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ABSTRACT To further improve the speed and accuracy of object detection, especially small targets and
occluded objects, a novel and efficient detector named YOLO-ACN is presented. The detector model is
inspired by the high detection accuracy and speed of YOLOv3, and it is improved by the addition of an
attention mechanism, a CloU (complete intersection over union) loss function, Soft-NMS (non-maximum
suppression), and depthwise separable convolution. First, the attention mechanism is introduced in the
channel and spatial dimensions in each residual block to focus on small targets. Second, CloU loss is adopted
to achieve accurate bounding box (BBox) regression. Besides, to filter out a more accurate BBox and avoid
deleting occluded objects in dense images, the CloU is applied in the Soft-NMS, and the Gaussian model in
the Soft-NMS is employed to suppress the surrounding BBox. Third, to significantly reduce the parameters
and improve the detection speed, standard convolution is replaced by depthwise separable convolution, and
hard-swish activation function is utilized in deeper layers. On the MS COCO dataset and infrared pedestrian
dataset KAIST, the quantitative experimental results show that compared with other state-of-the-art models,
the proposed YOLO-ACN has high accuracy and speed in detecting small targets and occluded objects.
YOLO-ACN reaches a mAP50 (mean average precision) of 53.8% and an APs (average precision for small
objects) of 18.2% at a real-time speed of 22 ms on the MS COCO dataset, and the mAP for a single class on

the KAIST dataset even reaches over 80% on an NVIDIA Tesla K40.

INDEX TERMS ClIoU loss, soft-NMS, attention mechanism, YOLOV3, object detection.

I. INTRODUCTION

Object detection utilizes computers and related algorithms to
find objects of certain target classes with precise localiza-
tion [1]. Real-time and accurate object detection can provide
good conditions for object tracking, behavior recognition,
scene understanding, and medical detection. In recent years,
significant improvements have been made in object detection
by using traditional and deep learning methodologies. How-
ever, few studies have focused on detecting small targets and
occluded objects. The detection accuracy and speed still need
to be further improved [2].

Small targets and occluded objects have a few effective
pixels, carry only several and incomplete features and are
largely submerged in noise and background clutter. After
multiple downsample and pooling operations, considerable
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feature information will be lost. Therefore, the detection of
small targets and occluded objects faces significant chal-
lenges [3], e.g., long-distance pedestrians and traffic signs are
very small or even obstructed. However, the precision and
rapid detection of these small targets and occluded objects
is a prerequisite for ensuring the safety of unmanned driv-
ing. The analysis of remote sensing images requires precise
identification of object classes, including vehicles, ships, and
buildings. However, the objects are very small or occluded
by vegetation. In infrared images, the objects are not only
very small but also occluded by strong noise and background,
which makes the object features less obvious. Therefore, the
detection problem of small targets and occluded objects has
become an urgent problem to be solved in the civilian and
military fields.

Traditional object detection algorithms are based on sliding
windows to select candidate boxes, using Viola-Jones [4],
HOG (histogram of gradient) [5] and DPM (deformable part
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model) [6] to extract features, and using SVM (support vector
machine) [7] classifier to classify the features. The tradi-
tional algorithms need to design different feature descriptors
for detecting different objects. Therefore, they have poor
robustness and weak generalization ability. These algorithms
[5]-[10] require a large amount of calculation to generate
proposals, which leads to low detection precision and slow
detection speed [11].

With the emergence of deep learning, breakthrough
progress has been made in object detection, in terms of fea-
ture expression capability and time efficiency. Current state-
of-the-art object detection algorithms are mainly divided
into two categories: two-stage and one-stage detectors. The
two-stage detectors are represented by R-CNN [12]-[14], and
the one-stage detectors are represented by SSD (single shot
multibox detector) [15], [16] and YOLO [17]-[19]. These
milestone algorithms have achieved good detection results on
large datasets, e.g., PASCAL VOC [20], [21] and MS COCO
[22], [23]. As a representative one-stage object detection
algorithm, YOLOvV3 has been widely adopted because of the
high speed and accuracy [24], and it directly uses a more pow-
erful network to extract the features and generate regression
BBox of the objects. Thus, the computational cost reduces
and the design are relatively simple. However, when the back-
ground of object detection is complexity and the objects scale
and attitude is diversity, YOLOvV3 cannot detect small targets
and occluded objects well, e.g., false detection, missed detec-
tion, and repeated detection [25]. Recently, YOLOv4 [26]
algorithm has received widespread attention, which applies
a great number of data enhancement techniques. It remains
to be analyzed how much data enhancement technology
affects the results of detecting small targets and occluded
objects.

To focus on small targets and occluded objects, a detection
algorithm YOLO-ACN (attention, CIoU loss, and Soft-NMS)
based on YOLOV3 is proposed in this article. First, in the net-
work design process, the attention mechanism is introduced
in the channel and spatial dimensions in each residual block.
Specifically, the efficient channel attention module is utilized
to realize the cross-channel interaction without dimensional-
ity reduction. The spatial attention module is used to obtain
the complementary feature information. The attention mech-
anism enables the network to pay more attention to the small
targets and occluded objects in an efficient way. In addition,
depthwise separable convolution [27], [28] is adopted instead
of standard convolution, and leaky ReLU [29] is replaced
with hard-swish [30] to reduce the parameters. Then, in the
model training process, the degree of overlap, the center point
distance, and the aspect ratio of the anchors between the
ground truth BBox and predicted BBox are considered as the
BBox regression CIoU loss [31], [32]. CIoU loss has faster
and more accurate regression during the training process, and
it also makes the detection algorithm friendlier to small tar-
gets. Finally, when predicting the results, the Gaussian model
is employed to suppress the non-maximum value. Combining
the CloU with the Soft-NMS [33] to filter out BBox, deletions
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of occluded objects are avoided in dense images to some
extent.

The contributions of this article are summarized as follows:
1. A novel one-stage object detection algorithm YOLO-ACN
is proposed to focus on small targets and occluded objects.
The algorithm contains depthwise separable convolution,
spatial and channel attention mechanisms, and hard-swish
activation function, leading to notable gains of average pre-
cision (AP), average recall (AR), and speed.
2. Based on the Darknet in YOLOV3, a lightweight feature
extraction network is designed. In the feature extraction net-
work, to significantly reduce the parameters and improve the
detection speed, standard convolution is replaced by depth-
wise separable convolution, the nonlinear operations of batch
normalization layer and activation layer are replaced by con-
volution, and the hard-swish activation function is utilized
in deeper layers. At the same time, the attention mechanism
is introduced in the channel and spatial dimensions in each
residual block of the feature extraction network to focus on
small targets.
3. To achieve accurate bounding box (BBox) regression, the
GIoU loss of the YOLOV3 is replaced by CIoU loss in the
proposed detection model. Then, to filter out a more accurate
BBox and avoid deleting occluded objects in dense images,
the ClIoU is applied in the Soft-NMS, and the Gaussian model
in the Soft-NMS is employed to suppress the surrounding
BBox.

