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ABSTRACT Discovering anomalous bus trajectories can benefit transportation agencies to improve their
services by helping them to deal with unexpected events such as detours or accidents. In this work, we pro-
pose a deep-learning strategy, which we name Spatial-Temporal Outlier Detector (STOD), that predicts
the spatial/temporal anomaly degree of a bus trajectory by using learned representations of its GPS points.
To calculate the score, STOD learns the regular behavior of bus trajectories by building a model that predicts
the route id of buses. The degree of uncertainty on this prediction, measured by the entropy of the output
class probability distribution, indicates the anomaly score of the trajectory. To perform the classification,
STOD represents each point of a trajectory by the concatenation of two different representations. The first
one (PAC embedding) is generated by the Point Activity Classifier (PAC) by leveraging temporal and spatial
features on a stacked deep-learning model to predict the semantics of the point in terms of its bus activity
(in route, bus stop, traffic signal, and other stops). The second representation (Geo embedding) captures the
spatial relationship between a point and its geographical neighbors by applying a word embedding technique
on the set of all trajectories. The experimental evaluation shows that our model is effective for filtering noisy
trajectories since it outputs higher anomaly scores for both spatial and temporal anomalous trajectories than
regular ones.

INDEX TERMS Anomaly score, representation learning, GPS bus trajectory.

I. INTRODUCTION
Public transportation is responsible for a reasonable part of
ridership in big urban areas. To give some numbers: 35% of
the workers in London commute by public transportation and
31% in São Paulo.1 The quality of this service has hence a
great impact on city people’s lives.

Among the public transportation modes, transit buses are
the most affected by unexpected factors (e.g., heavy traf-
fic or accidents) since they share the roads with other vehi-
cles and have a fixed route line. These factors can lead
buses to present spatial or temporal behavior differently than
usual. Finding such anomalies2 might help transportation
agencies improving its services, for example, by releasing
more buses according to demand, redefining routes due to an
accident or notifying bus drivers about detours.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shajulin Benedict .
1https://www2.deloitte.com/xe/en/insights/focus/future-of-

mobility/deloitte-urban-mobility-index-for-cities.html
2In this work, we use the terms outlier, anomaly, and noise mutually.

Considering anomalies as instances that stand out as dis-
similar to all others, different solutions have been proposed
to detect them: statistical strategies based on distance [1] and
density [2]; and machine learning approaches using super-
vised [3] and unsupervised [4] learning.

In this work, we aim to detect anomalous bus trajecto-
ries using supervised learning. A possible solution, in this
direction, would be to train a binary classifier to predict
a trajectory as anomalous or not. The main challenge in
building such model for bus trajectories, though, is the lack
of anomaly labeled data available. To deal with that, previous
approaches [3], [5] have proposed to apply a classifier to
model the regular behavior of bus trajectories by predicting
their route line, and considering trajectories with classifica-
tion probabilities lower than a certain threshold as outliers.

Similarly, we propose amulti-class classifier that learns the
typical behavior of buses by predicting their line but, instead
of performing a hard-boundary decision, our solution outputs
an anomaly score of a bus trajectory based on the uncertainty
of the classifier. Our assumption is that a trajectory classi-
fied with high uncertainty indicates a higher chance of it to
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be spatial/temporal anomalous. Concretely, we calculate the
anomaly score of a trajectory as the normalized entropy of
the classifier’s output class probability distribution: the higher
the entropy, the higher the classifier uncertainty with respect
to the route line of a given bus trajectory. In practice, our
anomaly score can be used, for instance, by transportation
agencies to rank bus trajectories in order to select the ones
with the highest scores as candidate anomalous trajectories,
serving thereby as filter to help analysts to inspect few trajec-
tories, among many.

The trajectory classifier, which we call Spatial-Temporal
Outlier Detector (STOD), is a deep learning model that heav-
ily relies on representation learning [6]. Each GPS point in
the input trajectories is represented by two learned vectors:
(i) the PAC embedding, which embeds temporal and semantic
patterns, and (ii) the Geo embedding, which captures geo-
graphical information.

The Point Activity Classifier (PAC), which is a stacked
deep-learning model composed of recurrent and attention
layers, learns a vector representation (PAC embedding) for
each point in a given trajectory by classifying it into a set
of activity points (in route, bus stop, traffic signal, and other
stops) based on temporal and spatial features of the point and
its neighboring points in the trajectory. This task is related to
stay point prediction which allows detecting the semantic of
stops in trajectories [7].

To create the Geo embedding, the points of the trajectories
are mapped into a spatial grid where points in the same
grid cell receives the same id. The Geo embeddings are then
created by running a natural language word encoding [8]
technique on the trajectories, in which each point is repre-
sented by its cell id. The Geo embedding, created by this
process, captures the spatial relationship between a point and
its geographical neighbors.

The trajectory points represented by the concatenation
of their PAC and Geo embeddings feed a recurrent neural
network, followed by a fully-connected network. The output
of this network (STOD embedding) is passed to a softmax
layer that outputs the class probability distribution of the input
trajectory used to calculate the anomaly score.

The STOD embedding encodes relevant aspects regarding
temporal and spatial behavior of the bus trajectory. As a
result, STOD can also be used as a trajectory feature extractor
to produce input features (STOD embedding) to any classifi-
cation algorithm for bus route identification or to find similar
trajectories [9].

