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ABSTRACT Cognitive radio (CR) is a promising paradigm that comes to address the scarcity of the
radio spectrum by providing opportunistic utilization of the underutilized licensed channels to attain higher
spectrum efficiency. The efficient use of the vacant portion of the spectrum depends directly on the medium
access control (MAC) layer that coordinates fairly the access of the CR nodes to the idle spectrum. However,
the MAC layer is vulnerable to several attacks driven by malicious nodes. One of those attacks is the backoff
manipulation attack (BMA), where the selfish attacker deviates from the defined contention mechanism to
gain inequitable access to the available channels. This unfair access presents some specific characteristics
of an attacker, which can be considered as an input to the supervised machine learning algorithm for
classification. In this paper, we propose a support vectormachine (SVM) basedmodel in order to distinctively
identify the attacker depending on the throughput and the average packet delay to classify/predict an
eventual attack. Finally, theoretical predictions and simulation results are presented to validate the proposed
framework while giving useful insights into CR systems’ performance, vulnerable to BMA attacks.

INDEX TERMS Cognitive radio, medium access control, backoff manipulation attack, machine learning,
support machine vector.

I. INTRODUCTION
The growing demand for radio frequencies and the pro-
liferation of telecommunication standards have brought a
noticeable scarcity in the available spectrum in recent years.
Nevertheless, according to the federal communications com-
mission (FCC), some frequency bands are partially occupied
in specific locations and at specific times. This gave rise to
a new intelligent spectrum management technique called the
cognitive radio (CR) [1], [2].

The idea of CR is to allow unlicensed user, called sec-
ondary user (SU), to utilize the licensed channel owned by
a primary user (PU) when it is vacant. Therefore, the SU
must sense the PU signal and release the white spaces if any
PU activity is observed. Generally, the CR network (CRN)
relies on three key phases, namely sensing, spectrum access,
and management. The spectrum access and management are
orchestrated by the CR medium access control (CR MAC)
layer in order to efficiently operate the information col-
lected from channel sensing andmanage the spectrum sharing
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between the CR nodes while preserving access priority for
PUs [3].

CR MAC protocols are designed to provide fair sharing
and access opportunities to all users. Owing to its main role,
this layer is subject to several specific attacks that degrade the
performance and cause a substantial denial of service (DoS)
in a considerable time. Those attacks provoked by malicious
CR nodes lead to unfair access to the idle channel and create
a selfish utilization of the available spectrum, which directly
compromises the CR protocol compliance. One of the major
attacks affecting the MAC layer is the backoff manipulation
attack (BMA) [4], which exploits the vulnerability of the
wireless CR nodes network adapter. Essentially, it manipu-
lates the backoff mechanism by using a lower time period,
called a backoff window, with respect to the remaining users’,
in aim to obtain a higher throughput to the detriment of other
SUs. For that, an identification mechanism of this attack is
crucial for CRN security’s enhancement purpose.

A. RELATED WORK
The BMAhas recently attracted several researchers’ attention
due to its classification as one of the biggest threats impacting
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the CRN’s security. The malicious node, which is an authen-
ticated and authorized member of the CRN, behaves greedily
to increase its chances of accessing the media via fast nego-
tiation of channel reservation. This negotiation is contention-
based, following a variant of the carrier sense medium access
with collision avoidance protocol (CSMA/CA). The mali-
cious CR node manipulates the contention protocol param-
eters by systematically selecting a small backoff window
to increase its spectrum access probability. Several tech-
niques have been proposed to address the BMA MAC pro-
tocol. In [5], a technique for detecting MAC layer attacks
based on the distributed coordination function (DCF) and the
monitoring of the collision rate caused by a DoS attack has
been proposed. This technique is very difficult to implement
as it requires a modification of the 802.11 protocol. The
authors in [6], propose a distributed matching algorithm
to allow PUs to negotiate the time during which SUs are
either (i) allowed to access the spectrum, or (ii) coopera-
tively relaying data from the PU. The approach is interesting
for spectrum access; however, it did not clearly address the
identification of BMAs. The authors in [7], use a pragmatic
distributed algorithm (PDA) to efficiently enhance spec-
trum access by reaching equilibrium via a repeated game
punishment-based concept. Moreover, [8] introduces a phys-
ical layer security (PLS) to enhance the confidentiality of the
SU based PDA (SU-PDA) by invoking a self-concatenated
convolutional code (SECCC) schemes that have unique punc-
turing patterns based on advanced encryption standard (AES)
key. Nevertheless, these two approaches do not provide a
true countermeasure proposition for selfish channel access
attack identification even if they make BMA more difficult
to realize.

The attack patterns’ analysis by considering a cross-layer
based intrusion detection method for malicious attacks has
been investigated in [9]. Nonetheless, this method remains
limited due to the significant false positive (FP) rate and
the important number of dropped packets. In [10], a game
theory-based approach is considered for BMA detection in
CRN by addressing the conflict between attacking nodes and
defense mechanisms while modeling the throughput for both
normal and malicious SUs. The authors provide a theoretical
framework and an analytical solution for the BMA problem
without offering a real prevention system against BMA. In the
same way, the authors in [11], address the behavior of selfish
SUs and its effect on the system by using a game theory
approach. They assume SUs as players, the throughput as
their payoff, and the size of the contention window as their
move to obtain a Pareto-optimal and Nash equilibrium point
of the system operation. However, the authors rely uniquely
on the throughput to identify the attacker.