Il. RELATED WORK

In recent years, the object detection algorithm for an optimal
trade-off between precision and speed has been a popular
research topic [34]. Both the two-stage and one-stage detec-
tors have made great contributions to the improvement of the
efficient network and better methodology.

In 2014, R. Girshick et al. presented a pioneering two-stage
object detector R-CNN [12], which divided object detection
into two stages: generate proposals and predict categories.
Compared with the traditional techniques, R-CNN signifi-
cantly improved the performance. However, the computation
was not shared, leading to heavily duplicated computation.
Therefore, Fast R-CNN [13] was developed, and it reduced
the repeated calculation by mapping the relationship between
the images and the feature extracted layers. Based on Fast
R-CNN, a novel method named Faster R-CNN [14] was
designed. In this method, a generator RPN (region proposal
network) was used to generate the proposals, and the anchor
was introduced to cope with the different sizes of objects,
such that detection accuracy and speed were significantly
improved.

To improve the performance of detecting small targets,
feature pyramid networks (FPNs) to predict in each layer was
constructed [35]. Then, in 2018, B. Singh et al. proposed scale
normalization for image pyramids (SNIP) [36], a training
detector based on image pyramids, and solved the problem of
extreme changes in the size of the detection dataset. Although
it could improve the effectiveness of the model, the increase
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of computation was still obvious. To address the problem that
detection performance tends to degrade with increasing the
IoU thresholds, the multi-stage object detection architecture,
Cascade R-CNN [37], is proposed. Although the detection
precision was improved, the network became larger than
others. K. He er al. presented Mask R-CNN [38], adding a
parallel branch for predicting the object mask to complete the
task of instance segmentation, and this study also introduced
ROI (region of interest) Align, using the bilinear difference
method, so that the precision of the mask was improved.
Mask R-CNN could achieve instance segmentation, but the
segmentation cost was high. These two-stage object detection
algorithms have higher accuracy, but the time complexity
is high. Thus, it is difficult to apply to real-time detection
systems.

To improve the speed of object detection, J. Redmon et al.
developed a real-time detector YOLO [17] in 2016, which
laid the foundation of the one-stage object detection. YOLO
predicted multiple BBox positions and classes at once, and it
regarded detection as a regression problem to truly achieve
end-to-end detection. However, the detection accuracy of
YOLO was low. Using a regression-based idea similar to
YOLO and drawing on the method of anchoring in Faster
R-CNN, W. Liu et al. introduced the SSD [15] algorithm, and
it effectively solved the shortcomings of YOLO in the detec-
tion of small targets. Inspired by the anchor strategy used in
SSD, YOLOV2 [18] was proposed by using k-means cluster-
ing to calculate the size of BBox, deleting the fully connected
layer and the last pooling layer. YOLOV2 effectively balanced
the detection speed and detection precision, which was better
than SSD. However, YOLOvV2 used the features obtained
in the last convolution layer to detect objects, which lost
much information. Thus, it was difficult to detect some small
objects. Therefore, an improved YOLO version, YOLOV3
[19], was presented. It contained multiple residual blocks,
which could reduce the problem of gradient disappearance.
Unlike YOLOV2, YOLOvV3 divided 9 anchors into 3 different
scales. Moreover, it also used feature fusion and upsampled
methods to detect more fine-grained features and improve
the detection precision of small objects. However, the per-
formance of YOLOvV3 decreased with the increase of the
intersection over union (IoU) [39], and it did not fit well
with the ground truth BBox. In 2020, A. Bochkovskiy et al.
used CSP-Darknet (cross stage partial) [26] as the back-
bone network in YOLOv4 to further improve the detection
accuracy and speed, and added a SPP block to improve the
size of the receptive field. The FPN was replaced by PANet
(path aggregation network) for multichannel feature fusion.
Although the detection precision was improved for small
objects, the problem of detecting occluded objects was not
considered. YOLOv4 was much larger than YOLOV3, which
increased deployment costs and reduced training speed.

In general, since the one-stage object detection models do
not require to generate proposals, the positioning propos-
als task is redefined as a regression task, where the struc-
ture is simple, the computational efficiency is high, and
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end-to-end training can be conveniently carried out, as regres-
sion task directly generates the category probability and posi-
tion coordinate values of the objects. However, the lack of
image preprocessing mechanism can easily lead to inaccurate
extraction of proposal regions, and the high-level features
fail to capture fine-grained descriptions of small targets and
occluded objects.

The lack of an image preprocessing mechanism for
one-stage object detection leads to inaccurate extraction of
candidate regions, which affects the detection of small tar-
gets and occluded objects. Recently, the attention mechanism
has been demonstrated to offer great potential in improving
the performance of object detection. Jaderberg et al. [40]
proposed a spatial transformer to realize the spatial atten-
tion mechanism, and the spatial information in the images
could be transformed accordingly to extract the key infor-
mation. The channel attention mechanism was presented by
Hu et al. [41], in which the importance among the channels
was calculated through two fully connected layers to filter out
the unimportant channel values. F. Wang et al. introduced a
residual attention network [42] which was designed specif-
ically for detection. The spatial and channel mechanisms
were built by superposing residual attention modules. S. Woo
et al. developed the convolutional block attention module
(CBAM) [43] to multiply feature maps along the channel
and spatial attention mechanisms. The CBAM also has a
wide applicability to other networks. Due to its intuitiveness,
versatility, and interpretability, the attention mechanism has
received extensive attention in the field of object detection
and shown significant potential.