We have performed an extensive experimental evaluation
on datasets of two cities: Recife in Brazil and Dublin in
Ireland. The results show that:
• Our anomaly score is in fact able to filter spatial and tem-
poral anomalous trajectories since they present higher
anomaly scores than regular ones in the experiments;

• STOD is effective in classifying trajectories in their
respective route id and outperforms a previous
approach [3] for the same task;

• The learned representation of the trajectories created
by STOD produces high-quality results as input to dif-
ferent classifiers. In fact, the KNN classifier achieved
the best results in the bus route classification, showing
that the STOD embedding is also useful to find similar
trajectories.

• PAC is effective to learn relevant information from the
trajectory’s points and classify stay points.

The source code of whole solution is available on Github.3

The remainder of the paper is organized as follows.
In Section II, we present some background concepts and
the problem statement. Section III delineates the proposed
method and Section IV describes datasets, and setup exper-
imentation. We compare our results with classical machine
learning algorithms and previous researches in Section V.
Section VI provides the state of the art on the anomaly
detection in GPS trajectory. Finally, conclusions and futures
works are drawn in Section VII.

II. PROBLEM DEFINITION
In this section, we provide some background concepts and
state the problem that we deal with in this work.
Definition 1 (Bus Trajectory): We define a bus trajectory

Tl as a sequence of consecutive GPS points collected from
a bus trip, denoted as Tl = {p1, p2, . . . , pn}. Each point
pi = {lati, lngi, tspi} is composed of latitude (lati), longitude
(lngi) and timestamp (tspi). Tl is associated to a bus line l,
and ordered by the points’ timestamp, i.e., tspi < tspi+1.
Definition 2 (Spatial Anomaly Trajectory): A spatial

anomaly trajectory T ′l contains points that spatially diverge
from regular trajectories of the assigned bus line l of T ′l .
Definition 3 (Temporal Anomaly Trajectory): A temporal

anomaly trajectory T ′′l has a temporal behavior that deviates
from regular trajectories of line l. We define two types of
temporal anomalies. Trajectories with the Temporal Anomaly
Type I have buses running slower than the regular behavior
of trajectories of l (more congestion than usual). Trajectories
with the Temporal Anomaly Type II, on the other hand, have
vehicles moving faster than the regular behavior of trajecto-
ries of l (less congestion than usual).
Definition 4 (Problem Statement): Given a bus trajectory

Tl , we aim to calculate the spatial-temporal anomaly score
function f : Tl → R, such that f (Tl) ∈ [0, 1].

III. METHODOLOGY
This work proposes a spatial-temporal outlier scoring method
for bus trajectories data. Similar to previous approaches
[3], [10], we calculate the score based on a classification task.
More specifically, we build a multi-class classifier that learns
spatio-temporal patterns of regular bus trajectories in k bus
lines. The anomaly score of a trajectory T is based on the
confidence degree of the classifier in predicting the class of T .
We measure this confidence by calculating the entropy of the

3https://github.com/michaeloc/its_research
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FIGURE 1. Overview of our anomaly score approach.

FIGURE 2. PAC model.

output probability distribution of T belonging to each one of
k classes.

To perform the route classification, instead of representing
each trajectory point pi with its raw features (lati, lngi, tspi),
pi is represented by a concatenation of vectors learned from
two different tasks. In the first one, we use a neural network
(Point Activity Classifier) as a feature extractor to learn a
vector representation for pi (PAC embedding) by predicting
whether pi is moving or is one of the 3 different types of
stay points: bus stop, traffic light or other type of stay point.
The second strategy uses a word embedding algorithm [11]
to produce a vector representation (Geo embedding) for each
point in a new space, which captures the spatial relationship
between neighboring points. The points of T , represented by
the concatenation of their PAC and Geo embedding, are fed
into a deep learning model, called STOD (Spatial-Temporal
Outlier Detection), to predict the probability distribution of T
belonging to the k classes. Finally, this distribution is passed
to the Anomaly Detector to calculate the anomaly score of
T based on entropy, as mentioned before. An overview of
the whole solution is presented in Figure 1. In the remaining
of this section, we provide further details about the whole
solution.

A. POINT ACTIVITY CLASSIFICATION
Asmentioned before, the point activity classifier (PAC) learns
representations of trajectory points that embed information
of the point itself and its neighboring points using a super-
vised learning strategy. For that, we devised a deep learning
model that predicts whether a given GPS point pi in T is in
one of the 4 distinct states: ‘‘in route’’, ‘‘bus stop’’, ‘‘traffic
light’’ or ‘‘other stop’’. The class ‘‘in route’’ indicates that
the bus is moving while ‘‘other stop’’ is any stop not labeled
as ‘‘bus stop’’ or ‘‘traffic signals’’, which might occur, for
example, due to an accident or heavy traffic.

Alongside the prediction, the model works as a feature
extractor by producing a vector representation of pi (PAC
Embedding) as shown in Figure 2. The main goal of PAC
is therefore to create a vector to represent any point in a
trajectory. That is the reason we included the ‘‘in route’’
class as one of the PAC’s output classes, even though it is
straightforward to identify points in this class based on speed.

