ JR in σ ′ is not less than that in SPT order
of JR (as is the case with i ∈ JR ), then the waiting times of
original jobs between j and i are not more than their positions
in σ ∗. Thus, σ ′ is feasible and better than σ ∗. A finite number
of repetitions of this argument may ensure that an optimal
schedule solution exists where the jobs of JR are ordered in
SPT. The same sequence of jobs of Jo in v, and there is no idle
time in the optimal schedule, feasibility is maintained and the
total waiting time is reduced through removing the idle times.

In most practical production, usually the maximum pro-
cessing time for rework jobs pRmax is not more than the min-
imum processing time of original pomin of jobs, i.e., pRmax ≤

pomin. As a special case of SRRO with pRmax ≤ pomin, the fol-
lowing two properties are proposed.
Property 5: In each optimal rescheduling, if an original job

is scheduled followed by a rework job, the processing time of
this rework job must be more than the sum of the maximum
delayable time and the idle time ahead of the original job.

Proof: By contradiction. Assume that in an optimal
rescheduling σ ∗, an original job b is processed and is fol-
lowed by a rework job d , where pd ≤ 1b(σ ∗)+ Ib. Another
feasible rescheduling σ ′ satisfyingwb(σ ′) ≤ K is obtained by
interchanging the positions of b and d , where

∑n
j=1 wj(σ

′) =∑n
j=1 wj(σ

∗) + pd − pb. Because it is assumed that pRmax ≤

pomin,
∑n

j=1 wj(σ
′) ≤

∑n
j=1 wj(σ

∗); thus, it contradicts with
the optimality of σ ∗.

According to Property 5, each rework job in the optimal
rescheduling cannot be scheduled earlier if the sequence of
rework jobs remains unchanged. Therefore, the following
property can be derived straight for work.
Property 6: If the sequence of rework jobs has been

determined, then the optimal rescheduling of SRRO can be
obtained by as early as possible inserting the rework jobs into
the original schedule in order to that order sequence.

V. PSEUDO-POLYNOMIAL TIME ALGORITHM FOR A
SPECIAL CASE OF SRRO
A special case of SRRO subject to the following two
conditions is discussed in this section.

1) In schedule v′ there exists only one machine idle time
I , which is obtained by delaying the starting times of
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original jobs as possible as late in v, i.e., 1[i](v) −
I[i+1] ≥ 1[no], i = 1, · · · , no − 1.

2) Themaximum processing time for the rework jobs pRmax
is not larger than the minimum processing time of the
original jobs pomin, i.e., p

R
max ≤ p

o
min.

An SRRO subject to 1[i](v) − I[i+1] ≥ 1[no], i =
1, · · · , no − 1 means that there is only one idle time I of
machine in schedule v′ that is got by delaying the starting
times of original jobs as late as possible in v.
Properties 5 and 6 can be used to determine which the

rework jobs should be scheduled in this idle time I or after
the last the original job in v′ by SPT rule, respectively. In fact,
for the nR jobs, there are nR! alternative scheduling solutions,
making the special case of SRRO NP-hard in the ordinary
sense. The dynamic programming algorithm is designed as
follows to implement the optimal merging for the special
case, where t denotes time.
Algorithm A:
Input:
pi for i ∈ Jo, pj for j ∈ JR, K , and v.
Preprocessing:
Compute I = s[1](v)+1[1](v).
State variable:
ut = {JR, I , σ } includes a set of candidate rework jobs

JR,the remaining idle time I ,and the partial rescheduling σ .
Decision variable:
xi means that subject to the constraint of maximumwaiting

times for the original jobs, the rework job j is inserted into
the block (where a block is defined as a contiguous set of
jobs with no idle time between jobs) of rework jobs before
the first original job or after the last original job in σ by SPT
rule.
State transition:{
JR = JR \ j, I = I − pj, update σ after job j, for I ≥ pj
JR = JR \ j, I = I , update σ after job j, for Ir < pi

Boundary condition f (u0):
σ = v, the total waiting time of the original jobs in

schedule v.
Value function f (ut ) :
The total waiting time of all jobs in σ after job j is sched-

uled.
Recurrence equation:
f (ui) = min{f (ui−1) + δ(ui−1, xi−1)}, where the total

waiting times of all jobs increases δ(ui−1, xi−1)} units of time
in σ from state ui−1 to ui due to the determinatioin of xi−1.
Time complexity of algorithm A:
The time complexity of algorithm A is O(n2R log nRI ).