With the improvement of detection accuracy of small tar-
gets and occluded objects, many fields can be beneficial,
such as unmanned driving, remote sensing images, infrared
image analysis and many other fields that include small
targets and occluded objects. Therefore, this article pro-
poses the YOLO-ACN detection framework with an atten-
tion mechanism, CloU loss, and improved Soft-NMS. This
algorithm introduces the channel and spatial attention mech-
anisms in each residual block, which can extract the key
information by superimposing the attention perception fea-
tures. To overcome the impact of the increasing IoU on the
prediction boxes in YOLOV3, the overlap area, the center
point distance, and the aspect ratio of the anchor between
the ground truth BBox and predicted BBox are adopted
in the CIoU loss. Therefore, the prediction boxes and the
ground truth BBox are more consistent. The CloU takes into
account the diagonal distance and the center point distance
of the smallest BBox, which is composed of two bound-
ing boxes, which is also added to the threshold selection
of Soft-NMS. Moreover, the Gaussian model is employed
to suppress the surrounding BBox. In addition, in order to
significantly reduce the number of weights and computa-
tional costs thus incurred so as to improve the speed of the
model, the standard convolution is replaced by the depth-
wise separation convolution and hard-swish is used in the
network.
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FIGURE 1. The proposed YOLO-ACN network. YOLO-ACN uses a lightweight feature extraction network with attention mechanism in
each residual block to focus on small targets and occluded objects. Besides, in the CBH module, the hard-swish is applied as the
activation function to decrease the calculation load. In the post-processing stage, the Soft-NMS (non-maximum suppression) is

combined with CloU to obtain accurate bounding box.

lll. PROPOSED METHOD

A. YOLO-ACN NETWORK

The entire detection architecture proposed in this article is
shown in Figure 1. The network mainly consists of three
parts: feature extraction, feature fusion, and forecast result.
First, the images are input through multiresidual blocks to
extract features. The CBH represents the convolution, batch
normalization [44], and hard-swish layer. Hard-swish can
reduce the parameters and speed up the detection process.
The attention mechanism is introduced in the residual blocks
to extract the features and semantic information of small
objects. Then, in the stage of feature fusion, feature maps
with different sizes are obtained in the residual blocks, and
the feature maps obtained by upsampling are concatenated to
obtain feature maps with different sizes of receptive fields.
After the concatenation layer, three feature maps of different
sizes are obtained: 52x52, 26x26, and 13 x13. Finally, the
prediction results on feature maps are carried out to obtain the
information of predicted BBox of different sizes, object cat-
egories, and confidence. The improved Soft-NMS algorithm
retains the predicted BBox of other objects and simultane-
ously removes the overlapped BBox with the same object to
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obtain the final prediction. In addition, the performance of
loss function is improved to increase the convergence speed
during model training.

In the extracting path of residual blocks with attention
mechanism, each residual block has repeated convolutional
blocks consisting of 1x1 conv, 3x3 depthwise separable
conv, 1x1 conv. Within the residual block, the input fea-
ture map feeds into the sequence of operations mentioned
above, which produce the output feature maps. After each
residual block, the dimension of the input is reduced by
half and the number of the feature maps is doubled. Then,
the feature maps with sizes of 52x52, 26x26, and 13x13
can be obtained. The feature extraction network utilizes a
lightweight convolutional neural network which has fewer
network parameters and better real-time performance than
Darknet and ResNet. In the feature fusion, the feature maps
obtained by downsampling and upsampling are combined
through the concatenate operation to obtain the feature maps
of different sizes. Finally, a 1x1 convolutional layer is
adopted to predict three different sizes of feature maps, and
the final prediction results are obtained by the improved Soft-
NMS.
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FIGURE 2. The overview of the residual block with the attention mechanism. The module has two sequential sub-modules: channel and spatial. The
attention modules are added after the depthwise (DW) separable convolution, and the intermediate feature map is adaptively refined through every
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FIGURE 3. The efficient channel attention module. Given the aggregated
features obtained by max pooling and average pooling with fully
connected layer, the efficient channel attention generates channel
weights by sigmoid function.

B. RESIDUAL BLOCK WITH THE ATTENTION MECHANISM
The attention mechanism can make the neural network focus
on the shallow layers feature maps, and allocate computing
resources to more important features. Unlike YOLOV3, the
attention mechanism is introduced in the residual blocks in
the feature extraction stage. In [40]-[42], different attention
mechanisms are used to extract the features. In the residual
blocks, the channel and the spatial attention mechanisms
are combined to introduce the attention mechanism in two
dimensions to guide where the network should pay attention,
and then a higher weight is assigned to improve the ability of
expressing small objects. The structure of the residual block
extended by developing the attention mechanism is shown in
Figure 2.

In Figure 2, the input feature maps go through a convo-
lution layer with a kernel size of 1x1 and a convolution
layer with a kernel size of 3x3 to obtain the feature maps
F . First, the channel attention mechanism is introduced on the
feature maps F. The channels relationship among the features
is employed to generate the channel attention feature maps,
and a weighted operation is performed on the feature maps F'
to obtain the channel feature maps F' 1. Then, the relationship
among the spatial features is used to complement the feature
information and obtain the spatial feature maps F'2. Finally,
a weighted operation is performed on the input feature maps
and spatial feature maps F'2 to obtain the output feature maps.
The efficient channel attention and spatial attention modules
are shown in Figure 3 and 4 respectively.
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FIGURE 4. The effective spatial attention module. The input feature maps
utilize the max pooling operation and the average pooling operation, then
forward them to a convolution layer to aggregate the spatial information.

In Figure 3, to effectively calculate the attention feature
maps among the channels, the channel information of the
feature maps are obtained by the maximum pooling operation
MaxPool(F) and the average pooling operation AvgPool(F')
for the input feature maps F, F € RC*H*W C represents the
number of channels, and H and W represent the size of the
feature map. Then, the two obtained feature maps are put into
the fully connected layer to generate the channel weights and
capture the nonlinear cross-channel interaction information
without dimensionality reduction. In the improved channel
module based on [43] and [45], the two fully connected layers
do not perform dimension reduction by ratio r but keep the
dimensions to better capture all inter-channel measurement
dependencies. The calculation of the channel attention mod-
ule can be given by Eq.:

Mc (F) = § (C1Dy (AvgPool (F) + MaxPool (F)))
=4 (cwk (ngg + F,fm)) (1

where 6 is the activation function, C1Dj represents the
1-dimensional convolution, k represents adjacent channels of
F,and k is set to 5, which means in fully connected layers, the
second Fully Connected (FC) layer can perceive 5 channels
in the first FC layer. Fy,,, and F},,,, represent the feature maps
obtained after the average pooling and max pooling operation
in the channel attention module respectively, and ¢ means the
channel dimension.
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In Figure 4, to calculate the attention feature maps between
spatial AvgPool(F) and MaxPool(F) that are adopted to
aggregate the channel information for the input feature maps,
two features of 2D F¥,, € RV>H>*W and F5, € RV
are generated respectively. After the convolution layer with
a 7x7 convolution kernel is used to generate the spatial
attention feature maps, the places that need to be emphasized
or suppressed are encoded. The specific calculation of the

spatial attention module can be expressed as Eq.:
M (F)=3$ (fm (AvgPool (F) ; MaxPool (F)))
=34 <f7X7 <Fc§vg; F}fwx)) @

where § is the activation function and f7*7 represents the
convolution operation with a kernel size of 7x7. Fy,, and
F; .. represent the feature maps obtained after the average
pooling and max pooling operation in the spatial attention
module respectively, and s represents the spatial dimension.