The authors in [12], propose a proactive protection scheme
in distributed cognitive radio networks (DCRNs) to guar-
antee an independent SUs’ throughput in each transmission
slot. The prerequisite of this scheme is that the greedy node
has to exchange and prolong the transmission time of each
packet to allow normal SU to transmit data with themselves

simultaneously in certain slots. This assumption is trivial as
it presents the attacker as already known by the CRN. Fur-
thermore, in real-life scenarios, the attacker is always hiding
from detection to exploit the system vulnerability. In [13],
the authors present a method based on the logistic classifica-
tion to detect BMA attackers while providing a mathematical
analysis for selfish backoff attack throughput. Nonetheless,
this approach relies on a single parameter, i.e., throughput,
which is insufficient to comprehend the malicious SU nodes’
behavior in CRN.

The BMA in IEEE 802.11 has been analyzed in [14] to
identify the honest behavior of non-colluding participants and
reduce the throughput of either selfish or malicious nodes
compared to the well-behaved ones. Furthermore, a ran-
dom backoff control (RBC) mechanism tracking the BMA
has been proposed in [15]. However, its implementation in
real-time is still limited. In [16], real-time detection of DoS
attacks based on the system’s statistical control aiming to
detect greedy behavior by monitoring abnormal throughput
and inter-packet interval for each node has been presented.
In the same aim, an effective Markov-RED-FT based method
for protecting the legitimate traffic by calculating the stream
trust values is suggested in [17].

Despite numerous works dealing with the defense against
BMA, the impact of various network parameters that can
lead to misinterpretation of nodes’ behaviors (e.g., network
congestion), lacks in the literature. This triggers the need
for a smart approach-based machine learning, dealing with
network parameters to reduce the false positive rate for BMA
detection and pinpoint eventual attackers under different
CRN configurations.

On the other hand, the support vector machine (SVM)
is a supervised learning technique that produces mapping
input-output features from a collection of marked training
data [18]. Because of its powerful statistical learning theory,
SVMs have proved high efficiency in numerous applications
such as computers security, face recognition, bioinformatics,
text mining [19], [20], particularly when used jointly with
other computing methods, for instance, fuzzy systems and
neural networks [21].

The mapping feature can be either regression or classifi-
cation functions. This second is categorized into two types;
linear and nonlinear kernel functions. The last-mentioned are
often used to transform input data into a high-dimensional
feature space whereby the input data becomes more separable
compared to the original input space. Leveraging on that,
SVMs have been widely used for nonlinear regression and
model classification issues.

B. CONTRIBUTION
Capitalizing on the above, we aim in this work to provide an
extensivemachine learning-based framework for BMAattack
detection. Two node characteristics, namely (i) throughput
and (ii) average transmission delay, are used to propose a
machine learning approach based on a nonlinear classifier
using SVM. The latter allows us to distinguish between
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‘‘malicious’’ and ‘‘normal’’ classes’ nodes and predict the
misbehaving one. Explicitly, the SVM is learning first by
making the collected dataset as input features vector to the
SVM to perform the training stage. By doing this, accurate
classification of different input nodes is possible, and there-
fore the attacker identification becomes feasible.

Pointedly, the main contributions of this paper can be
summarized as follows:
• Throughput modeling of both ‘‘normal’’ and
‘‘malicious’’ classes are retrieved based on Bianchi’s
model [22], [23], and various parameters, including the
backoff parameter, impacting the network fairness are
highlighted,

• Average packet transmission delay modeling of ‘‘nor-
mal’’ and ‘‘malicious’’ classes while emphasizing the
impact of BMA on the successful packet transmission,

• A novel machine learning-based approach and its for-
mulation for BMA detection are proposed. Herein, both
the throughput and the average transmission delay are
the main input features training the SVM to make it
able to classify correctly any new input and prevent any
eventual attack.

C. ORGANIZATION OF THE PAPER
Motivated by this introduction, the rest of this paper can be
structured as follows. Section II describes our system model.
In section III, we present the SVM for BMA classification;
we start by giving an overview of the SVM, and then we
provide an SVM formulation approach for BMA detection.
The simulation results are discussed in section IV. Finally,
section V gives some conclusions.

II. SYSTEM MODEL
In this section, we first introduce the BMA misbehavior on
the CR MAC layer that follows CSMA/CA as a channel
coordination and access mechanism, and then the through-
put alongside the average delay of packet transmission are
modeled for later analysis.

A. BMA MISBEHAVIOR
We consider a CRN that consists of n` legitimate and nmmali-
cious SUs, denoted by

(
U (`)
i

)
i≤n`

and
(
U (m)
i

)
i≤nm

, respec-

tively. Let b(j,k)i,α represents the backoff time for node i cor-
responding to the jth retransmission of the kth packet with
α accounts to the node type (i.e., ` or m). Initially, all b(0,k)i,α
are assumed to be uniformly distributed in an interval [0,w-1]
with w refers to the minimum size of the contention window
(CW). This latter is doubled after each retransmission, up to
a maximum value wm = 2mw, where m is the maximum
number of stages allowed to retransmit the packet. Therefore

0 ≤ b(j,k)i,α ≤ 2
min

(
m(α)
i,k ,m

)
w− 1,

with m(α)
i,k denotes the kth packet retransmission’s number by

U (α)
i given that successful transmissions have occurred before

stage m.