Algorithm A is in fact a pseudo-polynomial time algorithm
because the computing time depends on the length of the idle
time I .

Based on the dynamic programming algorithm, the follow-
ing corollary can be obtained
Corollary 1:AlgorithmA can find an optimal rescheduling

for a special SRRO subject to 1[i](v) − I[i+1] ≥ 1[no], i =
1, · · · , no − 1 in pseudo-polynomial time.

FIGURE 2. The flow chart of Algorithm B.

VI. HEURISTIC ALGORITHM FOR SRRO
In this section, a heuristic algorithm is designed for SRRO
of properties 1-3, and it is proved to solve five special cases
optimally. The procedure of the heuristic algorithm, denoted
by algorithm B, is designed as follows.
Algorithm B:
Fig. 2 shows the flowchart of algorithm B.
Given K ,v,pi and pj for i ∈ Jo, and j ∈ JR.
Step 1. ω is the iterative variable with initial value

equal to υ. Sorting the jobs of JR by Shortest Processing
Time (SPT) rule and saving them in J ′R. I[i] denotes the idle
time before job [i];

Step 2. Initialize i = 1 and j = 1.
Step 3. In ω, compute 1[i](ω). if p[i] ≥ pj and I[i] +

1[i](ωj) ≥ pj; insert the job j into ω before the job [i] and
update ω, j = j+ 1, the job j is removed from J ′R, otherwise,
i = i+ 1 and go to Step 3.

Step 4. If J ′R = φ, thenω is the solution of the rescheduling.
If J ′R 6= φ and [i] > no, ω is scheduled followed by J ′R
immediately and then the rescheduling solution σ is obtained.
Time complexity of algorithm B:
The sorting procedure needs O(nRlognR) time and the

looping steps require O(2nno); thus, the time complexity of
algorithm B is O(2nno + nRlognR).
Corollary 2:Algorithm B can obtain an optimal reschedul-

ing for the SRRO with identical processing time of rework
jobs and pRmax ≤ p

o
min.

Proof: Rework jobs have identical processing time and
their release times are zero; thus, rescheduling is independent
of orders. Algorithm B inserts the rework jobs into the origi-
nal schedule as much as possible before the original jobs and
forms a feasible active schedule. According to Property 6,
an optimal rescheduling is obtained for SRRO in case the
processing times of rework jobs are identical.
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Corollary 3:Algorithm B can find an optimal rescheduling
for a special case of SRRO where pRmax ≤ pomin,1[i](υ) −

I[i+1] ≥ 1[no], i = 1, . . . , no − 1 and
n∑

j=nR+1
pj ≤ I + ε,ε ≤

max{pj|j ∈ JR}.
Proof: The SRRO with pRmax ≤ pomin and 1[i](υ) −

I[i+1] ≥ 1[no]i = 1, . . . , no − 1 is the case in Section 5,
where there exists only one machine idle time I in ν′, which
is obtained by delaying the starting times of original jobs as
late as possible in ν. Based on it, two cases will be discussed

if
n∑

j=nR+1
pj ≤ I + ε, ε ≤ max{pj|j ∈ JR} as follows:

Case 1.
n∑

j=nR+1
pj ≤ I : a rescheduling can be obtained by

algorithm B, where all rework jobs can be arranged in I in
SPT order.

Case 2. I <
n∑

j=nR+1
pj ≤ I + ε, ε ≤ max{pj|j ∈ JR}: a

rescheduling can be obtained by algorithm B, where only the
rework job with the maximum processing time is arranged
after the last original job while others are scheduled in I by
SPT rule.

The rescheduling for each of the cases is proved to be
optimal by a simple job interchanging argument.

The following theorem is a discrimination condition of the
optimal solution of algorithm B for a general SRRO.
Theorem 2: A rescheduling obtained by algorithm B is

optimal for SRRO if there exists no idle time in the reschedul-
ing before the latest rework job.

Proof: Algorithm B produces a rescheduling σ with no
idle time before the latest rework job. This theorem is proved
by the following contradictions.

