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ABSTRACT Smart cities exploit emerging technologies such as Big Data, the Internet of Things (IoT),
Cloud Computing, and Artificial Intelligence (Al) to enhance public services management. The use of IoT
allows detecting and reporting specific parameters related to different domains of the city, such as health,
waste management, agriculture, transportation, and energy. LoRa technologies, for instance, are used to
develop IoT solutions for several smart city domains thanks to its available features, but sometimes people
(i.e., citizens, information technology administrators, or city managers) might think that these available
features involve cybersecurity risks. This study explores the cybersecurity aspects that define an assessment
model of cybersecurity maturity of IoT solutions to develop smart city applications. In that sense, we perform
a systematic literature review based on a top-down approach of cybersecurity incident response in IoT
ecosystems. Besides, we propose and validate a model based on risk levels to evaluate the IoT cybersecurity

maturity in a smart city.

INDEX TERMS Bayesian network, cybersecurity, [oT, maturity model, risk assessment, smart city.

I. INTRODUCTION
The cities try to maintain their sustainability and resilience
capabilities in front of social, environmental, technologi-
cal, and economic changes inherent to human evolution.
Cities face more significant pollution, more traffic conges-
tion, higher demand for energy and sanitation services due
to urban growth. To resolve the problems associated with
urbanization, the cities should incorporate smart solutions
that involve human capital, creativity, and collaboration with
various stakeholders [1]. For this reason, several cities in
the world have adopted the development an urban planning
model called smart city based on the digitization of services,
automation of processes, and data-based decision making [2].
Adopting smart city model allows cities to improve the
city’s administrative and operational processes, aiming to
generate sustainable environments for citizens. The smart city
model includes a sensing layer and data analytics processes
to understand in real-time the patterns of the city services
in different areas such as health, energy, transport, waste
management, and environment. In recent years, the devel-
opment of smart cities has been supported by the evolution
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of communication systems and the inclusion of emerging
technologies such as the Internet of Things (IoT), Big Data,
and Cloud Computing [3]-[5]. The integration of these tech-
nologies and their direct application to the urban space has
promoted urban computing development. Today, sensors, per-
sons, vehicles, buildings, among other elements of the urban
space, can be used as components for providing service to
people and the city [1].

From a technical perspective, the smart city could be con-
sidered as a model to abstract the physical and behavioral
aspects of the different elements of the city (citizens, ser-
vices, and physical infrastructure) to the digital environment
through the interoperability of technological subsystems
made up of sensors, actuators, and processing capabilities.
This allows identifying patterns of the city’s social, envi-
ronmental, and economic aspects for executing real-time
decision-making by the city’s actors to maintain the city’s
sustainability and resilience. Related to the objective of digiti-
zation of the physical aspects of a city, IoT especially allows
obtaining data of several parameters and components of it;
for instance, it is feasible to obtain the temperature of a house,
the air quality on the streets, or the humidity in an agricultural
plantation [6]—[8]. IoT solutions are increasing worldwide,
and the projections related to IoT for the following years
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are still promising. The number of IoT devices is expected
to grow between 25 to 30 billion by 2022 [9]. Gartner indi-
cates that only in the automotive sector, IoT presents a 21%
increase by 2020 compared to 2019; this represents 5.1 billion
endpoints more in the world [10]. Nevertheless, [oT solutions
have fueled economic growth and have also contributed to
social, environmental, and commercial aspects. According to
the World Economic Forum, IoT projects have contributed
to the 17 sustainable development goals (SDG) [11]. This
hyper-connectivity and continuous availability of IoT solu-
tions allow the development of smart cities, but they also
increment cybersecurity threats and attacks [12]. A Forbes
analysis of security events shows that cyberattacks on IoT
devices increased by around 300 % in 2019, and according to
Hassija [13], the development of IoT solutions raised privacy
and security issues. Some cyberattacks that can occur in a
smart city are:

o Controlling traffic lights: attackers can manage city
lights causing accidents; traffic signals have become
susceptible to attacks because of wireless networks [14];

« Attacks against smart vehicles: attackers can inject false
routes or simulate other vehicles in the environment to
cause collisions [15];

o Collapsing the power grid: attackers can cause power
outage in the city [16];

o Water supply: attackers can modify the levels of chem-
ical additives in the water and cause public health
problems [17];

« Surveillance cameras: attackers can spy on people and
access to personal data [18].

Cities have been targets of security attacks worldwide for
some years. For example, in 2015, Kyiv (a Ukraine city)
had a power outage caused by cyberattacks; this deprived
the people of electricity for one hour approximately [19].
In 2019, the city of Baltimore, USA, was attacked with
ransomware infecting the city government’s computers and
demanding 13 bitcoins in exchange for encrypted files [20].
When cities lose control of their systems due to cyberattacks,
it can impact the technological axis, the city’s economy,
quality of life, and even more, can put in danger people’s
lives. The inclusion of information and communication tech-
nologies (ICTs) has generated concerns for citizens regarding
security. Cybersecurity aspects could be one of the limitations
in the use of smart city services. Citizens could prefer, in some
instances, do not use technological resources for the city
services. The study developed by Lytras and Visvizi [21]
identified seven factors that are concerned by citizens in the
smart city adoption with their corresponding percentages (see
Fig. 1). According to such a study, citizens’ main concerns
are security and protection with 45%, data privacy with 25%,
and transparency of services with 8%. The other concerns are
equal or below to 5%.

In this context, city managers should consider strategies to
improve cybersecurity mechanisms (e.g., policies, guidelines,
controls) and support strengthening cybersecurity in the smart
city domain. Under this premise, we have raised the following
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FIGURE 1. Concerns associated with smart city adoption.

research question at a macro level that motivates the develop-
ment of this study: Is there an adequate IoT cybersecurity
level for smart city scenarios?

Six important pillars of smart cities are the social impact,
cognitive intelligence, policy awareness, benchmarking and
best practices, smart cities ecosystem, and creation and inno-
vation [1]. This context raises our second research question
in this study: Does IoT cybersecurity level affect to the key
pillars of the smart city?

This study aims to analyze the cybersecurity state from a
perspective of IoT inclusion in smart city scenarios. For this,
we first performed a systematic literature review (SLR) that
allows establishing a baseline to evaluate the cybersecurity
maturity of IoT solutions used in a smart city. Then, we pro-
pose a Cybersecurity Maturity Model for a smart city based
on five phases: (i) Research context, (ii) Design strategy
framework, (iii) Conceptualization and specification frame-
work, (iv) Mapping features of the cybersecurity maturity
model based on expert panel ranking, and (v) Validation of
the initial cybersecurity maturity model. The proposed model
aims to cover the cybersecurity aspects produced by the inclu-
sion of IoT to develop the smart city, contemplating the
economic, social, and environmental impacts. Applying the
cognitive security techniques will allow assessing cybersecu-
rity risk levels in the face of complexity, diversity, and large
volumes of data in IoT ecosystems.

The remainder of this paper is structured as follows.
Section II presents an overview of works related to the
issues of cybersecurity in IoT ecosystems within smart cities.
Section III presents the research methodology of the SLR
and qualitative analysis. Section IV presents an analysis of
the results obtained from the SLR to determine the main
aspects of cybersecurity to assess the IoT usage in smart
city applications and then discusses cybersecurity proposals
for 10T in smart cities. Section V introduces the cybersecu-
rity maturity model development for a smart city. Finally,
Section VI concludes this study.

Il. OVERVIEW OF CYBERSECURITY IN loT ECOSYSTEMS

IoT devices communicate among them, using various
communication technologies and different kinds of proto-
cols. In IoT ecosystems, the application of cybersecurity
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methodologies has some challenges due to this heterogeneity.
Additionally, the physical capacity of IoT devices and the
amount of information generated by IoT devices increase the
challenge of cybersecurity.

Attackers take advantage of vulnerabilities to execute
cyber-attacks. Recent attacks have taken advantage of IoT
systems’ vulnerabilities in smart cities. Liu et al. [22] iden-
tified five primary layers in the IoT system susceptible to
vulnerabilities: the network layer, the operating system, soft-
ware, firmware, and hardware. Capellupo et al. [23] mention
that IoT devices are compromised because they have default
configurations, easy passwords, and unencrypted traffic. Vul-
nerabilities related to default or trivial passwords in IoT
devices that are publicly visible can be detected using tools
like SHODAN [24]; this increases the number of attacks.
Yu et al. [25] mention that the firmware identification method
to detect the device type and brand of IoT solutions could be
based on weak passwords. English et al. [26] contribute to this
field, indicating that attackers could develop memory buffer
attacks to gain access to the entire system using weak default
passwords. Hsu et al. [27] mention that an attacker could
trigger a privilege escalation attack to change the behavior of
IoT systems. IoT systems generally use rules for developing
specific actions, but the attacker could manipulate these rules
to affect the IoT device. Mishra and Dixit [28] suggest that
if an attacker gains access to an IoT device, he/she could
obtain privileged information. If the device is part of a mesh
network, the attacker could compromise the entire network’s
confidentiality. Benkahla et al. [29] mention that the attacker
could take advantage of services implemented in the IoT
ecosystem using the spoofing attack. The problem is that
the elements’ identity is unprotected and transmitted while
registering the devices in the server. Benkahla also suggests
that some IoT networks (i.e., LoRa Network) can suffer from
flipping attacks where the message is modified without being
decrypted and can disable data transmission. Ling er al. [30]
developed a case study for a smart plug system and identified
four possible types of attacks to gain access to the entire
system: device scanning attack, brute force attack, spoofing
attack, and firmware attack.