Fig. 1 illustrates the transmission process based on backoff
for three SUs. Initially, the backoff time of A, B, and C
corresponding to their first packets are set b(0,1)a = 10,
b(0,1)b = 8, and b(0,1)c = 3, respectively. Here, the index α has
been omitted for ease of exposition as all nodes are considered
legitimate. The nodes start decreasing their timers as long
as the medium is sensed idle for a DCF inter-frame space
(DIFS). Once b(0,1)c reaches 0, the station C starts transmitting
its frames and other nodes freeze the backoff decrementation
(i.e., b(0,1)a = 7, b(0,1)b = 5) and then resume the process
when the channel is detected as idle again for a DIFS interval.
Here, either basic access (BA) or four-way handshake with a
request to send/clear to send (RTS/CTS) will be employed
to transmit the node data on the available channel. In the
four-way handshake, the transmitter sends RTS to the receiver
and waits until it successfully receives CTS before sending a
data packet. An acknowledgment (ACK) is then immediately
transmitted at the end of the packet, after a period of time
called short interframe space (SIFS), to indicate a successful
transmission.

FIGURE 1. Backoff mechanism CR MAC.

It is worth mentioning that a collision occurs if two or more
nodes decrease their backoff timers to 0 at the same time.
In this situation, the CW is doubled for each retransmission
until it reaches a maximum value. If a transmission succeeds,
the node gets a random backoff time and reiterates the back-
off operation for transmission of the next potential packet.
In contrast, the selfish node can systematically modify its
backoff time to increase its chances of reserving an idle chan-
nel compared to protocol-compliant nodes and considerably
increases its throughput.

B. NODES’ THROUGHPUTS UNDER BMA
In this subsection, the impact of BMA on the throughputs
of both legitimate and malicious nodes is analyzed based
on Bianchi’s model [22]. To do so, let’s first consider the
following events
• E (α,i)

t : Node U (α)
i is being transmitting a packet into a

time slot,
• E (α,i)

c : A packet transmitted by U (α)
i shall collide,

with probabilities τ (α)i = Pr
(
E (α,i)
t

)
and p(α)i = Pr

(
E (α,i)
c

)
,

while Pr (E) refers to the probability of an event E . One can
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check that [22], [24]
τ
(`)
i =

2

1+ w+ p(`)i w
∑m−1

j=0

(
2p(`)i

)j
τ
(m)
i =

2
1+ w

.

(1)

Leveraging on (1), τ (m)i is denoted τ (m) for the sake of
simplicity with

p(`)i = 1−
[
1− τ (m)

]nm n∏̀
j=1
j 6=i

(
1− τ (`)j

)
. (2)

Moreover, the probability that there is at least one active
node transmitting a packet

Ptr = 1−
[
1− τ (m)

]nm n∏̀
j=1

(
1− τ (`)j

)
, (3)

while the conditional probabilities P(α,i)s to have a successful
transmission by U (α)

i , given that at least one station is trans-
mitting are given for the two considered types of SUs as

P(`,i)s =

τ
(`)
i

[
1− τ (m)

]nm ∏n`
j=1
i 6=j

(
1− τ (`)j

)
1−

[
1− τ (m)

]nm ∏n`
j=1

(
1− τ (`)j

) , (4)

and

P(m,i)s =

τ (m)
[
1− τ (m)

]nm−1∏n`
j=1

(
1− τ (`)j

)
1−

[
1− τ (m)

]nm ∏n`
j=1

(
1− τ (`)j

) . (5)

It follows that the conditional probability Ps to have a
successful transmission given that at least one station is trans-
mitting can be evaluated as

Ps =
n∑̀
i=1

P(`,i)s +

nm∑
i=1

P(m,i)s . (6)

Therefore, the probability that a station is experiencing a
collision, i.e., two or more stations transmit at the same slot
time, can be expressed as

Pc = Ptr (1− Ps) . (7)

Define R(α)i the throughput of U (α)
i , as the fraction of time

spent on successfully payload transmission of U (α)
i

R(α)i =
E (α,i)
p

Es
, (8)

with E (α,i)
p refers to the average payload information trans-

mitted of node U (α)
i in a slot time, while Es is the average of

time slot duration, given by

E (α,i)
p = PtrP(α,i)s L(α,i), (9)

and

Es = (1− Ptr ) σ + Ptr

( n∑̀
i=1

P(`,i)s T (`,i)
s +

nm∑
i=1

P(m,i)s T (m,i)
s

)
+PcT (α,i)

c , (10)

with L(α,i), T (α,i)
s , and T (α,i)

c refer respectively to the aver-
age packet payload size, the average successful transmission
duration, and the average collision time for U (α)

i , σ is the
average duration of an empty slot time. Moreover, T (α,i)

s and
T (α,i)
c can be evaluated as follows [22]
T (α,i)
s = H + L(α,i) + SIFS + 2δ + ACK + DIFS+
T (α,i)
c = H + L(α,i) + DIFS + δ
H = HPHY + HMAC ,

(11)

whereH is the packet header,HPHY andHMAC are the packet
headers for the physical and MAC layers, respectively, δ is
the propagation delay, while SIFS, DIFS, and ACK represent
the length of SIFS, DIFS, and ACK packets, respectively.

Specifically, for an RTS/CTS mechanism, the above equa-
tion becomes

T (α,i)
s = RTS + 3SIFS + 4δ + CTS + H

+L(α,i) + ACK + DIFS
T (α,i)
c = RTS + DIFS + δ,

(12)

where RTS is the length of the RTS packet, while CTS repre-
sents the length of CTS.