Supposed that an optimal rescheduling σ ′ can be obtained
for SRRO by interchanging job [d] and job [d + 1] in σ .
Case 1. There are rework job [d] and rework job [d + 1].

Then the objective values in σ ′ and σ respectively are∑
wi(σ ) =

∑
w[j](σ ) + w[d] + w[d+1] =

∑
w[j](σ ) +

2C[d−1](σ ) + p[d],i ∈ J , j ∈ J \ {d, d + 1} and
∑

i (σ
′) =

w[j](σ )+w[d+1](σ ′)+w[d](σ ′) =
∑
w[j](σ )+ 2C[d−1](σ )+

p[d+1],i ∈ J , j ∈ J \ {d, d + 1}.
According to algorithm B, the rework jobs are arranged by

SPT rule, p[d] ≤ p[d+1]; thus,
∑
j∈J

wi(σ ) ≤
∑
i∈J

wi(σ ′); then it is

in contradiction with the optimal rescheduling σ ′.
Case 2. There are original job [d] and original job [d + 1].

In this study, original jobs always maintain their sequence;
thus, an infeasible rescheduling σ ′ is obtained.

Case 3. There are rework job [d] and rework job [d + 1].
It means that p[d] ≤ p[d+1] and p[d] ≤ I[d+1] + K − w[d+1].
Hence,

∑
w[i](σ ′) ≥

∑
w[j](σ )+2C[d−1](σ )+p[d+1], i ∈ J ,

j ∈ J \ {d, d + 1}. Thus,
∑
wi(σ ) ≤

∑
wi(σ ′),i ∈ J ; then it

is in contradiction with the optimal rescheduling σ ′.
Case 4. There are rework job [d + 1] and an orig-

inal job. According to algorithm A in the rescheduling
σ ′,w[d](σ ′) = w[d](σ )+ p[d+1] > K ; thus,σ ′ is an infeasible
rescheduling.

TABLE 1. Five special cases of SRRO.

Hence, an optimal solution σ is obtained with no idle time
before the latest rework job.

According to Theorem 2, the following two corollaries
explain that the two cases of SRRO can be solved optimally.
Corollary 4:Algorithm B can find an optimal rescheduling

for the SRRO with no idle time within the original schedule
in polynomial time.

Proof: If there is no idle time within the original sched-
ule, then the rescheduling σ obtained by algorithm B should
have no idle time within it. Thus, according to Theorem 2, σ
is optimal.
Corollary 5: Algorithm B can get an optimal rescheduling

for SRRO in polynomial time if 1j ≥ max{pi|i ∈ JR}, for
j ∈ Jo.

Proof: 1j ≥ max{pi|i ∈ JR}, for j ∈ Jo means that all
of the starting times of original jobs can be delayed and the
delayable time of each job is not less than the maximum pro-
cessing time of a rework job. Therefore, regardless of whether
the idle times exists ahead of the original jobs, algorithm B
can obtain a rescheduling with no idle time before the last
rework job. By Theorem 2, the obtained rescheduling is an
optimal solution for the case.
Corollary 6:Algorithm B can find an optimal rescheduling

for SRRO in polynomial time, if I[j] + 1[j](v) < min{pi|i ∈
JR} for [j] ∈ Jo.

Proof: I[j] + 1[j](v) < min{pi|i ∈ JR} for [j] ∈ Jo
means that no rework job can be arranged by inserting into
the original schedule, and all rework jobs can be arranged
after the last original job only. It is proved by a simple job
interchanging argument.

Table 1 summarizes that algorithm B can solve the five
special cases of SRRO optimally in polynomial time.

VII. GENETIC ALGORITHM WITH ADAPTIVE LOCAL
SEARCH SCHEME
To further solve general cases of SRRO, a GA with adaptive
local search scheme (GAA) is developed in this study to
enhance the strong global searching ability. The adaptive
local search algorithm is designed with three kinds of local
search & moves, considering the characteristics of SRRO.
The local search & moves involve inversion, transfer and
swap.

A. CHROMOSOMAL REPRESENTATION
A valid scheduling sequence is expressed as a chromosome.
For example, the sequence of {1 8 2 9 3 6 4 7 5} is a valid
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FIGURE 3. Order crossover operation schematic diagram.