According to Moustafa er al. [31], IoT services operate
via network protocols, such as DNS, HTTP, and MQTT,
and attackers try to exploit vulnerabilities in such proto-
cols using techniques like polymorphic code, DNS Spoofing,
DNS cache poisoning, Denial of Service (DoS), Distributed
DoS (DDoS) and URL interpretation. Metongnon and Sadre
[32] mention that attackers can obtain successful login on tel-
net, and once they reached this goal, they can write shellcodes
or download script files containing commands. Additionally,
IoT solutions consider UPnP for automatic discovering IoT
devices connected to a network [33], but this service can
become a vulnerability since an attacker can get important
information using the UPnP’s service discovery protocol
[32]. Tacono et al. [34] mention that API-keys share the same
drawbacks as HTTP basic authentication. The API-key is
transferred to the server in plain-text. Additionally, Iacono
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comments that OAuth v2 (an authorization framework for
granting access to end-users’ resources for third party appli-
cations) does not include any security on its own; instead,
the security is merely based on TLS. However, OAuth v2 can
be augmented through the OAuth MAC tokens by extending a
method for signing an HTTP request. OAuth is used to reduce
user privacy exposure, but OAuth v2 could have security
vulnerabilities taken advantage of by attackers through replay
attacks and Cross-Site Request Forgery (CSRF) [35].

Table 1 shows some relations to explain how attack vectors
take advantage of IoT vulnerabilities. The IoT vulnerabilities
were selected based on the OWASP IoT Top Ten attacks clas-
sification and security requirements of OWASP Application
Security Verification Standard.

It is worth noting that the IoT ecosystem is complemented
by data analytics and cloud solutions to generate information
for decision-making. Nowadays, Microsoft Azure, Google
Cloud, or Amazon AWS are the most recognized cloud plat-
forms in the field due to their easy integration with IoT
solutions. However, despite being robust commercial solu-
tions, they expand the surface of cybersecurity attacks. Cloud
solutions present a shared security management scheme; on
the one hand, cloud companies are responsible for securing
the infrastructure, storage, and cloud networks. On the other
hand, the user or client is responsible for other aspects such
as authentication, authorization, or continuous monitoring.
In August 2019, there was an attack in which customer data
was stolen from a bank cloud infrastructure. It was said
that a misconfiguration error at the application layer caused
the problem allowing a Server-Side Request Forgery (SSRF)
attack. However, the judicial process investigation revealed
that there were default configurations that could enable this
type of attack [39]. As can be seen, the interaction of various
actors increases the complexity of the cybersecurity strategy.
In this aspect, it is essential to consider the aspect of a shared
security scheme generated by the use of cloud infrastructure
to analyze security risks. Figure 2 illustrates the most relevant
security problems that we have identified in our comple-
mentary study about cloud environments that can be used in
conjunction with IoT. The attack vectors expand the attack
surface in a smart city.

The metadata on cloud services gives information about a
computational instance, e.g., service name or security group
that retrieves a cloud resource. This metadata may contain
sensitive information, so it is essential not to have informa-
tion such as a password because it would allow attackers
to access resources more quickly. Attackers seek to identify
credentials in the metadata using the SSRF vulnerability in
the public frontend. A misconfiguration can allow an attacker
to access cloud resources, read or overwrite configurations,
and access sensitive data. Misconfigurations can occur in both
the cloud components and the configuration of third-party
solutions used in the cloud (e.g., GitHub or dockers). Errors
such as not activating the multiple-factor authentication,
not using encryption, or having credentials in files of local
directories of the systems can allow the attacks to succeed.
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TABLE 1. Attack vectors based on loT vulnerabilities.

Security Vulnerability Attack vector IoT Owasp Classification Ref.
requirements Layer
Lack of the implementation of cryptographic ~ Attacker can discover the
algorithms. password using brute force
or dictionary attacks.
Attacker can eavesdrop the
wireless communication.
Authentication Lack of password policy management. Attacker can gather con-  Device Weak, Guessable, or Hard- [23]-
figuration and authentica-  Layer coded password [26],
tion credentials from a [36],
non-tamper-proofed node, [37]
and can replicate it in the
network.
The average password length on IoT devices  Impersonation attack in
is short. which an adversary is
disguised as a legitimate
party in the system.
Bypassing authentication and authorization. ~ Device scanning attack.
Default passwords and credentials.
Bypassing access control checks Attacker can emulate the  Device Insufficient Authentication
communication behavior  Layer. or Authorization.
Misconfiguration. of a real IoT node
(Spoofing attacks).
Access Control Metadata manipulation. The attacker can install a  Network  Insecure Software and [27]-
malicious firmware on the  Layer. Firmware. [30]
Elevation of privilege. IoT device and control it
remotely.
Input and Output Vulnerabilities on HTTP, Telnet and DNS. DNS  Spoofing, DNS  Application Insecure Network [31]
cache poisoning, Denial of ~ Layer. Services.
Service (DoS), Distributed
DoS (DDoS) and URL
interpretation
Communications Vulnerabilities on MQTT, CoAP, UPnP, and  MQTT does not provide  Service Insecure Network [32]
HNAP. any data encryption by  Layer. Services.
default. The attacker can
sniff the data in transit.
Cryptographic Communication protocols do not rely on  Eavesdropping attacks al-  Network  Lack of Encryption and In- [30]
cryptographic mechanisms. low to analyze plain-text layer. tegrity Verification.
transmissions between IoT
nodes.
APIs Security misconfiguration Replay attacks and Cross- ~ Service Insecure Network [38]
improper asset management Site  Request Forgery layer. Services.
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FIGURE 2. Security problems in cloud environments.

By default, a cloud resource’s information is private, but users
may allow the information to be accessible. Some errors are
related to the snapshot’s publication in an open way that
will allow the attacker to access the information. Attackers
can send fake emails trying to get credentials from cloud
resources, bypassing security protections such as firewalls,
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since they could generate exceptions or install some malware.
Table 2 presents the security techniques that cloud providers
offer to reduce security vulnerabilities.

From this review, we can observe that security prob-
lems look for having a more significant extension than
the platforms’ security configuration. It is essential to use
a Role-based Access Control (RBAC) to access cloud
resources. This prevents unauthorized users from accessing
sensitive data. Access policies must be configured appropri-
ately, considering that in the future, a user may change roles
and thus access sensitive data that was not initially allowed.
Cloud infrastructures have some tools to manage data secu-
rity; for instance, Microsoft Azure stores sensitive data in
the MS-SQL database and has security tools that encrypt the
database’s information. Cloud solutions have firewalls that
allow restricting authorized IP addresses. Microsoft Azure
recommends using firewalls at the database level instead of
server firewalls since the former allows more granularity than
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TABLE 2. Security Techniques that Cloud Providers Offer.

Technique AWS Google Cloud Azure

Logging trail CloudTrail Cloud Audit Logs Azure Search.

Multi-factor Amazon Identity Cloud identity plat-  Azure

authentication and Access  form multi-factor
Management authentication.
(IAM)

Sensitive data Cloud Data Loss Prevention (DLP).

Encryption  key ~ AWS Key  Customer-supplied Azure key vault
management Management encryption keys

Service (KMS)

Cloud KMS

Single Sign-on  Yes Yes Yes
Sfunctionality
Logging trail Yes Yes Yes
Multi-factor Yes Yes Yes
authentication
Sensitive data pro-  Yes Yes Yes
tection (DLP)
Encryption end to  Yes Yes Yes
end (motion data)
Encryption in  Yes Yes Yes
Rest-data
Encryption keys Yes Yes Yes
Data masking Yes Yes Yes

the latter. Azure, Google, and AWS allow end-to-end encryp-
tion using TLS or HTTPs; however, data-rest encryption can
be more challenging, and other tools should be configured
in this context. AWS history produced by CloudTrail enables
security analysis, resource change tracking, and compliance
auditing. On the other hand, Azure Search allows fine-tuned
ranking models [40]-[42].

As can be seen in Table 2, the different infrastructures
have alternatives to improve security in the deployment of
solutions that use the cloud; the importance of shared provider
and customer security is again highlighted. There may be
limitations in the provider’s proposed cloud security solu-
tions; also, the user’s security configuration may be little or
insufficient. Some cloud providers may have security features
disabled by default, which can also create risks since the user
does not perceive this status. An in-depth investigation of the
security risks from the mechanisms or tools mentioned in this
study can model the attack surface in a smart city.

A structured approach to reduce cybersecurity incidents’
impact is the prioritization of cybersecurity activities and
cybersecurity risk assessment efforts. Organizations such as
Computer Emergency Response Team Coordination Center
(CERT/CC), National Institute of Standards and Technology
(NIST), European Network and Information Security Agency
(ENISA), SysAdmin Audit, Networking and Security Insti-
tute (SANS), International Organization for Standardization,
and International Electro-technical Commission proposed a
set of phases for incident response.