Finally, the sum-rate can be expressed as

R=
n∑̀
i=1

R(`)i +
nm∑
i=1

R(m)i

=PtrL(α,i)
∑n`

i=1 P
(`,i)
s +

∑nm
i=1 P

(m,i)
s

(1− Ptr ) σ + Ptr
∑nα

i=1
α=`,m

P(α,i)s T (α,i)
s + PcT

(α,i)
c

.

(13)

C. AVERAGE PACKET DURATION UNDER BMA
In a similar manner, let’s define the following events allowing
to evaluate the average packet delay
• E (α,i)

S=j : U (α)
i is transmitting a packet without collision at

backoff stage j with 0 ≤ j ≤ m,
• E (α,i)

d : A packet of U (α)
i is dropped,

• E (α,i)
nd : U (α)

i is transmitting at the jth backoff stage (0 ≤
j ≤ m) given that the packet is not dropped,

with probabilities given by

Pr
(
E (α,i)
S=j

)
=

(
1− p(α)i

) (
p(α)i

)j
, (14)

Pr
(
E (α,i)
d

)
=

(
p(α)i

)m+1
, (15)

and

Pr
(
E (α,i)
nd

)
=

Pr
(
E (α,i)
S=j

)
1− Pr

(
E (α,i)
d

)
=

(
1− p(α)i

) (
p(α)i

)j
1−

(
p(α)i

)m+1 . (16)

Define D(α,i)
j as the average duration for U (α)

i to transmit
a packet at j backoff stage without collision. Obviously, this
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value can be seen as the summation of three ordered terms (i)
duration of the backoff decrementation average, (ii) duration
of j retransmissions, and (iii) the one of successful transmis-
sion, namely

D(`,i)
j = Es

j∑
r=0

wr − 1
2
+ jT (`,i)

c + T (`,i)
s ; 1 ≤ i ≤ n`,

(17)

with (wr − 1)/2 is the average number of slot times that the
node defers at the r th stage.
By its turn, the malicious node may face as well a collision

if its backoff reaches 0 at the same time with one or more
nodes. However, that node keeps the same initial CW w
during all its transmission retries. Therefore, the delay for
malicious node is D(m,i)

j denoted as follows

D(m,i)
j =Es

(j+1) (w− 1)
2

+jT (m,i)
c + T (m,i)

s ; 1 ≤ i ≤ nm.

(18)

Finally, relying on using (16), (17), and (18), the average
packet duration for U (α)

i can be expressed as

D
(α)
i = E

[
D(α,i)

]
=

m∑
j=0

D(α,i)
j Pr

(
E (α,i)
nd

)
. (19)

III. BMA DETECTION BASED ON SVM CLASSIFIERS
In our approach, we treat the BMA detection as a two-class
pattern classification problem. We apply the SVM mecha-
nism in CRN to identify a possible BMA. We refer to these
two classes throughout as a normal and malicious node. Let
x(α) ∈ (R× R)nα a matrix of two rows and nα columns
denoting a pattern to be classified. Explicitly, each row of x(α)

is formed of both throughput and average transmission delay

x(α)i =

(
R(α)i ;D

(α)
i

)T
, i = 1, . . . , nα; (20)

where the symbol T denotes the vector’s transposition.
Analogously, define the vector y(α) ∈ Rnα as an identifica-

tion vector such that its ith element y(α)i = 1 refers to a normal
node, while y(α)i = −1 is denoting the malicious node. Let’s

define the pairs P (α)
i =

(
x(α)i ; y

(α)
i

)T
.

Let’s T =

{
P(T )i

}
i≤nT

denotes the training database

containing nT datasets of pairs P(T )i =

(
x(T )i ; y

(T )
i

)T
. For

the simplicity of notations, we denotePi = (xi; yi) , i = 1..nδ
irrespective of the database’s category, where δ = T and
δ = V refer to the training and test databases, respectively.
Based on the above inputs, we need to find a well-fitting

classifier, i.e., a decision function f (xi), that allows classify-
ing an input pattern xi independently of the database category.
It is worthwhile that the linear classifiers are particular cases
of nonlinear ones. In the sequel, a nonlinear classifier frame-
work applied to BMA is introduced for clarity purposes.

FIGURE 2. SVM classification with a hyperplane that maximizes the
separating margin between the two classes (indicated by data points
marked by the red ‘‘+’’s and blue ‘‘O’’s). Support vectors are elements of
the dataset that lie on the boundary hyperplanes of the two classes
(indicated by data points marked by the green ‘‘+’’s and ‘‘O’’s).

A. NONLINEAR SVM CLASSIFIERS
Given a database x = (xi)i≤nδ , the nonlinear SVM classifier
is characterized as

f (xi) = ρTφ (xi)+ b, i = 1..nδ; (21)

where ρ ∈ Rq is a weight vector perpendicular to the hyper-
plane H = {z ∈ Rq, f (z) = 0}, b is a scalar allowing to
find the hyperplane’s offset from the origin, while φ (.) is
a nonlinear real-valued vector of dimension q. Particularly,
the above classifier is called linear if φ(xi) = Axi + c with A
is a matrix ofMq,2(R) and c ∈ Rq.