FIGURE 4. The process of mutation with local move for an individual.

chromosome, where, Jo = {1, 2, 3, 4} is the set of original
jobs, and JR = {5, 6, 7, 8, 9} is the set of rework jobs.

B. GENERATION OF INITIAL POPULATION
Algorithm B is applied to generate a set of rescheduling
sequences as the initial population.
Order Crossover Local Move: For the rework jobs,

a double-point order crossover with local move is considered
in GAA. Fig. 3 shows an schematic example of the operation
of order crossover. The detailed steps are as follows:
a Two parents p1 = {5 1 2 6 3 7 8 9 4} and p2 =
{8 7 1 5 2 6 3 9 4} are given.

b The scheduling sequences of rework jobs in parents are
shown and two points of crossover are selected.

c The segments of genes between two points of crossover
are exchanged, and then the partial genes of child are
determined.

d Based on b- from the first gene on the right of the second
point of crossover, all genes are sequenced in order, and
the genes repeated within c are deleted

e Based on the partial genes of child in c, from the first
position on the left of the second point of crossover,
the remaining rework jobs in d are determined one by
one.

f All rework jobs are arranged into the original schedule
as earlier as possible in the order of e according to
properties 1 and 6. Two children c1 = {6 1 7 5 2 9 3 8 4}
and c2 = {5 1 2 6 3 7 9 8 4} are finally generated.

C. MUTATION WITH LOCAL MOVE
Given a parent rescheduling sequence the partial scheduling
of rework jobs in parent is known and two rework jobs are
selected randomly. A new scheduling sequence of rework
jobs by interchanging two positions of rework jobs is selected.
A child is obtained with rework jobs inserted into the orig-
inal schedule as earlier as possible in the order of the new
scheduling sequence after the interchanging. Fig. 4 explains
an example of the process of mutation with local movement
for an individual.

D. SELECTION OF CHROMOSOMES FOR LOCAL MOVE
A chromosome i is selected randomly with probability
Pi. Selection of local move is carried out by a roulette
wheel.

E. ADAPTIVE LOCAL SEARCH
The adaptive local search combines inversion, transfer and
swapping of three local search & moves and adopts an
adaptive learning mechanism. All rework jobs are divided
into some blocks of rework jobs in a rescheduling sequence.
According to the characteristic of SRRO, the block struc-
ture is used as neighborhood structure. A new rescheduling
sequence is generated by adjusting the sequence of rework
jobs between two blocks of rework jobs selected randomly.
Then the rescheduling sequence with a better solution is
obtained by the local search.

An initial rescheduling sequence {7 8 1 2 6 3 4 9 5} is
known. Then the rework jobsmay be divided into three blocks
{7 8 | 6 | 9 5}. With respect to the example, the three methods
of local search are explained as follows.

1) LOCAL SEARCH BASED ON INVERSION
Two blocks of rework jobs are selected randomly, for exam-
ple, Block −1 = (7 8) and Block −3 = (9 5). Two positions
u and v are generated randomly in terms of the two selected
blocks, where u and v are no less than 1 and no more than
the number of rework jobs in each block. Suppose u = 1 and
v = 1; then, the first position in Block-1 and the first position
in Block-3 are determined and inversion is implemented for
rework jobs between the two positions 7 and 9 (involving
two rework jobs on the two positions). A new sequence of
rework jobs {96875} is obtained, hence algorithm B for J ′R =
{9 6 8 7 5} is performed. A new rescheduling sequence is
finally generated.

2) LOCAL SEARCH BASED ON TRANSFER
Similar to the above method, two blocks of rework jobs u
and v are generated. Suppose Block- 1 = (7 8) and Block-
2 = (6) are selected and u = 1 and v = 1. The rework job
on the v = 1 position in Block-2 is scheduled ahead of the
rework jobs on the u = 1 position in Block-1. The rework
jobs scheduled after the rework jobs on the u = 1 position in
Block-1 are shifted right. A new subsequence of rework jobs
{6 7 8} is obtained by transferring. A new sequence of rework
jobs {6 7 8 9 5} is obtained, and then a new rescheduling
sequence is generated by algorithm B for J ′R = {6 7 8 9 5}.