For instance, NIST, in its special publication SP 800-61,
defines five phases: (i) preparation, (ii) detection and
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analysis, (iii) containment, (iv) eradication and recovery, and
(v) post-incident [3], [43]. In particular, the post-incident
phase constitutes the final phase once an incident has been
resolved. It is beneficial in improving security measures.
It provides a chance to achieve closure concerning an inci-
dent by reviewing what occurred, what was done to inter-
vene, and how well the intervention worked. The degree of
pro-activeness is switched to high as the relevant personnel
must take the initiative to recognize and reflect new threats
and improve protection mechanisms. Results from this phase
will be used as feedback to improve cybersecurity incident
management. The principal activities in this phase include the
following [44]:
o Identify the lessons learned from the cybersecurity
incident;
« Identify and make improvements to the organization’s
security architecture;
« Review how effectively the incident response plan was
executed.

Ill. RESEARCH METHODOLOGY

A. RESEARCH QUESTIONS

From our main research question of this study (i.e., Is there an
adequate 1oT cybersecurity level for smart city scenarios?),
three secondary research questions have been derived as
follows.

RQ1 Are IoT cybersecurity aspects a limitation in the
development of a smart city?

RQ2 What is the role of policymakers to strengthen IoT
cybersecurity in a smart city?

RQ3 How to measure the level of IoT cybersecurity in a
smart city?

B. QUALITATIVE ANALYSIS

Forensics is a procedure in the cybersecurity incident
response process related to the post-incident phase specif-
ically. This process allows determining the root-cause of
an attack. Knowing the root-cause allows improving secu-
rity controls in gaps of cybersecurity infrastructure in smart
cities. IoT forensics has been defined as a branch within
digital forensics; it requires unique methods and perhaps is
more complicated than those traditionally used in computer
architecture [45].

To understand cybersecurity aspects in a smart city in
the context of IoT solutions, we propose a top-down anal-
ysis. Determining the root-cause is useful for improving
network security and identifying vulnerabilities [46]. In this
study, we perform an SLR of the post-incident phase in IoT
ecosystems to identify cybersecurity management’s critical
aspects. We follow the Prisma methodology [47] that consists
of four stages: identification, screening, eligibility analysis,
and inclusion. To perform these phases, we have used the
Rayyan QCRI tool [48], which is designed to carry out a
systematic review of the files uploaded to a system. The tool
allowed us to execute the screening and eligibility, analysis,
and inclusion through the blind peer review process to reduce
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subjectivity in the research process. Subsequently, with the
selected articles, a qualitative analysis was carried out using
the Atlas TI tool [49].

1) STAGE 1: IDENTIFICATION

a: STUDY SELECTION

The world population is expected to exceed 60% in urban
areas [50], so city planning must consider the problems
of social, economic, and environmental growth. The urban
agenda for sustainable development, published in 2015,
defines the guidelines to cover the social and ecological
aspects until 2030, based on the achievement of 17 SDG
objectives [11], [51]. In this aspect, IoT represents a critical
element in the deployment of smart cities as a strategy for
SDG compliance [52]. Based on this context, it is our interest
to understand the importance of IoT in the development
of smart cities and the security aspects generated with this
technology’s inclusion. For this reason, we selected research
articles from the year 2015, when the Urban Agenda was
defined, until May 2020, the date on which this study was
presented.

For selecting the research articles, we have used the fol-
lowing databases: Springer, Scopus, IEEE Xplorer, Associ-
ation for Computing Machinery (ACM), Web of Science,
and Science Direct. These databases were chosen since they
are the most relevant sources of information correspond-
ing to “Information Systems” and ‘“Technology.” We have
included the keywords “ (IoT OR smart city)” AND
“ (Forensics OR post-incident)” in the search
string.

b: INCLUSION AND EXCLUSION CRITERIA

The inclusion criteria consist of: (i) documents published in
academic sources after peer-review, and (ii) documents that
considered the use of IoT for application development.

The exclusion criteria were: preview surveys about [oT foren-
sics (these works were included in the related works section
but were not considered for the quality analysis process).
We found 302 papers related to IoT forensics.

2) STAGE 2: SCREENING

a: TITLES AND ABSTRACTS

We have conducted a screening process of the 302 remaining
papers for selecting the main contributions. After reading
each paper’s title and abstract carefully, we have excluded
those papers in which the title and abstract did not comply
with the inclusion criteria. We also have deleted duplicates
articles. At the end of this stage, 176 articles that fulfill the
criteria remained in the selected group.

3) STAGE 3: ELIGIBILITY ANALYSIS

a: FULL TEXT READING

After performing the previous stages, a full-text review of
each article was done. If the article included cybersecu-
rity aspects in greater detail about vulnerabilities, attacks,
and protection mechanisms in IoT environments, they were
considered for further qualitative analysis. At the end of
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this process, 28 articles were considered relevant to structure
the initial contextual basis of our study. Table 3 details
the selected articles; for each of them, we present the
aspects that could generate cybersecurity issues and the main
contribution.

4) STAGE 4: INCLUSION

a: DATA EXTRACTION

For each selected paper, we have summarized the following
information: (i) IoT component or device, (ii) modeling pro-
posal, (iii) forensics process, and (iv) future works. Therefore,
this information was analyzed for each research objective that
was presented in the following sections.

IV. RESULTS OF THE ANALYSIS OF THE SELECTED
PAPERS

Research objective 1: Are IoT cybersecurity aspects a lim-
itation in the development of a smart city?

The perspective of cybersecurity issues is one of the limita-
tions for the development of smart city solutions. According
to [jaz et al. [79], three factors affect information security in
a smart city: technological, governance, and socio-economic
factors. The technological factor includes IoT, semantic
web, cloud computing, databases, software, and artificial
intelligence. The governance factor includes city domains
such as health, education, infrastructure, transport, energy,
environment. Finally, the socio-economic factor includes
communication, privacy, business, finance, and commerce.

Technology plays a crucial role in making a smart city
functional [79]. However, technologies such as smart grids,
biometrics, smartphones, and M2M communications present
security issues. These technologies are often used in IoT
ecosystems; hence 10T is one of the essential technologies
in the development of smart cities; its importance lies in its
accelerated growth and its applicability in different smart city
domains to implement smart infrastructures [80].

We can observe that cybersecurity attacks in IoT ecosys-
tems are versatile, and different attack vectors are possible
due to smart city solutions’ components or technologies.
Smart cities need to establish cybersecurity strategies to
reduce the impact of attacks. The first phase at a strategic level
that the smart city must raise is to develop a cybersecurity
situational awareness that allows it to know the strengths and
weaknesses concerning the different factors that may affect
its cybersecurity. Considering that one of the limitations is
the technological factor and that the technological pillar in
the development of the smart city is IoT, in what follows,
we establish the cybersecurity situation awareness of this
technology [81].

According to security organizations like OWASP
(see Table 4) and some researches such as Alkeem et al. [82]
and Liu et al. [22], the following attacks on IoT ecosystems
are defined:

o Eavesdropping: This allows attackers to intercept data

and help them to obtain sensitive information;

« Data modification: Attackers try to replace the informa-

tion or modify it with minor changes;
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TABLE 3. Results of the SLR. Selected Papers to Review.

o Replay Attack: A part of the valid information can be
sent back by the attacker to the original receiver after