Point activity classification is very related to the task of
stay point prediction that identifies the semantic of stops in
trajectories [7], which helps to understand how vehicles are
being utilized. For example, buses of a given route normally
follow the same path which has the same number of bus stops
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and traffic signals, but they can present different behaviors
due to factors as period of the day, weather conditions and
city dynamics. Discovering the meaning of each stop opens
the opportunity to understand anomalous spatial-temporal
behavior in trajectories. Stay point prediction can be con-
sidered as a sub-task of point activity classification, since
3 out of 4 classes predicted by PAC are related to stay points.
As presented in Figure 2, to predict the class of a given point
pi, the PAC network receives as input pi and the k consecutive
points before [pi−k : pi−1] and after it [pi+1 : pi+k ], which
we call left and right windows.

Since the bus behavior is heavily influenced by the day of
week and hour of the day, they are used as features, extracted
from the timestamp of the point. Similar to [12], instead
of using their raw representation, PAC considers them as
categorical values and applies Entity embeddings [13] for
each feature set to map sparse one-hot encoded inputs of the
categories to a dense and lower dimensionality.

PAC also uses the numerical features: latitude, longitude
and timestamp of the point; acceleration and point-wise dis-
tance, which are calculated between consecutive points, since
buses in stay points can have different behavior regarding
these features. We utilize the Vincenty’s formula [14] to com-
pute the geographical distance between two points. Another
feature is travel distance, which is the geographic distance
between the initial point of the trip and the current point,
calculated by the cumulative point-wise distance. It tries to
capture events in specific locations of the trajectory. The
final feature is the bearing rate [15], which is the absolute
difference of the bearing of (pj−1, pj) minus the bearing of
(pj, pj+1). The level of changing of direction of a bus in a
point calculated by the bearing rate might indicate the type of
stay point. For instance, buses usually change slightly their
directions when they stop at a bus stop as opposed to at a
traffic light. The bearing of two consecutive points pi−1 and
pi is calculated as:

y= sin (lngpi − lngpi−1 ) ∗ cos (latpi ) (1)
x = cos (latpi−1) ∗ sin (latpi+1 ) (2)
z= sin (latpi−1)∗cos (latpi+1)∗cos (lngpi+1−lngpi−1)

(3)

bearingpi+1 = arctan(y, (x − z)) (4)

where sin, cos, and arctan are the respectively trigonometric
functions: sine, consine and arctangent. Latitude (lat) and
longitude (lng) are passed in radians.

In each batch, the network applies batch normalization [16]
on the values of these features to normalize them in order to
give numerical stability to the model:

x̄i =
xi − µB√
σ 2
B + ε

(5)

zi = γ ∗ x̄ + β (6)

where µB and σ 2 are respectively the batch mean and stan-
dard deviation, ε is a stability factor added to variance to

avoid a division by zero, γ and β are learning parameters,
and zi is the normalized value of xi.

After the batch normalization layer, we use two GRUs to
capture the context before and after of pi: the points in the left
window [pi−k : pi−1] are passed to a forward Gated Recurrent
Unit (GRU), and the points in the right window [pi+1 : pi+k ]
to a backward GRU.

Next, the network applies the attention mechanism to learn
which points before and after pi are more relevant to classify
it. More specifically, the hidden states of the forward GRU
and the normalized features of pi are fed into an attention
layer, which weights the GRU hidden states according to pi,
creating an attention vector. Similarly, the hidden states of
the backward GRU and pi are used by an attention layer to
produce an attention vector with respect to the right window.
The attention vector vatt is calculated as follows:

ej = f (pi, vj) (7)

αj =
exp(ej)∑h
k=1 ek

(8)

vatt =
h∑
j=1

αjvj (9)

where pi is the input point, vj is one of the GRU’s hidden
state, f is the hyperbolic tangent activation function in our
implementation, and h is the number of output hidden states
of the GRUs.

In addition to obtain the attention vectors from the left
and right windows, the network also extracts statistics about
points in both windows using a sliding window strategy,
similar to [15]. Concretely, for each n consecutive points in
[pi−k : pi−1] and [pi+1 : pi+k ], the model computes the mean,
standard deviation, min, max, and median of the features:
velocity, acceleration, distance, bearing and travel distance.

Lastly, the statistics from the left and right windows, their
attention vectors and the features of pi are passed to an
MLP network with 3 fully-connected layers (a dropout layer
is placed after the first full connected one). On top of the
network, a softmax function predicts the probability of pi
belonging to each one of the 4 states (in route, bus stop, traffic
light and other kind of stop). The output of the last hidden
layer is the vector representation of pi (PAC Embedding).

B. ANOMALY TRAJECTORY DETECTION
As we mentioned before, our solution predicts the anomaly
score of bus trajectories based on a classification task. For
that, our classifier predicts the probability of a trajectory T
belonging to n possible route ids, and uses the classification’s
degree of confidence as the anomaly score. We calculate
this confidence by measuring the entropy of the probability
distribution of the n classes predicted by the classifier for T .
We normalize the entropy to have values between 0 and 1:
a value closer to 0 means the classifier has high confidence of
predicting the class of T whereas values closer to 1 indicates
the classifier is uncertain about the prediction. The anomaly
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score of T is therefore the normalized entropy E(T ):

E(T ) =
n∑
i=1

−P(T )i logn P(T )i (10)

where P(T )i is the probability of the trajectory T being in
class i, and n is the number of classes being predicted by
the classifier. The normalization is performed by setting the
log base equals to n, since the maximum entropy value is
logn(n) = 1.