3) LOCAL SEARCH BASED ON SWAP
Two blocks of rework jobs,u and v are also generated by the
same method as the above case. Suppose Block-2 = (6) and
Block-3 = (9 5) are selected and u = 1 and v = 2. The
rework job 6 on the u = 1 position in Block-2 and the rework
job 5 on the v = 2 position in Block-3 are interchanged. The
sequence of rework jobs {78596} is generated, hence a new
rescheduling sequence is obtained by algorithm B for J ′R =
{7 8 5 9 6}.

4) ADAPTIVE LOCAL SEARCH
Let λmove(t) denote the sum of all λ values obtained through
iterations of t . Based on the inversion, transfer and swap, three
local search strategies are used in GAA. pinve, ptran,and pswap
indicate the probabilities adopted for these three strategies
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respectively, and pinve + ptran + pswap = 1. The initial values
of pinve, ptran and pswap are identical, which means that the
probabilities adopted for the three strategies are equal. The
strategy with a better performance should be used more than
the other strategies in the algorithm. Therefore, pinve, ptran,
and pswap are determined by adaptive learning in GAA. λ
indicates the degree of solution improvement after a local
search, and its mathematical expression is as follows:

λ =
fprior−fafter

fprior

where fprior is the value of solution for the best individual
in the population and fafter is the value of solution after
local search for the best individual in the population. λ is
computed only if fafter < fprior . Then pinve, ptran and pswap
are recalculated. Figure 5 shows the flowchart for the adaptive
local search.
λinv(t), λtra(t), and λswap(t) indicate the levels of solution

improvement after the inversion, transfer and swap strategies
of local search in t generation. Hence, the mathematical
expressions of the probabilities adopted for the three strate-
gies are as follows:

pinve(t + 1) = pinve(t)+ τ · λinv(t)

ptran(t + 1) = ptran(t)+ τ · λtra(t)

pswap(t + 1) = pswap(t)+ τ · λswa(t)

pinve(t + 1) =
pinve(t + 1)

pinve(t + 1)+ ptran(t + 1)+ pswap(t + 1)

ptran(t + 1) =
ptran(t + 1)

pinve(t + 1)+ ptran(t + 1)+ pswap(t + 1)
pswap(t + 1) = 1− pinve(t)− ptran(t + 1)

where τ is defined as the relative influence of the levels of
solution improvement. Therefore, not only the three design
strategies can improve the quality of solutions by mutual
cooperation but also increase the probabilities adopted by
mutual competition.

Figure 5 shows the flowchart for the adaptive local search.

F. GAA
With the above design considerations, GAA is outlined below
and Fig. 6 shows its flowchart.

1) INITIALIZATION
Set the population size pop_size, probability of crossover
pc, probability of mutation pm, probability of replacement
pr , genetic iterations t , number of local search, and other
parameters. Let t = 0.

2) GENERATION OF INITIAL POPULATION
GUIDED BY THE RULE
The initial population is generated by algorithm B.

3) CHECK FOR OPTIMALITY
If an individual in the population satisfies that all rework
jobs are arranged ahead of the first original job or after
the last original job or there is no idle time of machine in

FIGURE 5. Flow chart for adaptive local search.

FIGURE 6. Flow chart for genetic algorithm with adaptive local search.

the rescheduling sequence, then this individual is optimal
according to Corollary 6 and Theorem 2.

Otherwise, enter the following steps.

4) EVOLUTION OF THE POPULATION
Selection: The function of fitness values is computed. The
parents are selected by roulette wheel, and the parents will
carry out genetic arithmetic.
Crossover: Each pair of chromosomes in parents carries

out order crossover with local move according to the proba-
bility of crossover pc.
Mutation: Each chromosome after crossover carries out

mutation with local move by the probability of mutation pm.
Update the population: The interchange population and

the progeny population are sorted in non-descending order
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TABLE 2. Four relative factors for the problem generator.

of their objective values. The first pop_size ∗ pr individuals
are selected to replace the individuals in the parent population
in the bottom pop_size ∗ pr ; then the parent population of the
next generation is obtain.
Local search: The adaptive local search is implemented by

the method explained in Section 7.6.