Journal Year Title Aspects that could generate cybersecurity — Contribution Reference
issues
2017 Strategic Trust in Cloud-Enabled Cyber-  Advanced persistent threats (APTs) can in-  Game theory to capture the adversarial and ~ [53]
Physical Systems with an Application to filtrate in the network and use obfuscation to  strategic nature of CPS security
Glucose Control remain undetected
2018 A Game Theory Based Collaborative Secu-  IoT systems tend to be established in a  Game theoretical analysis framework to col-  [54]
rity Detection Method for IoT Systems distributed manner for saving resource con-  laborative security detection
sumption,
2018 MDSClone:  Multidimensional ~ Scaling  Attacker to gather configuration and authen-  Algorithm for clone detection probability [55]
Aided Clone Detection in IoT tication credentials from a non-tamper-proof
node, and replicate it in the network
2018 Deep Abstraction and Weighted Feature Se-  Impersonation attack in which an adversary ~ Deep-feature extraction and selection (D- (561
lection for Wi-Fi Impersonation Detection is disguised as a legitimate party in a system  FES), which combines stacked feature ex-
traction and weighted feature selection to
attack detection
2019 Modeling, Analysis, and Mitigation of Dy-  Software vulnerabilities in devices, due to  An analytical model to study the D2D prop-  [57]
namic Botnet Formation in Wireless ToT  low cost and short time-to-market. agation of malware in wireless IoT networks
Networks
2019 IoT-NUMS: Evaluating NUMS Elliptic ~ Timing and simple side-channel attacks Evaluating NUMS Elliptic Curve Cryptogra-  [58]
Curve Cryptography for IoT Platforms
IEEE 2019 Towards Efficient Fine-Grained Access Con-  User data privacy attacks by unauthorized  Robust and lightweight “heartbeat” protocol 591
Transactions trol and Trustworthy Data Processing for  parties to handle the difficult key revocation prob-
on  Information Remote Monitoring Services in IoT lem
Forensics ~ and
Security
2019 Interdependent Strategic Security Risk Man-  Users cannot be aware of the security poli-  Proximal-based iterative algorithm to com- [60]
agement With Bounded Rationality in the cies taken by all its connected neighbors, pute the Gestalt Nash equilibrium (GNE)
Internet of Things so user makes security decisions based on  to characterize the decisions of agents and
the cyber-risks that perceives by observing  quantify their risk
a selected number of nodes
2019 SafeChain: Securing Trigger-Action Pro-  Attack-privilege escalation and privacy leak- ~ SafeChain can efficiently and accurately — [27]
gramming From Attack Chains age identify attack chains
2019 Trust Evaluation Mechanism for User Re-  Unintentionally corrupted and falsified data A novel trust model called experience-  [61]
cruitment in Mobile Crowd-Sensing in the  or intentionally spreading disinformation for  reputation (E-R) is proposed for evaluating
Internet of Things malevolent purposes trust relationships between any two mobile
device users
2020 A GLRT-Based Mechanism for Detecting ~ Dropping the packets transmitted by the IoT ~ Hybrid intrusion detection systems with
Relay Misbehavior in Clustered IoT Net-  devices and/or by corrupting the packets to  semi-analytical approach
works be forwarded by the relay
2020 SLATE: A Secure Lightweight Entity Au-  Lightweight cryptography for resource con-  Secure lightweight entity authentication [62]
thentication Hardware Primitive strained systems hardware primitive called SLATE
2020 SARA: Secure Asynchronous Remote Attes-  Remote attestation is particularly important A novel Secure Asynchronous Remote At- [63]
tation for IoT Systems for securing Internet of Things (IoT) systems  testation (SARA) protocol that exploits
asynchronous communication capabilities
among IoT devices and verifies that each IoT
device is not compromised
2020 An Attack-Resilient Architecture for the In- A single vulnerable device can undermine  An architecture that prevents deceitful mes-  [64]
ternet of Things the security of the entire network sages generated by compromised devices
from affecting the rest of the network
Digital Investiga- 2017 Future challenges for smart cities: Cyber- ~ Smart city data is generated in vulnerable A holistic view of the security landscape of [65]
tion security and digital forensics environments by all data sources, for storage  a smart city, identifying security threats and
in a back-end Cloud providing deep insight into digital investiga-
tion in the context of the smart city.
2019 Leveraging Electromagnetic Side-Channel ~ User’s personal information and cloud com-  Analysis methodologies for data acquisition [66]
Analysis for the Investigation of [oT Devices ~ munication data can be stored in the device  through of legitimate analysis process.
directory. Some Al speaker stored all the
voice response data without any deletion.
2019 ToT forensic challenges and opportunities for ~ Extraction of user cloud credentials from the ~ Extending existing methods for extracting — [67]
digital traces application settings. and examining traces from smartphones to
ToT device.
2019 Comprehending the IoT cyber threat land-  The resource-constrained and heterogeneous  Identify the issues related with open re- [68]
scape: A data dimensionality reduction tech-  nature of IoT devices coupled with the place-  solvers that have been specifically generated
nique to infer and characterize Internet-scale  ment of such devices in publicly accessible  from IoT devices.
IoT probing campaigns venues complicate efforts to secure these
devices
Advances in In- Attack Detection and Forensics Using Hon-  ToT networks are vulnerable to various secu- ~ Employ various machine learning algo- [69]
telligent Systems eypot in IoT Environment. rity attacks by remote login (like SSH and  rithms, namely, Naive Bayes, J48 decision
and Computing. Telnet). tree, Random Forest and Support Vector Ma-
chine (SVM) to classify IoT attacks.
2018 Acquiring RFID Tag Asymmetric Key from  Radio Frequency Identification (RFID) al- A methodology for acquisition of RFID tag [70]
10T Cyber Physical Environment. low identify and locate objects and record — asymmetric key for [oT forensic purpose.
metadata.
Lecture  Notes 2017 Privacy verification Chains for IoT Privacy and Security by Design for Internet A Privacy Verification Chains (PVC) to 71
in Computer of Things (IoT) enforce a strict separation between data
Science providers and data controllers.
2019 Digital Forensics and Privacy-by-Design:  Ina ized system, i comp Model for Data privacy compatible with  [72]
Example in a Blockchain-based Dynamic  have access to all the information collected ~ General ~Data  Protection  Regulation
Navigation System. from the user. (GDPR).
IEEE Internet of 2019 ToT Forensics: Amazon Echo as a Use Case  Complexity, diversity, and heterogeneity of ~ IoT-based forensic model that supports the — [73]
Things Journal ToT devices and ecosystems. identification, acquisition, analysis, and pre-
sentation of potential artifacts of forensic
interest.
2019 Treasure collection on foggy islands: Build- ~ Unprecedentedly huge volumes of network  Trusted hardware and searchable encryption [74]
ing secure network archives for internet of  traffic from massive IoT devices. for building trustworthy.
things.
ACM 2018 ToT forensic: Id ion and H s nature of the IoT device, lack  Tools and techniques to identify and locate  [75]
International of evidence in criminal investigations. of ToT standards and the complex IoT ar-  ToT devices with the concept “digital foot-
Conference chitecture affect to the identification of an  print.”
Proceeding incident and its evidence.
Series.
2018 I know what you did last summer: Your — Smart home IoT devices have already been  Forensic Evidence Acquisition and Analysis ~ [76]
smart home internet of things and your used as culpatory evidence. System (FEAAS) that can infer user events
iPhone forensically ratting you out (like entering or leaving a home) and what
triggered an event.
IEEE Access 2018 ToT Device Forensics and Data Reduction. The growing volume of devices and data will ~ Bulk digital forensic data analysis for dis-  [77]
require newly developed data structures to  parate device data.
analyze cyberattacks.
2019 Forensics and Deep Learning Mechanisms ~ Handle diverse data in large volumes, requir-  Investigate the applicability of deep learning ~ [78]

for Botnets in Internet of Things: A Survey
of Challenges and Solutions

ing near real-time processing.

in network forensics.

some time;
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TABLE 4. Attack Vectors in the loT Ecosystem.

TABLE 5. Attacks to Technologies Used in the loT Ecosystem.

Technology

Attacks

Weak, guessable,
or Hardcore pass-
words

Insecure network
services

Insecure ecosys-
tem interfaces

Lack of
secure update
mechanism

Use of insecure
or outdated com-
ponents
Insufficient
privacy
protection
Insecure data
transfer and
storage

Lack of device
management

Attacker uses default passwords which have
not been changed or set account passwords
that they choose.

The communication technology and channel
must be secured. When there is weak negoti-
ation, poor handshake practices, or incorrect
versions of SSL, the communication is not
secure.

Components such as Secure Shell (SSH),
BusyBox, or web servers are not kept up
to date; the threat actor might expose these
vulnerabilities and gain access.

Updates and patches to devices are usually
done remotely. If the process is not secure,
the threat actor could intercept the update
and install their malicious update.
Deprecated or insecure software or libraries.

Personal information store on an insecure
device.

Application Programming Interfaces (APIs)
and web applications do not protect data
correctly. They may not encrypt data or cor-
rectly exchange it with browsers.

Session management, and authentication can
be incorrectly implemented. This allows the

threat actor to discover keys and passwords
or to masquerade as other users (broken au-
thentication).

Insecure default Devices with insecure default settings.

settings
Lack of physical Devices located on the outside place without
hardening tampering protection.

« Man-in-the-middle attack: It is the type of attack where

the attacker positions himself between two parties.

Table 5 shows specific attacks on technologies used with
IoT solutions. Building on this, Aydos et al. [83] propose a
classification of the attacks according to the layers defined in
the 10T architecture. Burhan et al. [8§4] mention that security
is a critical issue in IoT applications and describe some
security mechanisms that can be used in the technologies that
enable IoT, as shown in Table 6.

Regarding IoT forensics models, the following were
identified:

o FoBI: fog-based IoT forensic framework;

o Forensics-aware IoT (FAIoT) model,;

« Forensic State Acquisition from the Internet of Things

(FSAIoT);

o FIF-I0T: a forensic investigation framework using a pub-

lic digital ledger.

In the IoT forensics process [45], at least three layers are
considered: Device-level forensics, network forensics, and
cloud forensics. At the device-level layer, the data stored in
the IoT device memory is considered; at the network level,
the aspects related to network logs are considered; and at the
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Technology  Attacks Smart City Case
RFID/NFC Tag killing. RFID is used on smart city applications such
Signal interference. as smart parking, traffic management, human
Jamming. tracking, and healthcare [85]. In contrast,
DoS. NFC is used on contactless payment, navi-
Spoofing. gation, information, or couponing [86].
Cryptoanalysis. NFC devices can also exchange data with
Eavesdropping. existing card readers and ISO 14443 com-
pliant units. eMarketer estimates there will
be 69.4 million NFC mobile payment users
by the end of 2020; that number will rise
to 80.1 million users by 2023, with people
using their mobile devices as travel tickets
on metros, subways, and buses. The grown
of IoT devices increase this number.
In an eavesdropping scenario, the attacker
uses an antenna to capture RF signals of
the communication between NFC devices,
another second method the attacker installs
a malicious terminal and wait that the user
device touched it. The Interception of an
NFC exchange allows theft of sensitive in-
formation or allows attackers to manipulate
the information to make it useless. Some
vulnerabilities like CVE-2019-2114 allow
the bypass local privileges using a package
installation on Android mobiles.
WSN Bandwidth degradation. WSNs are used to manage parking lots and
Unauthorized access. lighting infrastructure. The main goal of
Battery exhaustion. these attacks is obstruct one or more paths
in order to increase the arrival time of the
packets from the target leaves, to crash in-
termediate routing nodes, to decrease node
batteries, or to provoke a general DoS [87].
M2M Physical Attacks. Attacker can use multiple identities for oc-
Attacks on authentication. cupy the all channel and prevent legitimate
Man-in-the-middle. nodes can access to the network. [88].
Side-channel.
Node tampering.
Relay attacks.
Smart Grid Threats to network avail-An attacker can execute stealthy false data
ability. injection attacks on the state estimation of
Message replay. a power grid to steal electricity, cause mi-
False data attacks. nor disruption in the grid, induce cascad-
Attacks on privacy. ing failures and/or cause large-scale outages
DoS. [89]. FDI attacks occur when an adversary
Breaches in data integrity attempts to inject false measurements into
the system. It requires attackers to access
the topology and state variables only of an
attacked region’s boundary buses rather than
the whole grid.
Smartphone  Malicious applications.  Attackers could infected android APK with

Botnets. the goal of send phishing attacks to citizens
Location privacy and GPS.or convert smartphones on botnets for DDoS
Threats through WiFi. attacks [90].