Because numerous hyperplanes can separate the two afore-
mentioned classes, as shown in Fig. 2, the suitable SVM
classifier is the one maximizing the separation margin. Inter-
estingly, it has been proven that such problem is equivalent
to find an optimal solution of the following optimization
problem [25], [26]


minJ (ρ, ξ) =

1
2
‖ρ‖2 + C

∑nT

i=1
ξi

s.t. yi
(
ρTφ (xi)+ b

)
≥ 1− ξi

ξi ≥ 0, 1 ≤ i ≤ nT ,

(22)

with C represents the user-defined positive regularization
parameter, and ξi the slack variables, leading to a solution of
the form

ρ =

nT∑
j=1

θjyjφ(xj), (23)
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where θj are the Lagrangemultipliers, solutions of the follow-
ing second optimization problem

max
∑nT

j=1
θj

(
1−

yj
2

∑nT

i=1
θiyiK

(
xj, xi

))
s.t.

∑nT

j=1
θjyj = 0

0 ≤ θj ≤ C, 1 ≤ j ≤ nT ,

(24)

with K (., .) is a kernel function defined as

K
(
xj, xi

)
= φT

(
xj
)
φ (xi) . (25)

Subsequently,

f (xi) =
nT∑
j=1

θjyjK
(
xj, xi

)
+ b. (26)

It is worthwhile that the interval of θj narrows with the
decrease of its upper bound C. That the smaller C, the smaller
θj and the objective function in (26) becomes steady. Towards
this end, such constant should be greater enough to avoid
such situation. Owing to the above, three main cases can be
distinguished

• θj = 0: In this case, yif (xi) > 1 and xi is correctly
classified.

• 0 < θj < C: Here, yif (xi) = 1, and xi is strictly located
on the decision margin of f (xi). Under this condition, xi
is called a margin support vector of f (xi).

• θj = C: In this case, yif (xi) < 1, and xi is inside
the decision margin. Though it may still be correctly
classified. Accordingly, xi is called in this case error
support vector of f (xi).

To simplify further (26), one can ignore the null-terms corre-
sponding to θj = 0. To this end, let’s

• n(1)T denotes the total number of support vectors, i.e.
n(1)T = |{i ∈ 1..nT , yif (xi) ≤ 1}|,

• n(1,`)T and n(1,m)T refer to the number of normal and attack
support vectors,

• kj the indices, in the set 1..n
(1)
T , of the support vectors, i.e.

θkj > 0, assumed to be sorted such that
(
kj
)
j≤n(1,`)T

and(
kj
)
n(1,`)T +1≤j≤n(1)T

are associated with the two different
classes. It is worthwhile that the sorting is applied only
on j and that kj are not necessarily sorted in increasing
order.

Subsequently, (26) can be rewritten as

f (xi) =
n(1)T∑
j=1

θkjykjK
(
xkj , xi

)
+ b

(a)
=

n(1,`)T∑
j=1

θkjK
(
xkj , xi

)
−

n(1)T∑
j=n(1,`)T +1

θkjK
(
xkj , xi

)
+ b

(b)
= φT (xi)ψ + b, (27)

with

ψ =

n(1,`)T∑
j=1

θkjφ
(
xkj
)
−

n(1)T∑
j=n(1,`)T +1

θkjφ
(
xkj
)
, (28)

is the known template used to compare the input vector
feature xi in the H space. Here step (a) holds with the help
of (31), while identity (b) follows using (25) and taking
advantage of the inner product symmetry property. Remark-
ably from (27), ψ is composed of the two support vectors’
classes. As a consequence, a high positive and negative
scores are predictable when the input vector is from normal
and malicious nodes class, respectively. Moreover, the SVM
decision function in (27) is provided in template-matching
detector form in the nonlinear transform space H. Interest-
ingly, the constant b in (27) can be evaluated using any
upper or lower support vector x(sup)i , and retrieve the follow-
ing identity

b = f
(
x(sup)i

)
−

n(1)T∑
j=1

θkjykjK
(
xkj , x

(sup)
i

)
. (29)

Promisingly, twowell-known kernels types satisfyingMer-
cer’s condition are considered in this paper, namely, (i) poly-
nomial, and (ii) radial basis function (RBF) kernels

K
(
xkj , xi

)
=


(
xTkj xi + 1

)d
, case (i)

exp
(
−γ

∥∥xkj − xi∥∥2) , case (ii),
(30)

where d and γ > 0 are two parameters determined during the
training phase.

For the two above cases, it is obvious that the kernel
function is maximal if the vectors xi and xkj are collinear
or identical, respectively. Furthermore, the greater γ and the
smaller d , the smaller the kernel for all pairs xi and xkj , and
approaches 0 and 1, respectively. It follows that the objective
function should be close to b in the first case or independent
of the kernel in the second one, leading to the worst misclas-
sification. To this end, the values of γ and d should be chosen
carefully so that to get appropriate classifications.

Finally, the retrieved decision y(dec)i to compare with the
predicted one yi provided in the set G can be computed as
follows

y(dec)i =

{
1, f (xi) > 0
−1, f (xi) ≤ 0,

(31)

based on which the generalization error Ge, defined as the
ratio of the incorrectly classified nodes’ number to the total
number of validation examples, is evaluated for both training
and validation sets as follows

G(V)
e =

n(V)
f

nV
, G(T )

e =
n(T )
f

nT
, (32)
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where n(T )
f and n(V)

f represent the total number of misclassi-
fied data in T and V , respectively. Precisely, the misclasifica-
tion of a normal node as an attacker (i.e., false positive) and
vice-versa (i.e., false negative).