FIGURE 3. Geo embedding pipeline.

To perform the route id classification, the model represents
each point of the trajectory using two vectors: PAC embed-
ding, which is learned by the PAC model as explained in
Section III-A; and Geo embedding that represents a point
based on its geo location and its neighbors. To create Geo
embedding, as shown in Figure 3, we first map the points of
trajectories to a grid of hexagons using the H3 technique.4

Each point is assigned to its corresponding cell (hexagon),
represented by an id. A trajectory is then transformed into
a sequence of cell ids in which its points lay on the grid.
These grid cell id sequences are then used as input to theWord
Encoder (Word2Vec [11] in our implementation) that outputs
for each cell in the grid a dense vector (Geo embedding) that
captures the spatial relationship between neighboring cells.
At execution time, each point of a trajectory is mapped to its
respective grid cell id to retrieve its geo embedding.

As depicted in Figure 1, the classification model, which we
call Spatial-Temporal Outlier Detection (STOD), receives as
input the points of the trajectory, in which each point is repre-
sented by the concatenation of its PAC and geo embeddings,
feeding a forward GRUmodel. Next, the hidden states of this
GRU are passed to an MLP with 1 fully connected layer.5

On top of the network, a softmax layer predicts the probability
distribution of T belonging to the k routes, which is used to
calculate the anomaly score E(T ). Alongside the classifica-
tion, STOD produces an embedding (STOD embedding) that
is the input vector to the softmax layer and encodes relevant
aspects regarding temporal and spatial behavior of buses as
our experimental evaluation in Section V shows.

C. TRAINING
To train both models (PAC and STOD), we use the focal
loss [17] function that deals with highly unbalanced data,

4UBER H3: https: //eng.uber.com/h3/
5Even though it is more common passing only the last hidden state,

experimentally we did not find any significant difference in the performance
of the model using this strategy.

which is the case of our input data as we show in Section V,
leading to better performance than traditional multi-class loss
functions. The focal loss is described as:

FL(p) =
n∑
t=1

αt (1− pt )γt ∗ log(pt ) (11)

where n is the number of classes; pt is the probability for the
class t; αt is a hyper-parameter that balances the importance
of the classes; and the γt ≥ 0 is the tunable focusing parame-
ter for each class that is used to down-weight easy examples
and pay more attention on hard classes, i.e., few instances in
the training data.

IV. DATA DESCRIPTION AND SETUP
A. EXPERIMENTAL SETUP
1) BUS TRAJECTORY DATASETS
We used datasets of two different cities in our evaluation:

• Recife6 (Brazil): The Recife dataset comprises 82 bus
routes and has GPS points collected every 30 seconds
from 18 days between October and November 2017.
Each data point contains longitude, latitude, timestamp,
route id, vehicle id, instantaneous velocity, and travel
distance. The dataset comprises 27,897 trajectories com-
posed of 2,675,468 points from 238 buses. The trajecto-
ries cover an average distance of 10 kilometers and have
an average of 70 GPS points.

• Dublin7 (Ireland): The Dublin dataset contains
66 routes, 17,701 trajectories with a total of
1,699,022 points collected from 3 days on January 2013.
The average size of a trajectory is 11 kilometers and
each trajectory has 190 points on average. We used the
following information of the GPS points: timestamp,
line id, longitude, latitude, journey id, and vehicle id.
We use line id along with journey id and vehicle id to
form a composite key to uniquely identify trajectories.
As opposed to the Recife dataset, the timestamp fre-
quency on the Dublin dataset’s GPS points does not
have a regular pattern, the average time interval between
consecutive points is 22 seconds.

To help building anomaly trajectories, used in our experi-
ments in Section V, we collected GTFS (General Transit Feed
Specification)8 files for both cities. GTFS is a standard format
used for agencies to publish transit data. It is composed of
files that define, for instance, the location of bus stops, pre-
assigned routes for bus lines etc. For this evaluation, we used
the shape.txt file containing the latitude and longitude of each
point in the pre-assigned routes for each bus line. Further-
more, for the point activity classification task, we obtain the
labels traffic light and bus stop for Dublin and the bus stop

6We obtained the Recife dataset from a collaboration with the local
government.

7https://data.gov.ie/dataset/dublin-bus-gps-sample-data-from-dublin-
city-council-insight-project

8https://developers.google.com/transit/gtfs
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for Recife from OpenStreetMap,9 and traffic light for Recife
from the city’s open data website.10

2) PRE-PROCESSING
We performed the following pre-processing tasks over the
raw data to feed themodels: cleaning, trajectory segmentation
and feature extraction. The cleaning step removes points with
missing attributes: points without latitude, longitude or times-
tamp. Next, we perform the trajectory segmentation by con-
sidering as a single trajectory consecutive points with time
difference lower than 5 minutes. Finally, the feature extrac-
tion generates the set of features for each point mentioned
in Section III.