Threats in social network.

Privacy issues.

cloud level, the stored data of the IoT devices are considered.
The model developed in [45] establishes a Secure Evidence
Preservation Module. This module will continuously monitor
all the registered IoT devices and store evidence securely in an
evidence repository. Hossain et al. [94] mention some limita-
tions to the forensics process in IoT ecosystems due to the [oT
components’ features. Table 7 summarizes these constraints
in three aspects: Hardware, software, and network.

FUTURE RESEARCH DIRECTIONS ON IoT SECURITY ON
SMART CITY

Cybersecurity management in the smart city is more
complicated than in traditional information technology sys-
tems due to the solutions’ heterogeneity and larger attack
surface. It can be seen that the layer model is widely used,
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TABLE 6. Attacks to the loT Layer Approach.

Layer Attacks

Attacks Case

Application  Social Engineering
Broken authentication
Virus

Unauthorized access
Injection

Trojan

Session management and authentication can
be incorrectly implemented. This allows the
threat actor to discover keys and passwords,
or to masquerade as other users [91].

Exhaustion
Collision
Malware

Services

Attacker can extract valuable information
from data in-transit of MQTT protocol (plain
text), such as: IP broker, data payload, port
number of MQTT [38].

Man-in-the-middle
De-synchronization
Unfairness
‘Wormbhole

Flooding

Spoofing

Selective forwarding
DDoS

Network

In the IoT ecosystem, a rogue device could
masquerade as a legitimate member of an
IoT network resulting in significant data
theft or falsification. In DDoS attacks, the
attacker builds a botnet of zombie hosts. The
command-and-control (CnC) server commu-
nicates with zombies over a covert channel
using Internet Relay Chat (IRC), Peer-to-
Peer (P2P), Domain Name System (DNS),
Hypertext Transfer Protocol (HTTP), or se-
cure HTTP (HTTPS). When more IoT de-
vices are infected, the botmaster carries out
the DDoS attack on the chosen target. [92]

Physical Tampering
Eavesdropping
Jamming

Denial of Service

Systems offer to debug/boot mode in case the
system encounters a problem when starting
up. The attacker could access the debug/boot
mode using a keystroke or connecting to
JTAG or UART interface. After that, the
device has been compromised; a backdoor
can be installed to execute malicious com-
mands remotely using, for instance, netcat
commands [93].

TABLE 7. Attacks to loT Components.

Component  Limitations

Attacks Case

Hardware Computational
Energy
Memory

Tamper-resistant

SD cards and MicroSD cards (uSD)
are often used to store data nec-
essary for IoT operation or store
collected data. They could even in-
clude the entire operating system
and configuration files necessary
for operation. An SD card could
potentially have data stolen or de-
stroyed by an attacker [96].

Embedded software
Dynamic patch

Software

ToT devices typically use a trimmed
down version of an operating sys-
tem. Developers can choose from
open source and commercial op-
tions [97].

Network Mobility

Scalability
Multiplicity devices
Multiplicity
communications
Multi-protocol
networking
Dynamic-network

Threat actors often use amplifica-
tion and reflection techniques to
create DoS attacks. The attacker
forwards ICMP echo request mes-
sages that contain the source IP ad-
dress of the victim to a large num-
ber of hosts. The number of IoT de-
vices that could be associated with
botnet DDoS attacks could improve
the damage [92].

but there are no standardized names. In the recommendation

Y.4000/Y.2060 by ITU [97],

« Application Layer, similar to application layer mentioned

by Burhan [84].

« Service Layer, similar to application layer mentioned by

Burhan [84].

« Network Layer, similar to network layer mentioned by

Burhan [84].
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the IoT layers are named as:

« Device Layer, similar to the perception layer mentioned
by Burhan [84].

City managers: need to evaluate the cybersecurity risk to
provide privacy and quality of life to citizens in building or
improving smart city models. Technologies allow to build
smart city models for archiving the sustainability goals, but
these technologies could expand cities’ vulnerability. 10T is
one of the critical technologies for building smart cities, and
its growth for the next years will be considerable worldwide.
City managers need to consider cybersecurity requirements
before installing IoT devices, especially on critical infrastruc-
tures. City managers need to evaluate the control mechanisms
to guarantee the critical infrastructures that prove the city’s
services against attacks like denial of service and theft of
personal information.

They need to participate actively in the culture of cyberse-
curity to prevent theft of information and keep privacy. Espe-
cially, smart home scenarios need to improve their security
and avoid default configurations.

Third parties (e.g., manufacturers or standardization
organizations): need to develop cybersecurity guidelines for
building a security ecosystem on smart city scenarios. IoT
solutions need to include security from its design, including
quality tests using established standards, e.g., ISO 25000.

Development methodologies to evaluate security on IoT
devices, communications protocols, gateways equipment
could contribute in a relevant way for improving cybersecu-
rity on smart city scenarios.

Academy: needs to continue in the contributions of
research processes on cybersecurity of smart cities. IoT vul-
nerabilities are present on different layers of the ITU architec-
ture. The academy could contribute to different aspects, such

as:
« Methodologies for identifying vulnerabilities on tech-

nology components used in a smart city.
« Methodologies for classifying and measuring vulnera-
bilities
« Methodologies for evaluating cyber-risks on smart
cities.
« Literature reviews on emergent attacks on smart cities.
Research objective 2: What is the role of policymakers
to strengthen IoT cybersecurity in a smart city?
Policymakers must obtain information that allows estab-
lishing a set of policies to strengthen security in the smart
city. As mentioned above, there are various IoT solutions,
different attack vectors, and many vulnerabilities that can
be used by attackers. Policymakers must have the ability to
establish the specific cybersecurity situational awareness for
a smart city. From the perspective of 10T ecosystems, based
on [98], we define four steps for the role of policymakers to
strengthen IoT cybersecurity in a smart city.
@) Establish the dimensions of the attack surface. The
following three broad dimensions are considered.
1. Targets and enablers: Any resource in the IoT
ecosystem of the smart city that may be of interest
to the attacker.
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2. Channels and protocols: The means used by the
components to interact within the IoT ecosystem of
the smart city.
3. Access rights: The rights associated with
resources of the IoT ecosystem of the smart city.

(i)  Identify the attack vectors that were more likely to
be used for attackers. It is necessary to identify the
most relevant attack vectors (see Table 4). We pro-
pose to use a risk model to carry out the classifi-
cation process. Nurse ef al. [99] mention some risk
assessment frameworks that are commonly used in
organizations and governments, i.e., NIST SP800-
30, ISO/IEC 27001, Operationally Critical Threat
Asset and Vulnerability Evaluation (OCTAVE),
CCTA Risk Analysis and Management Method
(CRAMM). NIST [100] proposes a recommen-
dation for IoT manufacturers to evaluate security
aspects before 10T devices are sold to customers.
A relevant contribution in [99] is to consider that
due to the dynamics of the IoT ecosystems, the risk
models described before may need to be adapted;
we agree on that.

(iii)  Define security metrics to evaluate the cybersecurity
maturity of a smart city.

(iv)  Define the set of policies to implement jointly with
monitoring and improving strategies that prevent
the attacks.

FUTURE RESEARCH DIRECTIONS IN POLICY-MAKING
When the present study was developed, a lack of policies
or guidelines focused on smart city’s cybersecurity was
detected. Several proposals of organizations like ISO, NIST,
and ITU development for IT systems could be applied to
smart city scenarios. However, the complex, dynamic, and
diversity of technologies used to build smart cities raise
the need for developing specific policies, guidelines, and
standards. Policy-makers have the challenge of developing
policies in a timely way facing the continuous development
of new technologies. Some future research directions in this
context are the following:

City managers: establish cybersecurity policies related to:

« Data privacy in a smart city.

« Personal data storage and process in smart city.

o Guidelines for interoperability between technologies
and vertical domains of a smart city.

« Data security in vertical domains of a smart city.

o Cybersecurity incident response handling in a smart city.