5) STOPPING RULE
If the number of iterations is equal to the specified number,
the individual with the maximum fitness value is outputted
and the computation is completed. Otherwise, go back to the
procedure of Evolution of the population.

VIII. COMPUTATIONAL EXPERIMENTS
The experimental study is aimed at evaluating the perfor-
mance of MILP, algorithm B, GA and GAA, and the differ-
ence between GA and GAAwith adaptive local search. MILP
was solved using CPLEX, while algorithm B, GA, and GAA
were coded using C++. All experiments were worked on a
computer with 2GB RAM, AMD Athlon(tm) II X4 650 CPU
with 3.19 GHz.

A. PROBLEM INSTANCE GENERATOR
In the literature, standard problem instances of SRRO cannot
be found. In this paper, a problem generator is developed as
follows.

To have a more general problem generator, four parameters
were considered. Table 2 describes the parameter details of
SRRO and the scales or levels considered in this study.

The problem size n ∈ {20, 40, 80} and the number of
rework jobs nR ∈ {0.25n, 0.50n, 0.75n} are initially deter-
mined. Then, the number of original jobs nO = n − nR is
determined. The processing times of nO original jobs and
nR rework jobs are integers randomly generated between
1 and 100. The original jobs are numbered from 1 to nO in
the order of their generations. The distribution of idle time
(FIT ) within the original schedule has four levels, i.e., 0.1,
0.3, 0.5, and 0.7. Then, the expected idle times within the
original schedule is equal to FIT × nO; thus, FIT × nO idle
times are generated in the original schedule. For instance,
FIT = 0.1, nO = 40; then 0.1 × 40 = 4 idle times are
generated in the original schedule. The lengths of the idle
times follow the identical independent distribution the same
as the processing times of the jobs. The generated idle times
are randomly arranged in the original schedule. The release

times of original jobs are considered one by one according
to the order of original jobs and the inserted idle times. T
indicates the current available time of machine, and its initial
value is 0. The current available time of machine for the
i − th original job Ti is equal to the complete time of the
(i − 1) − th original job plus the length of idle time ahead
of the ith original job, i.e., Ti = Ci−1 + Ii. Then, the release
time of the i− th original job is an integer generated between
Ti and Ti × (i+ 1)/(i+ 3).
To ensure the feasibility of the original schedule, K should

not be smaller than the maximum waiting time of original
jobs in the original schedule. If K is extremely large, it will
result in that all rework jobs can be arranged ahead of the
first original job; then computational experiments are trivial.
Thus, the upper limit of waiting time of original jobs K is
equal to the maximum waiting time of original jobs in the
generated original schedule.

In this study, there are 3×3×2×4 = 72 configurations for
different problem cases for each algorithm. For every possible
configuration, 10 problem instances are generated. In each
algorithm, 720 problem instances are tested.

B. GAA CONFIGURATION
A better configuration of parameters for GAA is deter-
mined in this subsection. GAA refers to three probability
parameters: crossover pc, mutation pm, and replacement pr .
Through experiments and experience, the levels of parame-
ters for GAA are chosen as pc ∈ {0.4, 0.5, 0.6, 0.7}, pm ∈
{0.1, 0.2, 0.3, 0.4}, and pr ∈ {0.1, 0.3, 0.5}. The number of
combinations for different levels of parameters for GAA is
equal to 4 × 4 × 3 = 48. However, an excessively large
number of experiments may give rise to difficulty to achieve
results, hence, the uniform design experimentation of mixed
level proposed by Fang [20] is used to select representa-
tive candidate combinations of parameters for GAA testing.
Uniform design experimentation only considers a uniform
distribution of test points in the range to ensure the variety.
Compared with the test points of orthogonal design, the test
points of uniform design are more evenly distributed and are
more representative. GAA develops the table for the uniform
design of mixed level with 12 parameter combinations. The
uniform design experimentation of mixed level is carried out
using the DPS software of Jouppi [21]. Table 3 provides
the detail of the 12 parameter combinations, where npar
indicates the number of parameter combinations, nc, nm, and
nr are the numbers of three levels of parameters selected
respectively.