3) POINT ACTIVITY APPROACHES
We assess the quality of the PAC embeddings by comparing
traditional classification models using PAC embeddings as
features versus PAC’s original features. The PAC model was
trained with the left and right windows equal to 16. For all
experiments, we split the datasets in 64% for training, 16% for
validation and 20% for test. We trained all approaches based
on searching for the best hyperparameters. To choose the best
values of the hyper-parameters for the PAC network, we used
the hyper-parameter optimization framework Hyperas, which
is a wrapper of hyperopt [18]. The hyper-parameters, the val-
ues that we used to search and the best values for each dataset
based on the validation set is shown in Table 1.

TABLE 1. Values of hyper-parameters of PAC approach.

4) CLASSIFIERS
We apply the following traditional classification models in
this evaluation:
• Random Forest (random forest): it is an ensemble of
decision trees classifiers that are trained with the bag-
ging method [19]. The hyperparameters n-estimators
and max-depth were optimized in a range of values
{2 <= x <= 50} and {1 <= x <= 32}.

• Gaussian Naive Bayes (gaussian nb): it is a classi-
fier based on Bayes’ theorem, and features indepen-
dence [20]. No hyperparameter search was performed.

• Support Vector Machine (svm): svm is a non-
probabilistic classifier characterized by finding hyper-
planes (support vectors) that maximizes the margin

9https://www.openstreetmap.org/
10http://dados.recife.pe.gov.br/dataset/localizacao-dos-

semaforos/resource/ab6343e9-c3f2-4d62-9554-5778f9f33738

TABLE 2. Values of hyper-parameters of STOD.

between classes [21]. We used a linear kernel with
the regularization hyperparameter C ranging between
{1e−10 <= x <= 1e10}.

• Light Gradient Boost (lgbm): lgbm is an improved
Gradient Boosting which is based on an ensemble of
decision trees and boosting method [22]. We varied the
values of hyperparameters n-estimators [gbdt,dart,goss],
number of leaves {10 <= x <= 150}, learning rate
{1e−5 <= x <= 1} and feature fraction {0 <=

x <= 1}.
• K-Nearest Neighbors (knn): it is a lazy and non-
parametric method that classifies examples based on a
similarity measure [23]. We varied the number of neigh-
bors in the range {1 <= x <= 30} and the KNN’s
algorithm [auto, ball_tree, kd_tree, brute].

In order to choose the values of the hyper-parameters,
we used the hyperparameter optimization framework
Optuna [24].

5) ROUTE CLASSIFICATION APPROACHES
We executed the following bus route classification strategies:
• Riobusdata [3] uses a Convolutional Neural Network
(CNN) fed by raw bus trajectories where each point is
composed of latitude, longitude, and timestamp.

• STOD(geo,pac) is our solution that uses as input the geo
and PAC embeddings. To generate the geo embeddings,
the Spatial Grid Mapping is implemented using UBER’s
H3 [25] and the Word Encoder is Word2Vec with the
window size set to 5. We set the output size of attention
layer in 128. We also executed a variation of our clas-
sifier that uses the point’s timestamp instead of its PAC
embedding STOD(geo,time).

For all approaches, the input trajectory has at most
100 points, and they were implemented using Keras.11

We trained them for 100 epochs and selected the best models
by early-stopping accuracy validation. For these experiments,
we split the datasets in 64% for training, 16% for validation
and 20% for test. We used Hyperas12 to tune the some of
the models’ hyper-parameters. Table 2 and Table 3 show
the tuning and best values used for STOD and Riobusdata
respectively.

To measure the performance, we used weighted Precision
(WP), weighted Recall (WR), and weighted F1 (WF1), which

11https://keras.io/
12https://github.com/maxpumperla/hyperas
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TABLE 3. Values of hyper-parameters of RioBusData.

are suitable to evaluate techniques that work on unbalanced
data problems:

WF1 =

∑n
i=1 wi ∗ F1i∑n

i=1 wi
(12)

WR =

∑n
i=1 wi ∗ Recalli∑n

i=1 wi
(13)

WP =

∑n
i=1 wi ∗ Precisioni∑n

i=1 wi
(14)

where wi is the proportion of true instances of class i over all
true instances and n is the number of classes.

6) ANOMALY DETECTION EVALUATION METRIC
We assess whether the confidence of the classifier measured
by the entropy of the output probability distribution of the
classes is a good indicator for trajectory anomaly detection.
Since our datasets do not contain any trajectory labeled as
outliers, we had to synthetically generate spatial and temporal
anomaly trajectories. Based on the STOD’s entropy results
in Table 6, we assumed that the trajectories with the smallest
chance of having anomalies are the ones that STOD correctly
classified with high confidence, i.e., entropy between 0 and
0.1. On the Recife test set, there are 3,530 trajectories in
this entropy range and 2,805 on the Dublin test set. We con-
sider them as non-anomalous trajectories (NAT ) and created
from them anomalous ones (AT ). For evaluation, we execute
STOD(geo,pac) on both datasets and calculate our entropy-
based anomaly score (see Equation 10) of all trajectories in
NAT and AT . Then, we measure the relative change of the
distribution of the anomaly scores of NAT regarding AT ,
which we call relative entropy, at different percentiles. More
formally, the relative entropy is:

fent (AT )− fent (NAT )
fent (NAT )

(15)

where fent is the entropy value at a specific percentile.
We used the 25th, 50th (median) or 75th percentiles in our
evaluation. A positive value of relative entropy means that the
anomaly score of the anomalous trajectories is higher than in
the non-anomalous ones at a certain percentile, and a negative
value means otherwise. We were not able to compare our

anomaly detection with other baselines due to the difficulty
of finding available code solutions or because the strategies
in literature are very different from ours.