In addition, the standard convolution operation is applied in
the residual blocks in YOLOv3, whereas in YOLO-ACN the
depthwise separable convolution is adopted to separate one
kernel into two. The depthwise separable convolution oper-
ation can map the correlation between spatial and channel
dimensions to obtain a multichannel dimension, which can
significantly reduce the computation cost of the convolution
layer and improve the operation speed of the convolution
layer. In the previous attention module, a 3x3 or 5x5 con-
volution kernel is adopted, but in the improved attention
module, the 3x3 or 5x5 convolution is separated as 1 x 1 and
3x3 or 1x1 and 5x5 to realize the different channels using
the different convolution kernels. With the attention mecha-
nism and the depthwise separable convolution introduced in
the residual blocks, the network can enhance the ability of
feature expression in a specific region without increasing the
computation. Thus, the performance of the object detection
process is further improved.

C. HARD SWISH ACTIVATION FUNCTION

The leaky ReLU is applied as the activation function in
YOLOV3 and [7], [24]-[26]. However, it is a monotonic and
linear function, and its difference is zero. Since the leaky
ReLU cannot maintain a negative value, most neurons are not
updated. To avoid this problem, Google Brain performs swish
[46] to directly replace the leaky ReLU. It has been exper-
imentally demonstrated that swish works better than leaky
ReLU, and does not need to modify the network architecture
and the initialization. The swish function can be defined as
Eq.:

swish = x - o (Bx) 3)

where o(x) represents the sigmoid activation function and
B can be either a constant or a trainable hyperparameter.
However, the largest problem of the swish is that it is compu-
tationally intensive.
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The hard-swish is first adopted in MobileNetV3 [30],
which is based on the swish. The hard-swish function is non-
monotonic and smooth. The nonmonotonic property helps
to keep a small negative value, so that the gradient of the
network is stabilized. The smooth function has a good gen-
eralization ability and effective optimization ability of the
experiment results, which can improve the quality of the
results. Compared with the swish function, the amount of
calculation is relatively small. The hard-swish can be repre-
sented as Eq.:

X (ReLUZ (x+3)) @
where ReLU6 imposes an upper limit of 6 on the basis of
ReLU; then ReLUG6 is shifted three units to the left and is
finally divided by 6 to obtain a curve similar to the sigmoid
function. This function is used to replace the sigmoid func-
tion in the swish function, then, the hard-swish function is
obtained.

The hard-swish can make the boundary value harder, which
can also benefit the network to activate the small targets and
occluded objects features so that the objects can be detected.
In the proposed method, the hard-swish is selected as the
activation, the shallow layers are still kept unchanged as
leaky ReL.U and the hard-swish is only adopted in the deeper
layers as in [30]. If all model parameters are kept and the
activation function in the YOLO-ACN model is modified
as the hard-swish activation function, the speed is faster by
avoiding the exponential operation and the accuracy for small
objects is higher.

h—swish =

D. LOSS FUNCTIONN

In [5], [11]-[14], the IoU is applied to calculate the inter-
section ratio of the BBox. However, the IoU has nothing to
do with the location of the objects, and it cannot reflect how
the two objects overlap. To address the problem, YOLOv3
applies the GIoU [47] to replace the IoU.

There are three ways to overlap the BBox in Figure 5.
The IoU values are same in three overlap ways, loU(a) =
IoU (b) = IoU(c) = 0.33, whereas GloU values are differ-
ent, Figure 5 explains how the object BBox may overlap.
GloU(a) = 0.3, GloU(b) = 0.24, and GloU(c) = —0.1.
If the direction of alignment between the predicted BBox and
the ground truth BBox is better, the GIoU value is higher.
If the BBox A and B are not properly aligned, the area of
BBox C will increase and the GIoU value will decrease. The
expression of GloU can be written as Eq.:
ANB C—-(AUB) 5
AUB C ©)
where C is the area of the largest rectangle contained by
the two boxes, and A and B represent the areas of any two
overlapping BBox.

YOLOV3 adopts GIoU loss as the regression of the BBox,
which considers both the overlap area and the scale to make
the detection model have a higher detection accuracy. How-
ever, when the predicted and ground truth BBox have a good

GloU(A, B) =
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FIGURE 5. Three different ways of overlap between two bounding boxes
with the exactly same loU values, but different GloU values.

e
v

FIGURE 6. CloU loss for bounding box regression, where c is the diagonal
length of the smallest enclosing box covering two boxes, d = p (b byt) is
the distance of central points of two boxes.

alignment direction, the GIoU also has the problem that the
IoU will diverge during the calculation process. The CloU
[31], [32] loss considers the overlap area, the central point dis-
tance, and the aspect ratio of the BBox. Compared with GloU,
CIoU makes the prediction boxes converge more quickly.
Therefore, this article uses the CloU loss as the regression
of the BBox. The formulation of CloU loss can be given as
Eq.:

Losscioy = 1—IoU + Rpjoy + av (6)
2 t
02 (b, b®

Rpou = % @)

where IoU means the intersection over union of the BBox,
Rpjou represents the distance between the center points of
the two bounding boxes b and b, ¢ represents the diagonal
distance of the smallest rectangle formed by the two bounding
boxes, o is a weight function, and v is used to measure the
similarity of aspect ratios. The intuitive diagram is shown in
Figure 6.