B. OPTIMIZED SVM KERNEL PARAMETERS
The optimal kernel parameters are obtained via two
processes:
• The first process is the cross-validation described in
Algorithm 2. It consists of finding the best SVM
classifier parameters of a training dataset T reflecting
the minimum generalization error for T , i.e., G(T ,min)

e .
Once the optimum values for T , namely, C(T ,∗) and
p(T ,∗), are obtained. They are introduced as an input to
Algorithm 1.

• The second process is to find the global optimized SVM
classifier parameters. It involves validation of the opti-
mized classifier obtained with C(T ,∗) and p(T ,∗) against
the test validation dataset V . This validation is detailed
in Algorithm 1 and consists of fine-tuning C and p until
finding the lowest Ge for V . Once G(V,min)

e is attained,
the global optimum parameters are found, i.e., C(V,∗)
and p(V,∗).

Algorithm 1 presents the main algorithm allowing to get, for
a given kernel, the optimal values of C, and those of the two
considered kernels d and γ described above. The algorithm
contains essentially three phases.

1) DATASET PREPARATION PHASE
Based on a set G of normal andmalicious nodes’ transmission
information, we start by computing, for each legitimate and
attacker node, the two following metrics
• the throughput using (8) jointly with equations (1)-(7)
and (9)-(12),

• the average packet transmission evaluated from (17)
and (18) alongside equations (1)-(7), (10)-(12), and
(14)-(16).

Thereby, G is updated accordingly by adding the two
aforementioned metrics for each node. Towards this end,
we start by randomly splitting the global dataset G into
two subdatasets (i) training T and (ii) test validation V ={
P(V)i

}
i≤nV

datasets, i.e., G = T ∪ V with G =
{
P(G)i

}
i≤nG

and nG = nT + nV .

2) CROSS-VALIDATION AND TRAINING PHASE
Algorithm 2 represents the cross-validation process to get the
optimum values for C and p for the training dataset T . The
algorithm includes three main steps.

a: RANDOM PARTITION OF DATASET T
The first step of cross-validation process consists of preparing
the dataset by randomly dividing the training dataset T into
r equally seized subsets T = ∪rk=1Sk , i.e.,

nSk = |Sk | =
nT
r
, k = 1..r . (33)

The subsets Sk is afterward used for SVM training and
validation step.

b: TRAINING AND VALIDATION FOR DATASET T
The SVM classifier is trained r times for each model-
parameter setting (C, p) in ranges [Cmin, Cmax] and [pmin, pmax]
split in equidistant subintervals of length C(T )

step and p(T )
step,

respectively. During the kth process k ≤ r , the subsets Sk
and its complementary Sk = T \ Sk are dedicated for SVM
validation and training, respectively. Note that nSk =

∣∣Sk ∣∣ =
r−1
r nT .
Precisely, the optimization problem (24) is solved with the

help of successive minimal optimization (SMO) technique
(27), based on which, f

(
x(Sk )i

)
are evaluated for all pairs of

throughput and average delay transmission x(Sk )i belonging
to the set Sk using jointly (27) and (29). Thereby, the clas-
sifier f (.) is then defined and the decisions on the Sk nodes
classification y(dec,Sk )i can be calculated using (31).

c: GENERAL ERROR EVALUATION OF DATASET T
By iterating the process r times, G(Sk )

e is evaluated by aver-
aging the disconcordance between y(dec,Sk )i and y(Sk )i

G(Sk )
e =

∑r
i=1

∣∣∣y(dec,Sk )i − y(Sk )i

∣∣∣
2nSk

=

r
∑r

i=1

∣∣∣y(dec,Sk )i − y(Sk )i

∣∣∣
2nT

. (34)

If k∗ denotes the set’s index associated with the minimum
value of the generalized errors in training subsets, evaluated
at a pair of values

(
C(k∗), p(k∗)

)
, i.e.,

k∗ = argminG(Sk )
e ,

1≤k≤r
(35)

then

G(T ,min)
e = G

(S∗k )
e , C(T ,∗) = C(k

∗), p(T ,∗) = p(k
∗). (36)

3) VALIDATION AND OPTIMIZATION PHASE
Leveraging the three above optimum values, we first enlarge
significantly the range of both C and p around C(T ,∗) and
p(T ,∗) by 24C and 24p, respectively. In a similar manner
to the optimization process made in the previous phase, for
each value of C and p in their intervals, we train this time the
entire set T , based onwhich the generalized error ofV ,G(V)

e is
evaluated. Such a process is reiterated until G(V)

e falls below
G(T ,∗)
e , found in the previous step. To this end, the optimum

values of C and p holding this condition are retrieved.

IV. RESULTS AND DISCUSSION
A. DATASET PREPARATION
In this section, we investigate the performance of the pro-
posed algorithm, and insightful discussions are provided.
Towards this end, the choice of an appropriate dataset and its
preparation is a preliminary step of paramount importance.
To prepare a dataset, we developed an application using
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Algorithm 1 SVM Algorithm for BMA Detection
input : G, nV
output : C(V,∗), p(V,∗), G(V,min)

e // p(V,∗) denotes the optimum value

of either d or γ in (30) corresponding to the minimum value G(V,min)
e .

parameter
:

τ
(`)
i , τ (m), p(`)i , n`, nm,w,m,L

(α,i),ACK ,

DIFS,HPHY ,HMAC ,RTS, SIFS, δ, nT ,
nV ,Kt , Cmin, Cmax, pmin, pmax, C(T )

step, p
(T )
step,

C(V)
step, p

(V)
step, r

// Kt : Kernel type, can be either polynomial or RBF.