V. RESULT AND DISCUSSION
In this section, we evaluate on real bus trajectory datasets our
proposed approaches: the Point Activity Classifier, the Route
ID Classifier and the anomaly trajectory score method.

TABLE 4. Results of PAC classification using the original features and PAC
embeddings.

A. PAC EVALUATION
We evaluate the quality of the embeddings created by the
PAC model by comparing different classification algorithms
trained using the PAC’s original features and the embeddings
created by our PAC model. The results in Table 4 show
that the PAC embeddings improved the performance of all
evaluated models. For instance, the WF1 value of Gaussian
Naive Bayes (gaussian nb) increased from 0.586, using the
original features, to 0.919 using the PAC embeddings on
the Recife dataset, and from 0.58 to 0.847 on the Dublin
dataset. The results also show that the performance of the
softmax classifier (pac in Table 4) used in the PAC model is
similar to the other classifiers using the PAC embeddings. The
superior results of the classifiers using the PAC embedding
confirm that the PAC network is indeed able to learn relevant
information from the original features by embedding them
in a single vector, working as an end-to-end encoder for this
task.

In order to get a visual interpretation about the discrimina-
tive power of the PAC embeddings we present in Figures 4 (a)
and Figures 4 (b) the 2D projection of learned PAC embed-
dings using T-SNE [26] on the two datasets. They illustrate
desirable properties of good representations according to
Bengio et al. [6]: natural clustering, since the points with
similar labels are clustered in the space, maintaining a spatial
coherence between similar points (e.g., stay points are closer
to each other than to in route points).

B. ROUTE ID CLASSIFIER EVALUATION
We assess in this section our proposed solution for the
task of classifying bus trajectories in their assigned routes
and compare it with a previous approach (RioBusData).
The numbers in Table 5 show that STOD(geo,pac) and
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TABLE 5. Average of results of our outlier model and RioBusData.

TABLE 6. Entropy Distribution of STOD on the Test Set.

FIGURE 4. Visualization of PAC embeddings using T-SNE.

STOD(geo,time) obtain high values and outperform RioBus-
Data in all evaluation metrics. Looking at the WF1 mea-
sure on the Recife dataset, for instance, STOD(geo,pac)
obtained the best WF1 result (0.956), slightly higher than
RioBusData (0.927). On the Dublin dataset, on the other
hand, STOD(geo,time) outperformed the other approaches
with WF1 equals to 0.97 followed by STOD(geo,pac) with
WF1 equals to 0.964.

We applied Mann Whitney statistical test [27] to ver-
ify whether there is a statistical difference between the
pair of models STOD(geo,pac), STOD(geo, time), and
STOD(geo,pac), RioBusData. We set the significance level
to α = 5% and our null hypothesis h0 considers each of
the pairs models generates WF1 results which have the same
median and h1 considers that the median of the results of the
first model is greater than the second one. We ran each model
30 times for this evaluation. The results confirm that there is
a statistical difference between STOD(geo,pac) and RioBus-
Data on Recife (p-value = 1.50e−11) and Dublin (p-value =
4.63e−9), confirming that our route id classifier has supe-
rior performance than RioBusData. We can also note that
STOD(geo, time) achieved close performance to STOD(geo,
pac) on Recife (WF1 = 0.956, WF1 = 0.952) and Dublin
(WF1 = 0.970, WF1 = 0.964). The statistical test shows
evidence to reject the null hypothesis on Recife (p-value =
2.04e−5), but not on Dublin (p-value = 0.99). A possible

reason for the better performance of STOD(geo,time) in com-
parison to STOD(geo,pac) on the Dublin dataset is that it
contains trajectories from only 3 days. As a result, the features
of the PAC network that capture seasonality (day of the week
and hour of the day) did not have much impact.

Since our anomaly detection score is based on the entropy
of the output class distribution of STOD, we verified the per-
formance of STOD(geo,pac) on different ranges of entropy
on the trajectories of the test set. The results in Table 6
show a clear degradation in the performance of STOD as
the entropy of the classification probability output increases.
The WF1 metric dropped from 0.97 to 0.53 from the entropy
interval [0.0 - 0.1] to [0.1 - 0.2] on the Recife dataset and
from 0.98 to 0.47 on the Dublin dataset. Furthermore, the per-
centage of trajectories classified in these entropy intervals
decreased from 95.2% to 3.2% on the Recife dataset and from
96.4% to 2.2% on the Dublin dataset. These results confirm
the high quality of our proposed classifier (STOD) since it
classified with high confidence and correctly a very high
percentage of the trajectories on both datasets. In addition,
there is a clear correlation between the entropy value and the
performance of the classifier: the higher the entropy (or the
lower the confidence of the classifier), the lower its perfor-
mance. This might also indicate that trajectories with high
entropy values are anomalous, which is the main assumption
behind our trajectory anomaly detector.
STOD as a Trajectory Encoder: We also evaluated the