Third parties: maintain the development of security
solutions for technologies used in a smart city according
to guidelines and standards for improving the cybersecurity
situational awareness. The development of IoT to build smart
city solutions is continuously growing, and it needs to cover
some cybersecurity aspects:

o Lightweight encryption algorithms for IoT devices.
o Security mechanisms for communication channels.
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« Authentication mechanisms for ubiquitous and hetero-

geneous networks.

« Security requirements validation process for IoT ecosys-

tems.

Academy: development of cybersecurity programs focused
on the development of cybersecurity in smart cities scenarios,
which could include topics like:

« Data privacy in a smart city.

o Cybersecurity for urban computational models.

o Cybersecurity on smart city technologies.

o Cybersecurity compliance in a smart city.

Research objective 3: How to measure the level of IoT
cybersecurity in a smart city?

In the conducted SLR, we did not find an assessment model
to evaluate the cybersecurity maturity level in a smart city;
however, considering that the development of this model can
be an essential support to improve the cybersecurity at the
smart city level, we have proposed an approach in Section V.

Bear in mind that only assessing each city’s security
level may not be effective because each city has a different
dynamic. Even within the same city, there may be different
IoT solutions for the same domain that perform the same
functionality, but they could present different security levels.
Howard ez al. [98] propose a relative measure to assess the
security between different operating system versions. It is
based on the fact that instead of measuring a system’s abso-
lute security, it is more useful to assess its relative security.
Although it is complex to establish metrics to assess a sys-
tem’s security, how safe one system is concerning another
could be established. As several IoT solutions could be devel-
oped from the mentioned approach, we can establish if IoT
solution A is safer than IoT solution B, considering that the
two solutions will be within the same smart city ecosystem.
Several researchers have adopted the proposal in [98] to
assess the security of information systems. Based on this
context, we find it interesting to propose an adaptation of
the proposal in [98] to the smart city context. To establish
a relative security measurement model based on the attack
surface in a smart city, we propose the following four steps:

1) Establish an attack surface formed by the set of

elements that make up the system;

2) Identify the set of attack vectors that can allow the

attack to that surface;

3) Establish a strategy to reduce the attack surface;

4) Evaluate relative security by establishing security

improvements by reducing the attack surface.

FUTURE RESEARCH DIRECTIONS ON SMART CITY
CYBERSECURITY MODELS

City managers: need to establish a cybersecurity situational
awareness of smart city; for that, it is important to:

« Establish a layer-based model to evaluate a smart city’s
cybersecurity maturity that includes social, economic,
and environmental factors and key pillars.

o Identify the impact value of cyber-attacks on social,
economic, and environmental factors in smart cities’
different verticals.
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o Identify the critical cyber-attacks surfaces for
establishing cybersecurity control mechanisms.

o Define cybersecurity indicators of compromise for
measuring the level of cybersecurity risk.

Third parties: develop and propose cybersecurity maturity
models for evaluating smart city components. Support the
development of indicators of cybersecurity vulnerabilities.
Approaches like CVSS are adequate resources, but they need
to be adapted for the IoT and smart city contexts.

Academy: could contribute to the development of cyberse-
curity smart city models. The vast amount of data, the hetero-
geneous and large number of devices, and the administrative
process to get data in real-time in a smart city could delay the
development of smart city cybersecurity models. The devel-
opment of simulation scenarios for evaluating cybersecurity
models could be an essential contribution from the academic
perspective.

A. DISCUSSION

IoT ecosystems support various applications in different
smart cities’ axes, but they are exposed to new threats from
the cybersecurity approach. The challenge of cybersecurity in
IoT is the heterogeneity of devices, networks, protocols, and
the hyper-connectivity IoT represents. IoT is still considered
an emerging technology, and proposals for standardization
and security management of IoT have developed. Based on
the performed SLR, we have identified four key aspects that
should be addressed in IoT ecosystems.

1) Network security: Numerous types of networks support
the hyper-connectivity of IoT; this allows the vast scope
of [oT, its mobility, and adaptability. Perhaps one of the
biggest security challenges in IoT ecosystems is that
most IoT networks are wireless.

2) Authentication: The authentication secures the process
of accessing an IoT network by devices, persons, and
systems. Establishing one-way authentication mecha-
nisms, e.g., authentication based on a password can be
a weak option for IoT ecosystems. The administration
of authentication mechanisms can be complicated due
to many devices and the process associated with modi-
fying the device’s credentials. An API is more common
in IoT ecosystems; the authentication process should
consider this kind of interface connection.

3) Encryption: It ensures security in the storage and
transfer of data, and it is essential in IoT secu-
rity. However, encryption requires important compu-
tational resources, which are generally limited in IoT
components.

4) Update: Keeping IoT devices and systems updated
regularly is critical for reducing possible cybersecurity
gaps. Due to the enormous number of 10T devices, this
can be a complicated process.

Some researchers had made proposals to drive these
cybersecurity key aspects in IoT ecosystems. For instance,
Cui et al. [101] propose five research axes for IoT security:
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TABLE 8. Disciplines per Layer for Protecting loT Applications.

Layer Discipline Use

Smart home
Mobile computing

Application ~ Ontology

Services Cryptography Smart transportation
Smart grid
Smart shopping
Smart card
Blockchain Smart home
Smart transportation
Network Machine Learning &  Smartphone
Data Mining Mobile devices
Social networking
Game Theory Wireless networks
Honeypot-enabled networks
Physical Biometrics Mobile sensors

Storage devices

1) IoT-based network security focuses on modeling
patterns of the spread of an attack;

2) Security and privacy in fog systems;

3) User-centric and personalized protection methods;

4) Lightweight security solutions;

5) Theoretical complement.

Additionally, Cui et al. [101] identify six disciplines
related to protection methods in a smart city. From the smart
city’s perspective, it is necessary to evaluate which disci-
pline is adequate to improve its cybersecurity capabilities.
We match these disciplines to each stage of the IoT layer
model (see Table 8). We also observe that cybersecurity in
IoT ecosystems follows a layering approach. The forensics
process commonly establishes three layers: device, network,
and application, but attacks and threats can occur in four lay-
ers: physical, network, services, and application. Therefore,
considering cybersecurity risk assessment for a smart city
under a layering perspective can be useful. Aydos et al. [83]
propose a risk-based layered security approach based on
the following four stages: (i) securing the layers; (ii) under-
standing and evaluating layered threats; (iii) measuring the
likelihood of layered threats; and (iv) determining the layered
risk by combining the probability and impact of the layered
threat.

V. SMART CITY CYBERSECURITY MATURITY MODEL
DEVELOPMENT BASED ON RISK LEVELS
Based on the proposal by Mbanaso et al. [102] that defines a
set of steps to develop a conceptual design of a Cybersecurity
Resilience Maturity Measurement (CRMM) Framework, and
the proposal by Weeserik and Spruit [103] which indicates
a maturity model to improve risk management operationally,
we have established the following five phases for developing
an [oT Cybersecurity Maturity Model for a smart city:

Phase 1: Research context

Perform a review of literature and standards related to
smart city, cybersecurity, resilience, and sustainability.

Phase 2: Design the strategy framework

Identify technologies or features related to cybersecurity,
resilience, and sustainability.
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TABLE 9. Cybersecurity Maturity Models for Organizations.

Acronym Cybersecurity maturity model Proposed Maturity Ref.
by levels
CCSMM Community  CyberSecurity ~Maturity ~ White Five [107]
Model [108]
COBIT Control Objectives for Information and  ISACA Five [107]
related Technology
CSF-NIST  Cybersecurity Framework NIST Five [109]
[108]
C2M2 Cybersecurity Capability Maturity Model ~ Curtis Four [110]
[107]
ISMS Information Security Management  ISO Five [107]
System-ISO27001 [108]
ISM3 Information Security Management Matu-  ISM3 Five [107]
rity Model [108]
NICE s Cyber Security Capability Matu- ~ US DHS Three [108]
rity Model
RMM Resilience Management Model CERT Four [111]
SSE-CMM  Systems Security Engineering Capability =~ NSA Five [112]

Model

Phase 3: Conceptualization and specification of the
Framework

Define the cybersecurity maturity model.

Phase 4: Mapping features of the cybersecurity maturity
model based on expert panel ranking.

Phase 5: Validation of the initial cybersecurity maturity
model.

1) RESEARCH CONTEXT
Several models have been developed to measure the maturity
of cybersecurity capabilities in organizations; some of these
are shown in Table 9. According to [104], the most widely
used model is the SEE-CMM, since it presents details of the
cybersecurity processes that must be implemented; it defines
22 areas (11 areas of engineering processes, 11 areas of
project management) and establishes five levels of maturity.
The second most used model is C2M2 [105]. The most
comprehensive and used cybersecurity maturity models are
CSF-NIST and C2M2 [106]; however, they have been crit-
icized due to their subjectivity that can be generated when
making self-assessment. Although the models are general and
focused on organizations, the maturity model can be adapted
to specific sectors [104] (e.g., C2M2 has two variants: one
developed for the energy sector and another for the gas and
fuel sectors).

The C2M2 model was released in 2012, and in 2014, it was
updated to support the electrical sector. C2M2 is based on
four maturity indicator levels (MILO to MIL3) and ten phases:

1) Risk management

2) Asset, change and configuration management

3) Identity and access management

4) Threat and vulnerability management

5) Situational awareness

6) Information sharing and communications

7) Event and incident response

8) Continuity of operations

9) Supply chain and external dependencies management
10) Workforce management and cybersecurity program

management.