// r : Number of equisize training subsets S.{
R(`),R(m)}

← ComputeThroughput (G){
D
(`)
,D

(m)
}

← ComputeAverageDelay (G)
// R(α) =

(
R(α)i

)
i≤nα

, D(α)
=

(
D(α)
i

)
i≤nα

.

G ← UpdateSet
(
R(`),R(m),D

(`)
,D

(m)
,G
)

{T ,V} ← Extract (G, nT , nV ) K ← SetKernel
(Kt , d, γ ); // Set Kernel according to eq. (30).{
C(T ,∗), p(T ,∗),G(T ,min)

e

}
← CrossValidation(

T , r,K, Cmin, Cmax, pmin, pmax, C(T )
step, p

(T )
step

)
// Call

Algorithm 2 to determine the minimum value.

G(V,min)
e ← G(T ,min)

e // Set an initial value for G(V,min)
e .

for C ← C(T ,∗) −4C to C(T ,∗) +4C by C(V)
step do

if C 6= C(T ,∗) then
for p← p(T ,∗) −4p to p(T ,∗) +4p by p

(V)
step do

if p 6= p(T ,∗) then
θ ← ApplySMO (K, C, p, T ); // find θ according

to eq. (24) and (27) with θ = (θi)i≤nT .

f (x(T ))← Classif (K, C, p, T , θ ) // x(T )
={

x(T )
i

}
i≤n(1)T

, n(1)T = |i = 1..nT , θi 6= 0|.

y(dec,V) ← ClassifTest
(
f (x(V))

)
//
(
x(V), y(dec,V)

)
=

{
x(V)i , y(dec,V)i

}
i≤nV

.

G(V)
e ← EvalClass

(
y(dec,V), y(V)

)
// y(V)

=

{
y(V)
i

}
i≤nV

.

if G(V)
e ≤ G

(V,min)
e then

G(V,min)
e ← G(V)

e C(V,∗) ← C p(V,∗) ←
p

end
end

end
end

end

NS3 to simulate the behavior of a BMA in the CRN network
based on CSMA/CA RTS/CTS mechanism with different
simulation parameters as summarized in Table 1. Particularly,
the parametersHPHY ,HMac, ACK , RTS, and CTS correspond
to the rate of 36Mbit/s. To collect a consistent dataset reflect-
ing as much as possible the reality, we start by computing
both Ri and Di for each node i, given in (8) and (19), respec-
tively. The collected G size contains around 2000 datasets,

Algorithm 2 Cross-Validation Process
input : K, T , nT
output : C(T ,∗), p(T ,∗),G(T ,min)

e // p(T ,∗) denotes the optimumvalue

of p corresponding to the minimum value G(T ,min)
e .

parameter
:

r , K, Cmin, Cmax, pmin, pmax, C(T )
step, p

(T )
step

// split C and p intervals into subintervals of lengths Cstep and pstep.

S ← SplitData (T , r); // Randomly split the T to r subsets S =
(Sk )1≤k≤r .

G(T ,min)
e ← 1; // Set an initial value for G(T ,min)

e .

for k ← 1 to r do
for C ← Cmin to Cmax by C(T )

step do
for p← pmin to pmax by p

(T )
step do

θ ← ApplySMO (K, C, p,Sk ); // find θ according to

eq.(24) and (27) with θ = (θi)i≤nSk
.

f
(
x

(
Sk
))

← Classif (K, C, p,Sk , θ )

// x
(
Sk
)
=

{
x
(
Sk
)

i

}
i≤n(1)

Sk

, n(1)
Sk
=

∣∣∣i = 1..nSk
, θi 6= 0

∣∣∣.
y(dec,Sk ) ← ClassifTest

(
f (x(Sk ))

)
//
(
x(Sk ), y(dec,Sk )

)
=

{
x
(Sk )
i , y

(dec,Sk )
i

}
i≤nSk

.

G(Sk )
e ← EvalClass

(
y(dec,Sk ), y(Sk )

)
// y(Sk ) ={

y
(Sk )
i

}
i≤nSk

.

if G(Sk )
e ≤ G(T ,min)

e then
G(T ,min)
e ← G(Sk )

e C(T ,∗)← C p(T ,∗)← p
end

end
end

end

TABLE 1. Fixed parameters of dataset preparation.

from which, both training and validation sets are defined.
Explicitly, the training set T contains 1253 normal and 273
malicious nodes, respectively, while validation set V is com-
posed of the remaining datasets (i.e., 472 nodes).

B. SVM ASSESSMENT
In the assessment process of SVM kernels, we adopt a gen-
eralization error Ge as a metric of efficiency. Fig. 3a, depicts
Ge versus both C and γ , for RBF kernel. One can ascertain
that the G(V,min)

e , i.e., the optimal parameters’ values for the
RBF kernel, is located in the area delimited by 104 ≤ C ≤
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FIGURE 3. Ge versus C, γ ,and d for (a) RBF, and (b) polynomial kernels.

108 and 10 ≤ γ ≤ 40. Consequently, the test dataset V
classification in this zone will have less misclassified input
features and, therefore, a higher chance for a correct BMA
detection. Moreover, one can see that Ge is higher for small
values of C and is increasing with the increase in C until
reaching the zone characterized by small fluctuations of Ge.
Besides, the parameter γ comes to fine-tune the decision
function to find the optimal G(V,min)

e = 0.0042 evaluated
based on the main algorithm (i.e., Algorithm 1), correspond-
ing to the optimum values C (V,∗)

= 106 and γ (V,∗)
= 1.