STOD(geo,pac) model as a trajectory encoder that receives
as input a raw trajectory and uses the intermediate mappings
and non-linearities performed in the network to produce a
dense vector representation of the trajectory (STOD embed-
ding). This vector is the input of the final layer of the STOD
network (see Figure 1). In this experiment, in particular, this
trajectory encoder transforms a trajectory with 100 points and
50 features per point into an embedding of 1000 dimensions
on Recife dataset, and 2000 on Dublin dataset. To further
reduce the dimensionality of the vectors and ease the training
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TABLE 7. Results of STOD embeddings.

process, we apply PCA (Principal Component Analysis) [28],
decreasing the STOD vectors to 32 dimensions. Table 7
presents the results of classifiers for the route id classification
task using this dimensionality reduction strategy. The KNN
approach outperformed all the evaluated classifiers on both
datasets: WF1=0.954 (Recife) and WF1=0.968 (Dublin).
This result indicates that our trajectory encoder in fact can
capture the complexities associated with the features of the
trajectory allowing such a simple model as KNN, which
relies heavily on the representation of the instances to per-
form the classification, to achieve superior performance than
more sophisticated algorithms such as Random Forest, SVM
and LightGBM. This result might indicate as well that our
sentence encoder can also be used in the task of trajectory
similarity [9], which we let as a future work.

C. OUTLIER DETECTION ASSESSMENT
We also evaluate our approach for detecting spatio-temporal
anomaly trajectory.

1) SPATIAL ANOMALY
We consider spatial anomaly trajectories the ones whose
points are (totally or partially) spatially away from their
respective pre-assigned bus route line. We synthetically gen-
erate them by randomly picking k consecutive points in the
trajectory, and adding noise to their latitude and longitude.
To calculate the noise, we use the geo-py 13 library, in which
we pass the current point ki, a distance in kilometers which
represents the distance between ki and its respective noisy
one, and a bearing value, which is the angle between the
trajectory from ki and the location where the noisy point is
placed. We vary the distances to simulate points getting away
from the original trajectory and returning to it. For example,
for k = 5 we define 5 distances [0.1, 0.2, 0.3, 0.2, 0.1], then
the 5 noisy points are placed at those distances from the origi-
nal points. We varied the number of points k in 10 (noise_10),
20 (noise_20) and 30 (noise_30). Figure 5 (a) shows an
example of a synthetic trajectory and Figure 5 (b) the original
one. The noisy points are at the bottom of Figure 5 (a) which
shows points getting away, and returning to the original shape
of trajectory.

Figure 6 (a) and Figure 6 (b) show the relative entropy of
the STOD classifier on the synthetic spatial anomaly on the
Recife and Dublin datasets respectively. On both datasets, the

13https://pypi.org/project/geo-py/

FIGURE 5. Example of spatial anomaly.

FIGURE 6. Results of spatial anomaly.

results show that: (1) the entropy of the anomaly trajectories
are higher than the non-anomalous ones (positive relative
entropy); and (2) the higher the noise level, the higher the rel-
ative entropy. For example, on the Recife dataset, the median
relative entropy for noise_10 is 1,959, for noise_20 is 13,550,
and noise_30 is 18,868. These numbers confirm that the
entropy of the probability distribution of the predicted classes
provided by STOD is an effective approach to score trajecto-
ries in order to identify spatial anomaly.

2) TEMPORAL ANOMALY
We also evaluate our approach for detecting temporal
anomaly trajectories on the two types described in Section II:
Temporal Anomaly Type I (more congestion than usual) and
Temporal Anomaly Type II (less congestion than usual).
We simulate the Temporal Anomaly Type I as follows. First,
given a non-anomalous trajectory T and the its assigned route
line l in the GTFS shape file, we randomly pick k consecutive
points from l, find the closest point to each one of them
in T using the Vincenty’s distance, and then add these k
consecutive points to T . Figure 7 (a) depicts a noisy trajectory
where points were added at the beginning of the original
trajectory (top of the figure), simulating a congestion, and
Figure 7 (b) the original bus trajectory without noise.
Figure 8 (a) and Figure 8 (b) show the relative entropy for

Temporal Anomaly Type I. On the Recife dataset, the results
follow a similar trend of spatial anomaly: the entropy values
are higher for the noisy trajectories than the regular ones, and
there is a relation between the level of noise and the entropy
value. For instance, the median of the relative entropy for
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FIGURE 7. Example of temporal anomaly type I.

FIGURE 8. Results of temporal anomaly type I.

noise_10 is 19.50, 20.41 for noise_20 and 64.75 for noise_30.
On the Dublin dataset, also the increasing of noise led to
higher values of relative entropy, but as opposed to the Recife
dataset, the relative entropy was not positive for all scenarios.
In the noisiest scenario, noise_30, though the relative entropy
was positive for 25th, 50th and 75th percentiles. These results
confirm that our anomaly score strategy can also be used to
detect Temporal Anomaly Type I.