Based on the CloU loss, the loss function in this work
consists of regression BBox loss, confidence loss and class
loss. Therefore, the total loss function can be computed as
Eq.:

Loss

= Lossciou + Lossopj + Losscs

2 b, bt
=1-1IoU + M + av
c?
- ZZIgb] [¢ilog (ci) + (1—¢i) log (1—cy)]
i=0 j=0
~ Vnoobj Z Z 15" [¢;10g (¢;) + (1—¢&) log (1—ci)]
i=0 j=0
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where Losscoy is the improvement in the loss function and
we have defined it in (6). The inclusion problem of the ground
truth BBox and the predicted BBox is solved by calculating
the Euclidean distance between the boxes, and the detection
of occluded objects between the overlapping frames is more
accurate. Loss,p; is the confidence loss, which is represented
by cross-entropy. Regardless of whether the anchor box con-
tains the objects, the confidence loss will be calculated.
Therefore, the confidence loss consists of two parts: 1 % and

I;oo d represent whether the j-th box in the i-th grid contalns

objects or not. Loss.;; means the loss of the object category,
and the loss is also calculated by cross-entropy. When the
Jj-th anchor box of the i-th grid is responsible for touching
a real object, the resulting BBox will calculate the class
loss. Ynoonj means that the confidence of no object in the
grid is also weighted, and there will be a lower prediction
confidence penalty. Similar to the loss function in YOLOV3,
the value yy00p; is still 0.5. The other loss function parameter
values are shown in Table 1. By adding the loss functions
to the constructed network, the convergence speed of the
BBox during model training is effectively improved, and the
accuracy of model detection is improved.

(0

TABLE 1. The value of each parameter of the loss function.

Parameter Value
IoU threshold 0.15
cls loss gain 374
cls BCELoss positive weight 1.0
obj loss gain 64.3
obj BCELoss positive weight 1.0

E. IMPROVEMENT OF NON MAXIMUM SUPRESSIONE

In the prediction stage, NMS is widely adopted in [31]—[36]
to solve the problem of multiple repeated prediction boxes
around the object. The YOLOV3 also applies the IoU value
as the main idea of NMS to choose the BBox. Based on the
manually set threshold, the candidate boxes with the highest
confidence are kept, but those boxes with the low confidence
are deleted. However, the uncertainty of manually setting the
threshold and deleting the low-confidence candidate box will
ignore the occluded objects. The Soft-NMS [48] algorithm
solves the shortcomings of the NMS. When multiple pre-
dicted bounding boxes appear around the detection object,
the confidence of the predicted BBox is reduced to keep the
occlusion objects with low confidence. The Gaussian penalty
function is utilized to reduce the confidence. In addition, the
center point distance and the aspect ratios are added to the
NMS threshold selection to further improve the Soft-NMS
algorithm, which has a better suppression effect on the
predicted boxes and more focus on the occluded objects.
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The calculation can be described as the Eq.:

Si, IoU —Rcou (M, bi) > N;
Si = 1 _ CloU(M,bi)z

Siz——se 27

5 , loU —Rcrou (M, b;) > N;
2o

&)

where S; represents the score of the current box, Rcj,y means
CloU loss, which considers the overlap degree and the dis-
tance of the center point, b; represents the predicted BBox
of each category, M is the BBox with the largest score, and
N; represents the threshold for screening the two overlapping
boxes, which is set to 0.3. The greater the overlap degree
of the predicted BBox b; and the selected BBox M is, the
stronger the suppression effect, and the smaller the updated
confidence S;. The smaller the overlap of the predicted frame
bi and the selected frame M is, the weaker the inhibition,
and the greater the updated confidence S;. Therefore, the pre-
dicted frames of other objects are retained and the predicted
frames overlapped by the same object are discarded. Gener-
ally speaking, this method not only effectively improves the
detection accuracy of the model but also solves the occlusion
problem.

IV. EXPERIMENTAL ANALYSIS

The experiments using the MS COCO [22], [23], [49],
KAIST [50], [51], and Campus Video Datasets demonstrate
the YOLO-ACN’s ability to improve detection accuracy and
speed of small targets and occluded objects over conven-
tional and related models. Training and deployment of models
are performed using a server equipped with Intel XeonES5-
26031.8GH CPU and NVIDIA Tesla K40 12GB GPU card
with a 2880 CUDA parallel processing core. All models are
trained on 2 GPU cards Cross Fire.

A. MS COCO DATASET

The MS COCO dataset [49] is the most widely applied public
object detection dataset, which contains 80 categories and
more than 330k images, including 200k labeled images and
500k labeled objects. Because the MS COCO dataset contains
many categories and images, which is widely adopted in the
object detection task, and because it also contains many small
targets and occluded objects, the MS COCO dataset is chosen
to train the model. The split method of the object size is the
same as that of the detection evaluation of the COCO dataset.
Specifically, when the area of an object is less than 322, it is
considered as a small object, about 41%, when the area of the
object is greater than 322 and less than 962, it is considered
as a medium-sized object, about 43%, and 24% objects with
an area greater than 962 are considered as large objects.
Adam optimizer is adopted to train the proposed network.
Generally, for the MS COCO dataset, the size of the images
is randomly cropped to 416 x 416, and the IoU threshold
is set to 0.15. Data augmentation is used to overcome the
over-fitting by artificially increasing the training samples
with class-preserving transformations, such that each image
is rotated by 1.98 and the saturation is increased by 1.5%.
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The initial learning rate is 0.00579 and learning rate decay of
0.01 every 5 epochs with a mini-batch size of 16. A weight
decay of 0.000484 and a momentum of 0.937 are used.

Figure 7 shows the change in the common performance
evaluation indicators during the training process. The first
three columns in Figure 7 are the BBox loss (measured
by GlIoU), confidence loss and class loss in the training
dataset and validation dataset. Loss plays an important role
in the training process, as it reflects the relation between
the true value and the predicted value. The smaller the loss
is, the closer the predicted value is to the true value and
the better the performance of the model. The loss curves
show that the three types of loss values gradually decrease
and become stable with the increasing number of epochs,
which mean that the proposed method produces better model
parameters when optimizing the neural network. The last two
columns are precision, recall, mean average precision (mAP),
and F'1. These four indicators can measure the performance
of the model in the classification problem. The higher the
value is, the higher the detection accuracy of the model.
With the indicators stabilized, one batch in the dataset is
tested with the training model, and the results are shown
in Figure 8. Except for the long-distance ‘“‘airplane” in the
file COCO_val2014_0000000543203.jpg, which is missed
because of insufficient training epochs, the proposed model
detects almost all labeled objects (large or small) in the orig-
inal image. The large objects include microwaves, couches,
dogs, and motorcycles, while the small objects include ties,
airplanes, clocks, and cups. The test results intuitively show
the overall precision and the practicability of the object detec-
tion network designed in this article.