In the problem generation, given the problem size, the lev-
els for the other three factors of the problem generator have
3×2×4 = 24 combinations. Let n = 40; according to above
design of the problem generator, 5 problem instances are ran-
domly generated for each combination of factors by the prob-
lem generator. Therefore, there are 120 problem instances
generated to test the performance for every candidate combi-
nation of parameters for GAA. Each of the problem instances
run 30 times independently. For each of 12 candidate
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TABLE 3. Parameter combinations of algorithms.

TABLE 4. Parameter combinations of GAA to solve the case.

combinations of parameters for GAA, 3600 experiments are
carried out.

The size of population, iterations, and the number of local
searches are 50, 30, and, 10 respectively. ncmv indicates the
number of occurrences for the incumbent minimum value
of the objective function. The proportion of occurrences in
incumbent minimum value of the objective function pcmv is
equal to ncmv divided by the total number of experiments,
i.e., 3600. pcmv is used to evaluate candidate combinations
of parameters for GAA, i.e., the larger the pcmv, the better
the combinations of parameter. Table 4 presents the results
of GAA under the 12 candidate combinations of parame-
ters. Obviously, the combination of parameter for npar =
10 outperforms the others, i.e., pc = 0.6, pm = 0.2
and pr = 0.3.

C. COMPUTATIONAL RESULTS
Based on the above experimental design, the 720 problem
instances are generated in Subsection 8.1 by the problem
instance generator and solved using MILP (CPLEX), heuris-
tic (Algorithm B), GA, and GAA showed that MILP using
CPLEX can obtain optimal solutions.

1) PERFORMANCE ANALYSIS OF FOUR METHODS
NC and PC indicate the number and proportion of optimal
solutions obtained by the CPLEX software in tolerable time
respectively. The tolerable time is set as less than 10,000 secs
in the experiments.NH and PH are the number and proportion
of optimal solutions obtained by the heuristic algorithm B.
NG and PG denote the number and proportion of optimal
solutions obtained by GA. NG and PG indicate the number
and proportion of optimal solutions obtained by GAA. TC ,
TH , TG and TG indicate the average running time of CPLEX,
heuristic algorithm, GA, and GAA. AH , AG and AG are the
average relative error of the heuristic algorithm, GA, and
GAA respectively. SH , SG and SG are the standard deviation
of the heuristic algorithm, GA, and GAA respectively.

Table 5 presents a summary of the performance of four
methods for all problem instances. It is shown that almost all
problem instances are solved optimally by theMILP of SRRO
with CPLEX in tolerable time. GAA shows an excellent
performance in the experiments, i.e., both the quality and
time of solving are satisfactory. Table 6ÍC8 summarize the
performance of the four methods for the problem instances
respectively.

Table 6 shows that the solving performances of four meth-
ods deteriorate with increasing problem size. The solving
quality of GAA is better than the heuristic and GA with
respect to each scale or level of the problems. In particular,
when the MILP of SRRO is solved by the CPLEX software,
the average running time is obviously longer for the problem
with 80 jobs, where the longest running time is 8056.44 secs.
Contrastly the solving times of the heuristic, GA, and GAA
remain relatively stable.

In Table 7, the performances of the four methods are better
with 0.25 proportion than of 0.50 and 0.75 proportion rework
jobs. When the proportions of rework jobs are 0.5 and 0.75,
the average running time is significantly longer when solving
the MILP of SRRO with the CPLEX. The performances of
the heuristic algorithm, GA, and GAA are relatively stable,
although there is a slight decrease. The overall effect of GAA
is better than those of the heuristic algorithm and GA.

Table 8 explains that in the three FIT levels of 0.3, 0.5, and
0.7, the number of idle times in the original schedule basically
did not affect the solving quality of the four methods. The
solving quality of the four methods is more outstanding with
FIT = 0.1 compared to the other three levels. With regard
to the running time, the effect of solving the MILP of SRRO
with CPLEX with FIT = 0.1 is better than with other levels.
However, the different levels of FIT have almost no effect on
the performance of the heuristic algorithm, GA and GAA.
The overall effect of GAA is more satisfactory than in the
heuristic algorithm on each FIT levels.

2) STABILITY ANALYSIS OF GAA
The above experiment results show that GAA is suitable for
solving SRROs of large scale. To test the stability of GAA
with increasing problem scale, the following experiments are
carried out.