Similarly, Fig. 3b presents Ge versus both C and d , for the
polynomial kernel. Again, the greater d and the smaller C
are, the greater Ge is. That is, the optimum value of this
latter corresponds to significant small values of d and high
values of C. Interestingly, the optimal G(V,min)

e = 0.0233
is achieved over different sets of parameters (d (V,∗) = 2
and 105 ≤ C(V,∗) ≤ 108) as well as (d (V,∗) = 3 and
107 ≤ C(V,∗) ≤ 1010). Nevertheless, The first parameters
reaching the G(V,min)

e are considered the optimal values for
the polynomial kernel, i.e., d (V,∗) = 2 and C(V,∗) = 105 for
its fast convergence.

Capitalizing on the above results, we can pinpoint that
the SVM classifier’s performance depends essentially on the
kernel and its corresponding parameters. Owing to this fact,
better performance is achieved using the RBF kernel provid-
ing the two optimum values, C (V,∗)

= 106 and γ (V,∗)
= 1.

Some insights on the SVM classifier are clearly
obtained by observing the hyperplane and support vectors,

FIGURE 4. Hyperplane and support vectors for normal and malicious
nodes classes using RBF and polynomial kernels.

i.e., 0 < θj < C , produced with the optimal parameters,
namely C (V,∗), γ (V,∗), and d (V,∗), for each kernel. Fig. 4
shows the support vectors for both normal and malicious
node classes with RBF and polynomial kernels. It can be
seen from Fig. 4a that the RBF kernel gives more accurate
classifications based on the optimal hyperplane, i.e., θj = 0,
of all input data with really few uncounted misclassification
for both classes. Besides, as expected, the polynomial kernel
in Fig. 4b gives a higher classification error in comparison to
the RBF one. This can be justified by the considerable number
of nodes found on the decision margin, i.e., support vectors,
allowing the RBF to form a more precise optimal hyperplane
shape compared to its polynomial counterpart, which gives
the RBF kernel a possibility to achieve a better prediction for
any new eventual attack. Furthermore, in both Fig. 4a and
Fig. 4b, one can ascertain that the RBF provides a correct
prediction of the attacker; its counterpart is less efficient.

To emphasize the proposed SVM-based algorithm’s effi-
ciency, we present a comparison between SVM and other
well-known classifiers. Explicitly, the two metrics, namely
accuracy, and the F-score, are evaluated in Fig. 5a, as follows

Ac =
n(V)
c

nV
= 1− Ge (37)

Fs =
2SePr
Se + Pr

(38)

where n(V)
c represents the total number of correctly classi-

fied nodes, Se and Pr are the sensitivity, and the precision,
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FIGURE 5. Comparison of the Performance and Computational
complexity of various BMA detection classifiers.

respectively, given by

Se =
n(V)
p

n(V)
p + n

(V)
e

(39)

Pr =
n(V)
n

n(V)
n + n

(V)
a

(40)

with n(V)
p and n(V)

e denote the number of ‘‘True positive’’ and
‘‘False positive’’ classifications, respectively. n(V)

n and n(V)
a

the number of ‘‘True negative’’ classifications and ‘‘False
negative’’ classifications, respectively.

As shown in Fig. 5a, the SVM with RBF kernel classi-
fier gives better results than other classifiers. Additionally,
the Decision Tree provides an interesting accuracy among the
rest classifiers, even though it gives a smaller F-score than the
Random Forest. Besides, in Fig. 5b, one can see that the SVM
RBF gives the lowest running time compared to the other
classifiers (i.e., 0.931s), followed by the Decision Tree, SVM
polynomial, SGD, Logistic Regression, Naive Bayesian,
and K-Neighbors with 0.968s, 0.972s, 0.975s, 1.012s, and
1.139s, respectively. Lastly, the Random Forest corresponds
to the worst algorithm in terms of computational complexity
(i.e., 3.458s). It is worth mentioning that all classifiers’ meth-
ods were trained with the same dataset T , and the results,
namely accuracy, F-score, and running time are obtained
against V .

TABLE 2. Accuracy and F-score for methods using only the throughput as
an attack detection parameter.

Interestingly, Table 2 shows the accuracy and F-score for
methods that follow one verification condition, namely the
throughput, calculated based on the same dataset. As one
can see, the game theory approach and the Bayesian theorem
provide a low accuracy with 0.702 and 0.656, respectively,
compared to the classifiers mentioned above in Fig. 5a.More-
over, although the presented F-scores for the above methods
are not the lowest, they fall behind theDecision Tree, Random
Forest, SVM polynomial, and SVM RBF classifiers.

V. CONCLUSION
In this paper, an SVM based approach for BMA detection in
CRN was proposed. Explicitly, the analytical model of the
throughput and the average transmission delay of packets for
a CR network in the presence of malicious nodes alongside
the SVM classifier model have been presented. With the
help of an important dataset containing both normal and
malicious nodes information, these two metrics have been
evaluated, and the model has been trained and tested for
several values of the kernel parameters. We demonstrate that
the SVM classifier with RBF kernel produces a small gener-
alization error compared to its polynomial counterpart when
classifying samples not included in the training set. More-
over, the RBF kernel achieved the best performance with low
computational complexity, compared to several well-known
classifiers.
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