For generating the Temporal Anomaly Type II, we remove
10, 20, and 30 points of non-anomalous trajectories to simu-
late less traffic than usual. To avoid having unrealistic scenar-
ios, for example, bus speeds above 200 km/h, we only remove
a GPS point ki if the speed between points ki−1 and ki+1
is less than the trajectory maximum speed and two standard
deviations from the mean. Figure 9 (a) presents an example
of Temporal Anomaly Type II, and the original trajectory
in Figure 9 (b). As one can see there are sparse points mostly
at the bottom of Figure 9 (a) simulating less congestion.

Figure 10 (a) and Figure 10 (b) present the relative entropy
of Temporal Anomaly Type II for both cities. The results are
similar to the other anomaly types: on the Recife dataset,
the relative entropy is positive for the 25th, 50th and 75th
percentiles; and on the Dublin dataset, the positive relative
entropy occurs on the 50th and 75h percentiles. Looking at
the median at noise_30, for instance, the relative entropy for
Recife is almost 60 times higher than the non-anomalous
trajectories and for Dublin, 4 times higher. The anomaly score
calculated by the entropy of the probability class distribution
of the trajectories provided by STOD is in fact effective to
identify trajectories with Temporal Anomaly Type II.

FIGURE 9. Example of temporal anomaly type II.

FIGURE 10. Results of temporal anomaly type II.

VI. LITERATURE REVIEW
Lee et al. [29] propose a partition-and-detect framework for
trajectory outlier detection. The partitioning step focuses on
splitting trajectories into a set of line segments and feed them
to the detector task. To find the anomalies, the authors con-
sider the number of close trajectories based on the distances
(i.e., perpendicular, parallel, and angle) from neighboring
trajectories. Then, if a fraction of segments from trajectories
are not close to a given segment, it is considered an outlier.
Overall, trajectories composed from a set of anomalous seg-
ments are anomalies according to a threshold.

Kong et al. [4] introduce an unsupervised approach named
LoTAD (Long-term Traffic Anomaly Detection) to detect
anomalous trajectory segments and abnormal regions in the
bus context. Toward this end, LoTAD first obtains temporal-
spatial segments (TS-Segments) from two consecutive stop
stations to extract two features: average speed and average
stop time. Next, based on segments composed of the previous
two features, it builds a matrix for each bus line and calculates
an anomaly index by comparing the density of a point to
all other points using a gaussian kernel function [30]. With
the anomaly index results, LoTAD apply the K-means algo-
rithm to find anomalous points. Also, the LoTAD maps the
TS-segments in small regions (i.e., the approach splits a city
into regions) and cumulatively calculates regions’ anomaly
index based on previous segments’ anomaly index.

Bessa et al. [3] propose a supervised-based strategy to
detect bus anomalous trajectories. For that, they introduce
a multi-class Convolutional Neural Network that classifies
trajectories according to their route IDs. A trajectory is
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considered anomalous when it is misclassified or the clas-
sifier’s output probability is below a certain threshold. Their
classifier achieved a high accuracy for the route id classifi-
cation but no results were presented to evaluate the outlier
detection method. As we show in our experimental evalua-
tion, STOD outperforms their approach for the bus route clas-
sification task on both evaluation datasets. Another approach
that uses supervised learning is proposed by Raymond and
Imamich [5]. They introduce a bus route classifier to detect
trajectory outliers. The classification is performed in two
steps: First, it transforms the input GPS sequence into a
sequence of road IDs based usingmap-matching. Next, a bag-
of-roads method, similar to bag-of-words, generates vectors
of the buses and vectors of the predefined routes, which are
used by a KNN model to perform bus route classification.
Song et al. [31] introduce a binary classifier to detect spatial
anomalies in taxi trajectories. For that, they first map tra-
jectories into a regular grid map. Next, the mapped trajec-
tories are feed into an RNN that provides input to an MLP
with a sigmoid function on top of it to perform the binary
classification.

VII. CONCLUSION
In this paper, we proposed a solution for detecting anomalous
spatial-temporal bus trajectories. The solution relies on a
deep learning multi-class classification model (STOD). The
anomaly score is based on the confidence of the classifier in
classifying a trajectory, and is measured by the normalized
entropy of the output probability distribution of the classes.
This classifier receives as inputs trajectories in which each
point is a concatenation of the PAC embedding, which cap-
tures behavior and time information, and Geo embedding,
which catches spatial relationships among points. The PAC
embedding is created by a deep-learning network that predicts
the type of activity of GPS points. The Geo embedding is
generated by mapping the GPS points to grid cells and apply-
ing a word encoder algorithm in the trajectories, in which
each point is represented by its grid cell id. The experimental
results indicate that PAC produces high-quality embedding
vectors and is effective for the task of stay point classification.
Furthermore, STOD outperforms a baseline for bus route id
classification and its generated trajectory encoder used in
different classifiers has good performance for this task as
well. Finally, our evaluation of the anomaly score showed
that in general the score distribution of trajectories with spa-
tial or temporal anomalies is higher in anomalous trajectories
than non-anomalous ones. As future work, we plan to detect
the exact points of the trajectories that have anomalies and
evaluate our trajectory encoder strategy in other tasks such as
trajectory similarity.
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