COCO API can extract the file information labeled on
the MS COCO dataset, e.g., BBox parameters, the area
size of objects, object number and other information in the
images. The COCO API is employed to evaluate the perfor-
mance of the training model. Thus, COCO API is applied to
test 5000 images in Test 2017 under the MS COCO dataset.
The test results are shown in Table 2. The three aspects of the
IoU, area, and maximum number of objects are analyzed to
calculate the average precision and average recall. First, the
AP by 10 IoU thresholds of 0.50:0.05:0.95 is averaged, and
separate IoU calculations are performed when JoU=0.50 and
IoU=0.75. The AP value is higher when IoU =0.50. Then,
the AP and the AR are calculated by different detection areas
(small or medium or large) of objects. With the increase of the
area, the AP and the AR are more accurate. Finally, the AP
is calculated by different maximum numbers (1, 10, and 100)
of objects detected in each image. The greater the number of
object is, the higher the precision. These evaluation indicators
validate that the performance of the proposed model is better.

Moreover, the detection results of YOLO-ACN are also
compared with those of YOLOv3. The specific comparison
results are shown in Figure 9. In this figure four test images
are selected from nine representative images in the test set
of MS COCO 2017. The image (a) shows that the detection
accuracy of the proposed YOLO-ACN for detecting a large
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FIGURE 7. Graphs of training and testing results on the MS COCO dataset. The first three columns are the bounding boxes loss (measured by GloU),
confidence loss and class loss in the training dataset and validation dataset. The remaining four curves represent common evaluation indicators for

object detection task, and they are P (precision), R (recall), mAP (mean average precision), and F1 (balanced score).
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FIGURE 8. YOLO-ACN test results on the validation set of MS COCO 2014. When the first batch training is completed, these images are randomly selected
for testing. From the test results, although only one batch is completed, most objects can be detected, especially small targets and occluded objects.

single object in the image is similar to that of YOLOV3.
In image (b) and (c), YOLOvV3 detects three small persons,
but the proposed model detects four small persons, and the

proposed model can detect kites in (c). In image (d) when
there are multiple objects in dense images, the proposed
model can detect small object laptops. The results prove that
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FIGURE 9. Comparison of the detection results of YOLOv3 (the top row) and YOLO-ACN (the bottom row) on typical images on the test set of MS COCO
2017. The detection result of the large size object in the (a) are similar, and the small objects can also be detected well with the proposed YOLO-ACN
network, e.g., the long-distance person in (b); the kites and cars in (c); the cups and laptops in (d).

(a) YOLOvV3

person 0.90

(b) YOLO-ACN

FIGURE 10. Comparison results of object occlusion problem. (a) the detection result of the YOLOv3, (b) the detection result of the YOLO-ACN. The tie
which occluded by the arm can be detected with the proposed YOLO-ACN network, whereas the YOLOv3 cannot detect it.

TABLE 2. Test results on COCO API. By computing AP (average precision)

and AR (average recall) based on different loU values, area sizes, and the
number of objects contained in the images to test the performance of the
YOLO-ACN.

TIoU Area maxDets AP AR
0.50:0.95 all 100 0.313 -

0.50 all 100 0.498 -

0.75 all 100 0.303 -
0.50:0.95 small 100 0.182 -
0.50:0.95 medium 100 0.321 -
0.50:0.95 large 100 0.372 -
0.50:0.95 all 1 - 0.243
0.50:0.95 all 10 - 0.475
0.50:0.95 all 100 - 0.541
0.50:0.95 small 100 - 0.363
0.50:0.95 medium 100 - 0.601
0.50:0.95 large 100 - 0.783

YOLO-ACN obtains better detection results for small objects
through a more accurate design.

In addition, for the occlusion problem, the Soft-NMS [33]
algorithm is improved in forecasting the final results, and the
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Gaussian model is introduced to suppress the surrounding
BBox instead of deleting them, and the overlap area, the
center point distance, and the aspect ratio between the ground
truth BBox and the predicted BBox are added to the Soft-
NMS. As the metric of the BBox improved, a more suitable
BBox is selected. It is proved in the experiments that the
improvement of the Soft-NMS algorithm effectively solves
the deficiencies of the original YOLOV3 detection model for
the detection of occluded objects.

Figure 10 shows the comparison results with YOLOV3.
Figure 10 (a) shows the detection results of YOLOv3. The
left person and the tie can be detected, and the right person
can be detected, but the tie is not detected by the NMS
algorithm, which deletes the BBox with lower confidence.
Figure 10 (b) shows the detection results of the YOLO-ACN.
The two persons and their ties can be detected accurately by
the improved Soft-NMS that retains the occluded objects.

For further quantitative evaluation of the YOLO-ACN per-
formance, the comparisons with some state-of-the-art mod-
els are performed. Table 3 shows that the one-stage object
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FIGURE 11. The training results of multispectral images. These curves represent GloU loss, Object loss, Classification loss, P-R (Precision and Recall),

and mAP-F1 (mean Average Precision and F1-score) respectively.

TABLE 3. Quantitative comparison of YOLO-ACN and the other state-of-the-art object detectors. The results are reported in terms of mAP percentage and

times on the test set of MS COCO 2014.

Method Backbone AP AP50 AP75 APS APM APL Time/ms
RFCN ResNet-50 32.1 51.9 33.1 14.2 333 50.7 170
Faster R-CNN ResNet-101 34.7 55.5 36.7 13.5 38.1 52.0 420
D-FCN In-ResNet 37.5 58.0 - 19.4 40.1 52.5 85
Mask R-CNN ResNeXt 39.8 62.3 43.3 22.1 43.2 51.2 400
YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 25
SSD513 ResNet101 31.2 50.4 33.3 10.2 31.5 49.8 125
RetinaNet ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 90
YOLOV3 DarkNet-53 31.6 55.3 32.1 17.2 33.8 40.1 29
YOLOv4 CSPDarknet53 36.1 54.7 38.9 17.3 40.6 50.4 43
YOLO-ACN Our Method 31.8 53.8 30.3 18.2 32.1 37.2 22