In above problem instances with 40 jobs, we selected the
following combination of factors (nR,FIT ) for the problem:
(0.75,0.7) with the longest average running time, (0.25, 0.7)
with the shortest average running time, (0.50, 0.1) with the
best rate of better solution and the smallest average relative
error, and (0.50, 0.1) with the worst rate of better solution
and largest average relative error. The performance of GAA
with the optimal parameter combination of algorithm is tested
along with the increasing problem scale.

Fig. 7 shows the changes in average running time of GAA
with different total number of jobs. The solid line and the
dotted line indicate the results of the factors combinations for
the problem with the longest average running time and with
the shortest average time, respectively.
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TABLE 5. Performance of the four methods.

TABLE 6. Effect of n on the performance of the four algorithms.

TABLE 7. Effect of nR on the performance of the four algorithms.

TABLE 8. Effect of FIT on the performance of the three algorithms.

FIGURE 7. The average running time of GAA with different number of
total jobs.

Fig. 8 shows the changes in the rate of better solution for
GAA with different total number of jobs. The solid line and
the dotted line indicate the results of the factor combinations
for the problem with the best rate of better solution and with
the worst rate of better solution, respectively.

Fig. 9 shows the changes in the average relative error for
GAA with different total number of jobs. The solid line and
the dotted line indicate the result of the factor combinations
for the problem with the largest average relative error and
with the smallest average relative error, respectively.

The results of the above experiments suggest that with
increasing total number of jobs, the trend of increase in the
average running time is slow and the rate of better solution is

FIGURE 8. The rate of better solution of GAA changing with different
number of total jobs.

FIGURE 9. The average relative error of GAA changing with different
number of total jobs.

declining. Although the average relative error is increasing,
its value is on an acceptable level for GAA. Thus, GAA has
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TABLE 9. The data of the actual example.

TABLE 10. The solutions of four algorithms.

a satisfactory stability for solving SRRO with increasing the
total number of jobs.

D. AN EXAMPLE IN QUARTZ GLASS FACTORY
An actual example of one day’s production (three shifts
in 24 h) on a machine in a quartz glass factory in China shows
that the better solution can significantly reduce costs and
energy consumption. In this example, NO = 41, NR = 19,
JO = 1, 2, . . . , 41, JR = 42, 43, . . . , 60, v = 1, 2, . . . , 41,
and K = 0.69 h. Table 9 presents the data of all jobs in the
example.

Table 10 presents the solutions obtained by MILP
(CPLEX), GA, GAA, heuristic algorithm B, and manual
scheduling (i.e., relying on the experience of workers).
The results suggest that the optimal solution obtained by

MILP (CPLEX) and GAA is 388.00 − 339.01 = 48.99 h
per day less than that of the manual solution.

In the quartz glass factory, the annual production is
5000 tons per production line. The specific heat of quartz is
0.8 kJ/(kg·K) and the cooling rate of spare parts after preheat-
ing is approximately 30–40 ◦C/h. Therefore, the rescheduling
obtained by MILP (CPLEX) and GAA will save 21.67 ×
1012 to 22.39 × 1012 kJ of energy compared to the manual
rescheduling per year per production line in this factory.
Therefore, this research is very significant and necessary for
achieving cost and energy savings.

IX. CONCLUSION
In this study, a rescheduling problem of importance to some
manufacturing industries aiming at energy savings is inves-
tigated. The theoretical importance of the study resides on
the MILP of SRRO, complexity analysis, formalization of
structural properties, development of three algorithms, and
proofs of the optimal solution for the six special cases of
SRRO by the proposed heuristic algorithm. The extensively
effective experiments were designed to test the performance
of the MILP with CPLEX software, the proposed heuristic
algorithm, GA and GAA. With experimental results, there
is no doubt that the MILP with CPLEX software is the best
choice for solving small-scale SRROs. The numerical exper-
iments show that the performance and ability of GAA are
excellent and its solutions are close to optimal ones. There-
fore, for large-scale problems, GAA is a better choice than
the proposed heuristic, except for the six special cases solved
optimally by the heuristic. An example of real situation in
industry shows that the proposed rescheduling methodology
is effective for attaining significant energy savings. In future
work, with respect to practical applications, rework jobs with
stochastic release times and production environments such
as flowshop and job shop need to be considered and inves-
tigated.
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