On the other hand, the CSF-NIST defines five phases:
(i) Identify, (ii) Protect, (iii) Detect, (iv) Respond,
(v) Recover.
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Most of the mentioned models cover generic aspects and
can be adapted to specific environments. However, as is
the case of IoT ecosystems, certain aspects are not covered
completely, or they are not adaptable from the generic mod-
els (e.g., risk assessment or continuous monitoring). In the
IoT ecosystem, conducting an asset inventory can be quite
complex to perform due to many devices and their physical
location in the Smart City case. A similar context is the one
presented when using C2M2. Generally, both COBIT and
C2M2 perform the categorization of critical assets to analyze
the security level and subsequently establish countermea-
sures; this aspect would be more complex to establish in an
IoT-Smart City environment since any node attacked can have
a high impact on critical city services. The proposed model
seeks to prioritize the attack surface, the interrelation between
the Smart city [oT nodes, and the probability of a future attack
based on a previous attack.

The COBIT and C2M2 models propose maturity analysis
focused on business objectives, but there is no direct con-
cern in the aspects that may impact these systems’ users.
However, this reality is the opposite in the context of Smart
City. Although there is concern regarding the technological
systems used, citizens’ concern is more significant, especially
about those factors that may affect their sensitive personal
information or impact your life. The proposed model seeks
to propose an alternative for safety assessment based on the
economic, social, and environmental aspects of the smart city
in which the citizen and their interactions are included.

From the literature review conducted in this study,
we found few cybersecurity maturity proposals applied to
IoT; the most relevant are shown in Table 10. These two
models include risk assessment and continuous monitoring.
However, we cannot identify maturity levels in the proposal
by Bugeja et al. [113]. Another relevant aspect that these two
models consider is Governance.

2) DESIGN THE STRATEGY FRAMEWORK

In this phase, we have consider the BSI PAS 180
standard [115] that addresses the critical aspects of a smart
city; it establishes the management of a smart city consider-
ing three axes: strategic, tactical, and operational factors as
depicted in Fig. 3.

At the strategic level, it considers the three pillars on
which a smart city is based on economic, environmental, and
social factors. Measuring the impact of security attacks on
each pillar will give city managers a comprehensive approach
for subsequently establishing strategies to minimize the
impact.

At the ractical level, the aspects to consider are the sus-
tainability and the resilience of the smart city. Sustainability
is defined as the city’s capacity to manage resources for both
current and future generations adequately. The resilience of
the city is established as the capacity of the city to adapt to
adverse situations. From a security perspective, the model’s
objective is to measure the maturity of the smart city’s
cybersecurity capabilities to identify and respond to security
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TABLE 10. Cybersecurity Maturity Models Applied to loT.

Model Proposal by Levels Domains Sub-domains
IoT_SMM  Industrial Internet Consortium [114]  None Governance Strategy and governance
Minimum Enablement Treat modeling and Risk assessment
Adhoc Hardening Supply chain and dependencies management
Consistent Identity and access management
Formalized Asset protection
Data protection
Vulnerability and patch management
Situation awareness
Event and incident response
I0TSM Bugeja [113] Not defined ~ Governance Security education and awareness
Construction  Regulations and compliance
Verification Security-by-design
Operations Continuous and automated risk assessment
Data and application threat modeling
Security requirements and architecture
Artifact Review
Security testing
Security operations and maintenance
Security configuration
c‘;bn:;:tef:‘il;ty Vulnerability Logging
Sverviow Exposure Effectiveness
Smart city
components 1
Compromises
Strategic level Tactical level Operational level Controls Incident
L Effectiveness Response
@ ) N Effectiveness
Pillars of
smart city, Sustainabillity CyberSeeurity ! . ]
(economic, and controls
enviromental resilience Social Economic Environmental
and social)
Consequences Consequences Consequences
J
FIGURE 3. Axes of the design strategy framework. I T I T |
attacks that may directly or indirectly affect sustainability and s“.’.};’,’l’!};’,‘," ::.’:f:;‘é;

resilience.

At the operational level, the maturity model would
consider several aspects, such as the implemented security
controls, the detected vulnerabilities, logging infrastructure,
incident response effectiveness, and device access.

Fig. 4 illustrates how these axes interact to define the risk
levels in a smart city.

3) CONCEPTUALIZATION AND SPECIFICATION OF THE
FRAMEWORK

Table 11 shows the main specific factors of each pillar of the
smart city that must be evaluated from the strategic approach.
From the tactical approach, two aspects closely related to
the smart city are sustainability and resilience, as can be
seen in Fig. 5. Focusing on cybersecurity aspects that may
affect these two aspects will minimize their impact on the
smart city and guarantee the smart city’s economic, social,
and environmental objectives.

In [102], an adaptation of the CMMI model is proposed
considering resilience features; for this development, the fol-
lowing norms or cybersecurity standards are considered as
input sources:
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FIGURE 4. Risk levels as a function of the design strategy axes.

« COBITS;

« CIS Security Control;

o SoGP for IS (Standard of good practice for information

security), and

« ISO 27005.

The proposal considers the NIST cybersecurity framework
a central element to assess compliance progress, empow-
ering with a percentage of 20% the five functions: Identi-
fication, protection, detection, response, and recovery. The
model also considers five levels of maturity: Not achieved (no
controls), loosely achieved (few controls), partially achieved
(some controls), mainly achieved (structured controls imple-
mented), and fully achieved (baseline security).
4) MAPPING FEATURES OF THE CYBERSECURITY MATURITY
MODEL BASED ON EXPERT PANEL RANKING
This phase aims to establish the cybersecurity characteristics
that allow determining the smart city’s risk levels based on the
impacts of cybersecurity in each of the three pillars, namely

VOLUME 8, 2020



R. O. Andrade et al.: Comprehensive Study of the loT Cybersecurity in Smart Cities

IEEE Access

TABLE 11. Possible Cyberattack Outcomes on Smart City Pillars.

Factor Cyberattack outcome

Social People can suffer depression, anxiety, and
frustration because of a cyberattack [116].

Economic The loss of information or the disruption
of businesses caused by attacks has a di-
rect economic impact. The average costs of
malware, web-based, and Denial of Service
(DoS) attacks were $1.4 million, $1.4 mil-
lion, and $ 1.1 million dollars, respectively,
in 2018. According to the World Economic
Forum, it is estimated a loss of $5.2 trillion
dollars due to cyberattacks from 2019 to
2023 [117].

Environmental Critical infrastructures that directly relate to
environmental resources such as water or oil
can be affected by cyberattacks. Attackers
can take control of services and over sat-
urate their demand or block their distribu-
tion. In October 2018, North Caroline’s wa-
ter and sewer service suffered a ransomware

attack [118].

il o
Resilience

[ Economic

Aupqeureisns

Environmental

FIGURE 5. Aspects of the tactical level and their relation with the
components of the strategic level.

economic, social, and environmental factors. To establish the
correlation between the identified characteristics and the risk
level, we propose using fuzzy engineering that allows estab-
lishing a set of rules and reducing the subjectivity that a panel
of experts may have when defining weights for each of the
characteristics associated with a certain risk level. Figure 6
presents the system components for mapping the strategic
pillars to the risk level.

5) VALIDATION OF THE INITIAL CYBERSECURITY MATURITY
MODEL

For the initial evaluation of the model, we used a simulation
scheme based on Bayesian networks in which different sce-
narios of cyber-attacks in smart cities are performed. For that
purpose, the Bayesian Server 9.2 Software was utilized.

A. EXPERIMENT

The Smart city contributes to fulfilling the sustainability
and resilience objectives in the city’s social, economic, and
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Environmental
smart city
features

Economic Social
smart city smart
features

Membership Experts
functions judge
Pre-processing
e
@ l ~ None
; Weighted fuzzy Fuzzy Lossely
Mining * Sl systems Partially
Largelly
' g Fully
[ Selection of
cybersecurity Test data

feautures

FIGURE 6. Correlation between strategic levels and risk levels as a
function of the fuzzy system.

environmental perspectives. From a technological point of
view, the Smart city is built through emerging technologies
such as IoT, Bigdata (BD), Artificial Intelligence (AI), and
Cloud. Their interrelation for the generation of information
supports the decision-making processes of the different city
factors. To evaluate the impact of cyberattacks on the city’s
strategic objectives, we conducted a simulation of the Smart
city’s components to evaluate the dependency relationship
of each one’s security factors and its impact on the social,
economic, and environmental aspects.

We defined four nodes as parents that represent emerg-
ing technologies IoT, BD, Al, and Cloud that can be used
to construct the Smart city. Additionally, we have defined
four nodes as children that simulate the vertical axes or
domains of the city such as Smart health (SH), Smart traf-
fic (ST), Smart agriculture (SA), and Smart grid (SG) that
allow services to be covered and city operations and in
which the use of emerging technologies is increasingly com-
mon. Finally, we have defined four nodes called leaf that
represent the Economic (ECO), Environmental (ENV), and
Social (SO) factors involved in the sustainability objectives
of the city. We aim at evaluating the cybersecurity impact on
the city’s factors if an attack is performed on one of the parent
nodes.