detection detectors have a lower detection accuracy and faster
detection speed compared with the two-stage object detection
detectors, consistent with [15]—[17]. The detection accuracy
of YOLO-ACN is similar to that of the two-stage detection
detector Faster R-CNN, but its speed is nearly 20 times
faster. Compared with the classic one-stage object detection
detector SSD513, the precision of YOLO-ACN is 2.9 higher
and the speed is 5 times faster. Compared with YOLOV2, the
overall AP increased by 10.2, and the APs increased by 13.2.
Compared with YOLOv3, the proposed model has a detection
accuracy of 18.2% on small targets due to the introduction
of the attention mechanism and CloU loss, which is 1%
higher than that of YOLOV3. Since the proposed model com-
bines the Soft-NMS with CloU and uses the depthwise sepa-
rate convolution and the hard-swish activation functions, the
speed is also increased by 7 ms. Compared with YOLO-ACN,
YOLOV4 achieves higher AP, but it dramatically lowers the
inference speed, making it infeasible for real-time applica-
tion. Specially, YOLO-ACN has a 1% improvement in the
detection accuracy of small targets, and nearly twice as fast
in speed. The purpose of this article is to pay more attention
to small targets and occluded targets while maintaining the
real-time detection speed of one-stage object detection. In the
experimental results of our platform, we obtain relatively
good experimental results in terms of accuracy and speed.

B. KAIST DATASET
Pedestrian detection, as an active research field in com-
puter vision, plays an important role in surveillance, tracking
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systems [52], and pedestrian safety [38]. However, most
of the existing pedestrian detectors are based on colorful
images [6], [7] and are unable to obtain useful information
at night when the light intensity and contrast are poor; thus
the precision of pedestrian detection is limited. KAIST [50],
[51] is a commonly adopted pedestrian detection dataset,
and it consists of visible light-infrared image pairs. In the
infrared images, because the background occludes the pedes-
trian object, the network extracts only a few features; it is
difficult for the model to detect the objects as well as small
targets. Therefore, The KAIST dataset is selected to verify
the detection performance of the model.

First, the infrared images containing the pedestrian and the
corresponding visible light images in the KAIST dataset are
selected. Then, the selected KAIST dataset is input into the
object detection model to train. Before training, the initial
performance of the network is reset; the GIoU loss gain is
3.54; the class loss gain is 37.4; the confidence loss gain is
64.5; the ToU threshold value is 0.15; and the learning rate is
0.00579, which gradually decreases with the training batch
size of 16.

To obtain better detection results, the model is further
trained on the KAIST dataset based on the detection model
trained under the MS COCO dataset, and the training results
of each batch are visually analyzed, as shown in Figure 11.
When the training epochs reach 100, the GIoU loss, confi-
dence loss, and class loss in the multispectral images training
and testing gradually decrease with the training epoch and
finally tend to stabilize, indicating that the predicted results
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FIGURE 12. Pedestrian detection results of YOLOv3, YOLOv4, and YOLO-ACN on the KAIST dataset. The first two columns (a) and (b) are the test result of
YOLOv3 and YOLO-ACN on the visible light images (Since the test results of YOLOv4 on the three visible light images are the same as those of YOLO-ACN,
only the results of YOLO-ACN on them are given). The last three columns (c), (d), and (e) is the test result of YOLOv3, YOLOv4, and YOLO-ACN on the

corresponding infrared images.

TABLE 4. Comparison of the accuracy of different object detectors on the KAIST dataset.

Method Backbone AP AR mAP F1 Time/ms Parameters/M Weight Size/MB

YOLOv3 DarkNet-53 73.5 76.9 79.6 74.8 25 61.5 246.4

YOLOv4 CSPDarkNet 76.9 75.8 81.0 76.3 37 63.9 256.3
YOLO-ACN Our Method 76.2 87.9 823 81.6 20 474 177.6

of the proposed training model gradually approach the true
results. At the same time, the precision rate P and the recall
rate R of the model are being improved with the increase
of the training batches, and the values of Fl-score and the
accuracy mAP are also increasing. The final accuracy mAP
even reaches over 80%.

Table 4 lists the comparative results of three methods on
the KAIST dataset. Compared with YOLOV3, the proposed
algorithm YOLO-ACN improves the performance with gains
of 3.67% AP, 14.3% AR, 3.39% mAP, and 9.1% F1. Con-
trasted with YOLOV4, the average precision (AP) is similar,
but the other evaluation metrics bring amazing performance
gains, e.g., 15.96% AR, 1.6% mAP, and 6.94% F1. Moreover,
the processing time of YOLO-ACN is an average of 22 ms
with batch=1, about 80% of YOLOvV3, and about 60% of
YOLOV4. As seen, on the evaluation indicators of mAP and
F1, the YOLO-ACN method achieves the best results among
the three methods. The standard YOLOv3 and YOLOv4
parameters are more than 61 million and 64 million, and
the weight size both have reached over 200MB; whereas
YOLO-ACN reduces the parameters by 22%, and the weight
size is also reduced by nearly 30%. The fewer parameters
have greatly reduced the model volume, and the smaller
weight size is suitable for deployment on devices with limited
computing power. Given the feature that the objects con-
tained in the KAIST infrared image dataset are blocked by
the background, YOLO-ACN can better pay attention to the
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small pedestrians that are occluded in the image. The main
contributions for these encouraging results are as follows:
the attention mechanism extracts accurate features of objects;
the CloU loss achieves precise regression of BBox. Also the
CloU is applied in the Soft-NMS; the Gaussian model in the
Soft-NMS is employed to suppress the surrounding BBox.
After training, the test results of YOLO-ACN are com-
pared with those of YOLOvV3 and YOLOV4. Figure 12 shows
three visible light images and the corresponding infrared
images that are selected to test YOLOv3, YOLOv4, and
YOLO-ACN. From column (a), we can see that YOLOv3
can basically detect the existence of pedestrian targets with
the exception of the long-distance pedestrian object in the
second image of column (a). However, the object is covered
by strong noise and low-contrast background in the infrared
images from column (c). The missed detection is serious for
this reason. For example, one pedestrian is not detected in
the second image of column (c), and the two pedestrians in
the third image are missed. From column (d), we find that
YOLOV4 can detect the existence of pedestrian targets in the
infrared images, except the two pedestrians that are too close
in the third image. The detection results of the YOLO-ACN
in column (b) of the visible light images and column (e) of
the infrared images represent that the detection accuracy of
both visible light and infrared images are relatively high,
especially the occluded pedestrian in the third images of
column (b) and column (e), and the long-distance small
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FIGURE 13. Video detection results of some typical frames. (a) Results of YOLOv3. (b) Results of YOLOvA4. (c) Results of YOLO-ACN. Compared with
YOLOV3 and YOLOv4, YOLO-ACN has an amazing performance on small targets and occluded objects detection, for example, the cell phone in the first
image of the column (c), the person beside the tree in the second image, and the skateboard in the third image.

targets in the second image of column (b) can be detected
correctly. Comparing the results, due to the occlusion of the
background in the infrared images, the features carried by
the pedestrian are just a few, so it is hard to extract the
effective features of pedestrians. However, by improving the
attention mechanism, loss function, and Soft-NMS algorithm,
the proposed model has good detection results in small targets
and occluded objects which all carry a few pixels and features.
Thus, the proposed model has not only a good detection effect
on pedestrians in visible light but also a higher accuracy than
YOLOV3 in the detection of pedestrians in infrared images.
Contrasted with YOLOV4, the test results of the visible light
images are similar, but the performances of YOLO-CAN in
the infrared images are amazing.

C. VIDEO DATASET
To test the real-time performance and generalization ability
of the proposed model, a Campus Video Dataset is made by
ourselves. The 5 videos on campus are randomly collected
and the effective images of the collected videos are inter-
cepted, and their resolution are 1920x 1080. Then the images
are labeled with Labellmg. Finally, an object detection dataset
is prepared.

The Campus Video Dataset is employed to train the detec-
tion model YOLO-ACN, and then the training results are
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obtained. Compared with YOLOV3, the results are analyzed
from the aspect of detection speed and detection accuracy.
In terms of detection speed, for a video of 155 s, the YOLOv3
takes 320.255 s about 14 fps on the device utilized in
the experiment, and YOLO-ACN takes 280.047 s, approxi-
mately 16 fps. For the detection accuracy, each frame of the
detected video is obtained. Then, the detection results of the
same frame are compared. The following frames of images
are selected from the obtained 4491 frame images. The com-
parison results are shown in Figure 13. (a) and (b) show that
the test results of YOLOv3 and YOLOv4. Compared with the
test results of YOLO-ACN in (c), the small object cell phone
in the first line and the skateboard in the third line can be
detected only by YOLO-ACN; the person who is occluded by
the trees in the second line can be detected by YOLOv4 and
YOLO-ACN. The results demonstrate that the performance
of the proposed model in detecting small targets and occluded
objects in the video is also better than that of YOLOv3 and
YOLOVA4.

D. ABLATION STUDY

The quantitative ablation experiments on the PASCAL VOC
[20], [21] dataset are conducted to study the impact of
the proposed method for the experimental results. PASCAL
VOC containing 20 classes, is also a widely used dataset
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TABLE 5. Ablation study of detection precision on the test set of PASCAL
VocC.

Channel ~ Spatial ~ CloU

. . Soft-NMS AP AR mAP50 Fl
attention  attention  loss

V4 Vv v 51 54 50.2 51.8

v v v 41.8 59.6 52.1 49.1

Va VA 51.6 538 51.3 52.1

Vv Vv v 55.6 56.3 54.2 55.9

v v v 55.5 558 54.5 55.5

Vv Vv VA v 55.8 56.7 55.7 56.2

TABLE 6. Ablation study of detection speed.
hard- depth separable Speed(ms) NMS total
swish convolution

V4 26.1 2.0 28.2
v 25.8 1.8 27.6
Vv Vv 22.2 1.9 24.1

in the object detection. The train and validation datasets of
VOC2007 and VOC2012 are utilized for training and the
test of VOC2007 is apply for testing. In the ablation study,
the four factors of the channel attention, special attention,
CloU loss, and Soft NMS are considered. The impact of the
detection accuracy is compared, and the experimental results
are shown in Table 5. The two aspects of hard-swish and
depthwise separable convolution are used to compare the
impact of the detection speed, and experimental results are
shown in Table 6.

On our experimental platform, 100 epochs of training
are conducted and other parameters are unchanged. For the
detection accuracy, when the channel attention mechanism is
not added, other improved methods are retained. Similarly,
the spatial attention mechanism, the CloU loss, or Soft-
NMS are not added to study the influence of these different
methods. From the average detection accuracy, the atten-
tion mechanism affects the detection accuracy of the model,
which increases from 51.3% to 55.7%, an increase of 4.4%,
so compared with the CIoU and Soft-NMS algorithm which
improves the model by about 1%, the attention mechanism
has a major impact on the precision improvement of model
detection. These four algorithms are indispensable for the
improvement of overall accuracy.

For the detection speed of the model, the improvement
method of the model used for precision only focusing on the
activation function hard-swish and the depthwise separable
convolution are maintained, respectively. Table 6 shows the
detection speed of the model, and the speed of the Soft-NMS
postprocessing. Both factors have improved the overall detec-
tion speed of the model.

Although the epochs in training sets as 100, there is still a
little increase in training results, but the overall trend is stable.
From the training results of these 100 epochs, the attention
mechanism, CIoU loss, and improved Soft-NMS algorithm
increase the detection accuracy of the entire model, and the
depthwise separable convolution and hard-swish algorithm
boost the detection speed of the entire model. Therefore, the
ablation experiment shows that the overall performance of the
model has been improved on the basis of the improvement.
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V. CONCLUSION

Inspired by the YOLOv3 and convolution block atten-
tion module. In this article, a one-stage detection model
YOLO-ACN is proposed by developing a lightweight
network with the attention mechanism, improving the
measurement of BBox, introducing the CloU loss func-
tion, and optimizing the Soft-NMS. The detection accuracy
and speed of small targets and occluded objects are further
increased in this method. The MS COCO dataset is used to
train, validate, and test the model YOLO-ACN. Experiment
results show that the precision of the YOLO-ACN is similar
to Faster R-CNN which is a two-stage detection algorithm,
but the detection speed has a significant improvement. The
detection accuracy is 2.9 times higher than that of the classic
one-stage object detection algorithm SSD513, and the speed
is 5 times faster. Compared with YOLOV3, the detection
accuracy is similar, and the detection speed is slightly faster,
but the proposed model achieves promising performance in
detecting small targets and occluded objects. The mAP for
small targets reaches 18.2%, so the accuracy is better than
that of YOLOV3. To further verify the detection performance
and robustness of the proposed YOLO-ACN, visible light
and infrared images of the KAIST dataset and a self-built
Campus Video Datasets are adopted. The detection results are
compared with YOLOV3, further verifying the universality
and efficiency of the YOLO-ACN in detecting small targets
and occluded objects.
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