To model the dependency relationships between the differ-
ent nodes, we have considered the use of Bayesian network
as illustrated in Fig. 7. It will allow us to determine the proba-
bility of impact on the different nodes based on attack events
that may occur at a particular node. The use of Bayesian
networks allows us to represent the probability of impact in
each relationship of nodes.

We have considered the ECO, ENV, and SO factors as
temporal type where t € {0, 1,2, 3,4} in all nodes. In the
Bayesian network, each node has a boolean type data repre-
senting two states: attack or not attack with their respective
probabilities. For each time slot in simulation, the Bayesian
network does not change (i.e., connections between nodes
is permanent, but temporal nodes will have different prob-
abilities associated with the type of attack). After running
the model, we have obtained the results shown in Table 12.
The results indicate the attack probability of each node of
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FIGURE 7. Bayesian network model for smart city simulation.
TABLE 12. Bayesian probabilities for simulated smart city attack.
BD Al Cloud loT ECO-False ECO-True ENV-False ENV-True SO-False SO -True
False False False False 0.571 0.429 0.6 0.4 0.615 0.385
False False False True 0.606 0.394 0.645 0.355 0.385 0.615
False False True False 0.612 0.388 0.675 0.325 0.604 0.396
False False True True 0.382 0.618 0.452 0.548 0.404 0.596
False True False False 0.459 0.541 0.581 0.419 0.444 0.556
False True False True 0.461 0.539 0.675 0.325 0.415 0.585
False True True False 0.528 0.472 0.45 0.55 0.409 0.591
False True True True 0.489 0.511 0.596 0.404 0.534 0.466
True False False False 0.714 0.286 0.5 0.5 0.5 0.5
True False False True 0.529 0.471 1 0 0.313 0.688
True False True False 0.565 0.435 0.222 0.778 0.591 0.409
True False True True 0.419 0.581 0.5 0.5 0.405 0.595
True True False False 0.462 0.538 0.478 0.522 0.357 0.643
True True False True 0.367 0.633 0.714 0.286 0.522 0.478
True True True False 0.508 0.492 0.396 0.604 0.453 0.547
True True True True 0.32 0.68 0.416 0.584 0.48 0.52

the smart city (SO, ECO, ENV) based on the parent nodes’
possible state. According to Bayesian values, the highest
probability of attack to the social node is 63.3% when the
attacker affect BD, Al, and IoT nodes; the results also indicate
that there is an attack probability of 68.8% to the economic
node, if the attacker affects BD and IoT; finally, there is an
attack probability of 71.4% to the ENV node, if the attacker
focus on cloud and Al. One attack to all nodes has more
relevance in the ECO node than the other two. According
to our Bayesian model, if an attacker decides to affect only
the IoT node, the attack probability is 61.5%, whereas the
same attack event to other nodes executed on a separate way
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is equal or fewer than 50%. This simulation indicates that
The IoT node presents a more significant probability of being
attacked.

Another simulation scenario shows the probability of a
smart traffic node (ST) being attacked based on the par-
ent nodes’ information, i.e., IoT, BD, AI, and Cloud. If an
attacker decides not to take any action, the attack probability
on the ST node is lower than 30%. In the opposite case,
if the attacker tries to damage all the parent nodes’ systems,
the attack probability on the ST node is 96%. According to
Bayesian values, the highest probability of ST attack is 95%
when an attacker focuses on IoT and cloud. There are no
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TABLE 13. Bayesian probabilities for simulated smart traffic attack.

BD Al Cloud IoT ST-False ST-True
False False False False 0.70 0.30
False False False True 0.44 0.56
False False True False 0.85 0.15
False False True True 0.05 0.95
False True False False 0.36 0.63
False True False True 0.70 0.30
False True True False 0.38 0.62
False True True True 0.89 0.11
True False False False 0.28 0.72
True False False True 0.32 0.68
True False True False 0.54 0.46
True False True True 0.31 0.69
True True False False 0.98 0.02
True True False True 0.14 0.86
True True True False 0.47 0.53
True True True True 0.04 0.96
Ramsonware attack Social impact 0.0 5‘2 0;4 5‘5 0;5 0;2 0;4 0‘5 0‘5 ‘ID
True 49% True 20% i &% | b a°°° T o & 8 ol®
False 51% d False 80% Fisk level RN ||| °D° o e °D"D=. ‘ K °§°°o o °:§
DDoS attack Economic impact * L g:a SEE SR -2 oo * %o o2 Te
True 11% ‘ True 35% - 1. 5 e 5 o f e
Falsesioe T ooy, o : — — = - :DD: <
* - 5 e Social_impact & T Eg
FIGURE 8. Determining the cybersecurity risk level by a Bayesian network e - “ﬂo Ue® :u%“ =7 o " :* g
analysis. e e el
substantial difference in results when attacks are performed f i 1 . DD . a _ ) 3 eonomiclmeact
o . rnig 5 5

against all parents nodes together (see Table 13).

Cybersecurity risk level could be determined based on the
conditional dependence of several attacks to environmental,
social, and economic impact of smart city nodes. For instance,
Fig. 8 illustrates the data from our simulation scenario where
a ransomware attack represents a impact on the social node
of 20%, while a DDoS attack affects the economic node
in 35 %. These results individually could be considered of low
impact for an smart city, but when they are combined, it gener-
ates an risk level of 2 in a scale of risk of 1 to 5. Fig 9 presents
the lineal regression to corroborate of results obtained of
simulation data of possibles attacks to smart city nodes using
R software. According to Laugé et al. [119], dependencies
create vulnerabilities that could cause a cascade of failures
on critical infrastructures; for this reason, it is important
that operators understand the complexity and dependencies
of the critical infrastructures. Additionally, Laugé mentions
that the dependencies of critical infrastructures (CI) could
vary according to factors like the time period when failure
happened and the duration of the failure.

To obtain a more accurate cyber-risk for smart cities, it is
necessary to identify the dependencies among critical nodes
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FIGURE 9. Classification model of dependencies of cyber-attacks with
smart city nodes.

and the level of impact of the attack to the economic, social
and environmental nodes. The Bayesian model could be used
for modeling the smart city attacks, but the identification of
all possible relation among nodes is required. This could be
a vast network because of all possible cybersecurity attacks
related to IoT devices, Al algorithms, and cloud platforms
in the city. Another challenge is to identify the impact of
cyber-attack on economic, environmental, and social factors.
The impact of each factor could be different for each verti-
cal smart city domain. However, the Bayesian model allows
understanding the relation of cyber-attack with parent nodes
(IoT, Cloud, BD, and AI) with the smart city nodes (ECO,
SO, and ENV factors).

VI. CONCLUSION

Internet of Things (IoT) is a crucial component for the
development of a smart city. In the next years, IoT will
grow to billions of devices, as confirmed by international
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consulting firms. However, since IoT is vulnerable to cyber-
security attacks, this situation could impact smart cities’ secu-
rity. In this work, we have conducted a systematic literature
review to identify the proposals for improving IoT cyberse-
curity in smart cities. Building on this, we have proposed
an assessment model to evaluate the cybersecurity matu-
rity level of IoT solutions used in a smart city. This model
represents essential support for improving cybersecurity at
the smart city level and ensuring its functionality. Further-
more, by applying cognitive security techniques, it would
be possible to assess cybersecurity risk levels in the face
of complexity, diversity, and large volumes of data in IoT
ecosystems.

The large number of IoT devices found in the smart city
and the various possible security attacks pose a challenge in
risk analysis. To obtain a more accurate value of cyber-risk on
smart cities, it is necessary to identify a more significant num-
ber of possible cyber-attacks and vulnerabilities and analyze
the impacts and their relationships on the social, economic,
and environmental domains. Relevant aspects when consid-
ering cybersecurity in IoT ecosystems are the relationships
and dependencies of different nodes, e.g., Cloud. In cloud
platforms, they have some cybersecurity parameters that can
be used to minimize the impact of cyber attacks on smart
cities.

At the time of study, we have identified a limitation of
knowledge of the values of the impact of cyber-attacks on the
social, economic, and environmental aspects of smart cities.
Although there are some studies in this context, most of them
are focused on the economic aspects, and they only analyze
the social and environmental contexts superficially. The smart
city’s direct interaction with people encourages us to consider
the present research on the social impacts generated by cyber-
attacks; for example, when there are attacks on critical infras-
tructures that handle health, water, or energy aspects, it would
directly affect the people’s life.

Future works include evaluating the selected discipline’s
effectiveness as a protection method in each IoT ecosystem
layer. To evaluate, improve, and measure the cybersecurity
on IoT solutions used in smart cities, we could focus on the
IoT network layer, and we could combine the proposals of
risk-based layered security with machine learning or data
mining solutions. We should also consider the limitations of
IoT forensics and privacy issues in IoT ecosystems. In the
forensic process, it is essential to determine the root-cause
of cybersecurity attacks. Based on this SLR, it could be
determined that no formal process has been established yet.
Several IoT forensic models are based on ISO 27037 stan-
dard; however, there are gaps in applying the forensic process
in IoT ecosystems. In future work, we will develop a model
to identify the dependencies of a cybersecurity attack focused
on IoT and their probabilities of impact on the smart city’s
social, economic, and environmental aspects. We have ini-
tially considered the Bayesian model to represent the depen-
dencies among the smart city nodes because they describe the
causality of relationships.
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